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Abstract. A Particle-in-Cell (PIC) code, called Parsek2D, for the simulation
of astrophysical and space plasmas is presented. Parsek2D enables simulations
with large grid spacing and long time step, by means of implicit time differen-
tiation and parallel computing. An implicit formulation of the PIC algorithm
removes the severe numerical stability constraints of explicitly time-differenced
PIC. Parallel supercomputers are needed to meet the computational and mem-
ory storage requirements of large scale problems The implicit PIC algorithm, and
its implementation on parallel computers are described. Simulations of magnetic
reconnection using physical mass ratio are shown.

1. Introduction

In space and astrophysical plasma physics, there is often interest in studying
the long term evolution of large systems. In the magnetospheric plasmas, there
are typically over 103 Debye lengths(λD) in an ion gyroradius, and 104 plasma
periods(ω−1

pe ) in an ion cyclotron period(Ω−1
ci ). For instance, the magnetic recon-

nection develops over a period of 10Ω−1
ci , in large (compared to ion gyroradius)

systems. To resolve these large span of time and space scales with an explic-
itly time-differenced Particle-in-Cell(PIC) is not feasible, even on the modern
massively parallel computers. The reason is that the explicit PIC method needs
to satisfy numerical stability conditions: c∆t/∆x < 1, where c is the speed of
light, ωpe∆t < 2, and ∆x < λD. These constraints force the simulation to follow
the fastest phenomena present in the system and to resolve the Debye length.
The implicit PIC removes the stability condition on the choice of the time step,
and allows larger grid spacing (ten to hundred times the grid spacing of explicit
PIC).

The stability of the numerical scheme is achieved by means of a more so-
phisticated algorithm, that makes the parallelization more complex than in a
explicit code. A consequence is that more care needs to be put into designing
the parallelization of an implicit PIC code. In this paper, the implicit PIC algo-
rithm is presented first, and it is followed by a description of the implementation
for parallel computers. Finally results of simulations to study magnetic recon-
nection in the geomagnetic tail using the physical mass ratio for plasma species
are presented.
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2. The Implicit Particle-in-Cell

The PIC method mimics electrons and ions with a reduced number of repre-
sentative computational particles. A grid is introduced in the simulation box,
and charge and current densities are interpolated from the particles into the
nodes of this grid. The Maxwell’s equations are then solved on the grid to cal-
culate the electromagnetic field. Finally, the fields are interpolated from the
grid to the particles to provide the force acting on each particle, and the par-
ticles are advanced solving the Newton’s equation of motion. At the beginning
of the simulation, particle positions and velocities and field quantities are ini-
tialized sampling the initial configuration of the system. Charge(ρ), current(J)
and pressure(Π) densities are calculated at the time level n by the interpolation
from position xn

p and velocity vn
p of particle p of the species s using the weight

functions W (x − xn
p ) (typically b-splines functions):

{ρn,Jn, Πn} =

ns
∑

s

Ns
∑