
Astronomical Data Analysis Software and Systems XVIII
ASP Conference Series, Vol. 411, c© 2009
D. Bohlender, D. Durand and P. Dowler, eds.

Hardware Device Simulation Framework in the
ALMA Control Subsystem

Matias Mora and Cecilia Reyes

Computer Systems Research Group, Universidad Técnica Federico
Santa Maŕıa, Av. España 1680, Valparáıso, Chile

Jorge Ibsen

European Southern Observatory, Alonso de Córdova 3107, Santiago,
Chile

Jeff Kern, Thomas Juerges, and Allen Farris

National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro,
87801 NM, U.S.A.

Rodrigo Araya, Nicolás Troncoso, and Vı́ctor González

Associated Universities, Inc., Av. El Golf 40, Piso 18, Santiago, Chile

Abstract. Hardware device simulation development is a fundamental task
which has to be addressed when writing control software. Simulations are used
to decouple the software from the hardware layer, and provide a powerful tool
to ensure the correct functionality of a control system before integrating real
devices. This paper presents the design of the ALMA hardware device simulation
framework as part of the Control subsystem. This framework provides basic code
generation, allows simulation of devices through an external process connected
to a real-time FIFO (as the real hardware), and provides an alternative, direct
and more flexible simulation. This has simplified development and testing as
developers can now focus on the non-trivial aspects of a simulation.

1. Introduction

1.1. The Control Subsystem

All software subsystems for the ALMA Project are being developed over a com-
mon distributed framework, called ALMA Common Software, first presented
by Raffi, Chiozzi, & Glendenning (2001). ACS is an object model based on the
CORBA specifications and uses the Component-Container model. It provides a
common framework, from the application layer down to the hardware control.

The ALMA Control Subsystem architecture enables the control of the en-
tire antenna array. Internal antenna devices are controlled through the ALMA
Monitor and Control Bus (AMB), which is a CAN bus connecting the devices
with the Antenna Bus Master (ABM). Each device has an associated ACS C++
component in charge of its control. In general terms this manages all of the
device’s monitor (read) and control (write) points, specified by a Relative CAN

462



Hardware Device Simulation for ALMA 463

Address (RCA). All monitor and control points are defined in each device’s In-
terface Control Document (ICD). The component’s interface is defined by its
IDL, allowing other (higher-level) components and clients to interact with it,
independently from the implementation language.

These control components have quite a lot of things in common: the ba-
sic C++ structure for ACS and common and specific monitor and control
points management. Fortunately for the developers, it is not necessary to
code these common parts again each time, thanks to a code generation frame-
work (Farris 2006) based on openArchitectureWare. The device control compo-
nents are generated based on their ICD specifications, written in XML spread-
sheets. They contain general device attributes, monitor and control points spec-
ifications (RCA, data types, value range, etc.) and archiving information for
some monitor points. At build time the code generation framework automati-
cally creates the output classes, header files and IDLs based on generic template
files written in a simple markup language. This technique has resulted in a dra-
matic improvement in productivity, since software developers can concentrate
on higher-level aspects of the device control.

1.2. Original Hardware Device Simulator

At the beginning of the present work (early 2008), the ALMA Control subsystem
was using the AMB Loopback Simulator to simulate all hardware devices and
test the corresponding control components. This strategy was based on a simple
C++ class, instantiating a hard-coded list of simulation classes; each one of them
supported the device’s monitor and control points. As an external process, it
could receive CAN bus messages from the device control component through a
Kernel real-time FIFO, and dispatch them to the proper simulation object. The
replies went back to the component by the same mechanism.

The simulation classes involved in this strategy had to be created manually
as they were needed. Since the communication with these classes was done
through the RT Kernel space, this approach had the limitation of not being
able to simulate more than one antenna set on a single machine. In addition,
all devices were aggregated by a single process, introducing some limitations in
its flexibility, losing the distributed nature of the system and making it hard to
control the lifecycle of the simulation classes.

2. ALMA Hardware Device Simulator

The main goal of this new framework is to simplify the development of hardware
simulations. The Control code generation framework was adapted to build the
basic C++ simulation classes from the existing spreadsheets. These classes could
be further extended by developers to add special functionality. The new simula-
tion classes are backwards compatible and can be run either with the traditional
Loopback Simulator or a direct simulation, using an alternative communication
class which replaces the hardware layer.

2.1. Design Overview

A general class overview of the new simulation strategy is shown in Figure
1. Black classes are part of the hardware control module, green ones are the



464 Mora et al.

Figure 1.: Main class diagram for the ALMA hardware simulation system.

simulation classes and blue ones are part of the simulation component extension
of the actual hardware control component.

The hardware control component consists of a generated <dev name>Base

class and a user-extended <dev name>Impl. In the new simulation strategy, a
<dev name>CompSimBase class extends the original control component, chang-
ing only the ambDeviceInt communication methods by the ones provided by
AmbSimulationInt which is used through composition instead of inheritance.
Both implement the same methods, although AmbSimulationInt interacts with
the HWSimulator instead of the RT-FIFO. Also, two new methods are added to
allow simulating error conditions at runtime.

On the simulation side, common monitor and control points are managed in
the CommonHWSim class, while <dev name>HWSimBase is generated for each device,
providing specific points simulation. Simulation logic is further introduced by
developers in the HWSimImpl class. A sequence diagram of the simulation process
is shown in Figure 2.

The <dev name>CompSimBase and <dev name>CompSimImpl classes are also
generated for each device. The last one contains only the constructor with the
instantiation of the <dev name>HWSimImpl class. The separation was done to
allow the developer to provide alternative simulations by instantiating different
HWSimImpl-like objects with different behaviors.

3. Conclusions

The new ALMA hardware simulation strategy enables a device control compo-
nent to simulate itself, without passing through the RTOS channel and without
any external running process. Also, mainly through the usage of code genera-
tion, a simulation framework is provided which enables the developers to focus
only on adding simulation functionality. This has once again reduced the de-
velopment time for a control component dramatically, as a default simulation is
provided out of the box.



Hardware Device Simulation for ALMA 465

Figure 2.: Sequence diagram of the ALMA hardware simulation process, without
RT-FIFO.

The new framework is currently in use for all hardware devices of the Con-
trol subsystem which use the CAN bus. The non-RTOS simulation has so far
allowed mounts of simulated arrays of up to four antennas on a single machine.
Also, nearly all development and debugging of control components, before plug-
ging them into real hardware, is now done on personal workstations without RT
requirements, instead of specialized servers. A review of current simulation and
testing levels in the Control subsystem is presented in Hiriart & Kern (2009).

Finally, the proposed solution has some design problems, mainly because
it had to be integrated into the existing Control subsystem infrastructure, with
as few changes as possible for the developer, so as not to cause problems in
current critical development phases. The Computer Systems Research Group
at UTFSM is working on a generalization of this simulation framework to form
part of a telescope simulation environment to be attached to a generic telescope
control model (Tobar et al. 2008).

Acknowledgments. This work was supported by ALMA-CONICYT Fund
project #31060008 “Software Development for ALMA: Building Up Expertise
to Meet ALMA Software Requirements within a Chilean University”, under
development at Universidad Técnica Federico Santa Maŕıa, and NRAO, through
Associated Universities, Inc.

References

Farris, A. 2006, in ASP Conf. Ser. 376, ADASS XVI, ed. R. A. Shaw, F. Hill, & D. J.
Bell (San Francisco: ASP), 523

Hiriart, R. & Kern, J. 2009,in ASP Conf. Ser. 411, ADASS XVIII, ed. D.A. Bohlender,
D. Durand & P. Dowler (San Francisco: ASP), 414

Raffi, G., Chiozzi, G., & Glendenning, B. 2001, in ASP Conf. Ser. 281, ADASS XI, ed.
D. A. Bohlender, D. Durand, & T. H. Handley (San Francisco: ASP), 103

Tobar, R., von Brand, H. H., Araya, M. & Lopez, J. 2008, in Proceedings of SPIE 2008,
Advanced Software and Control for Astronomy, 7019


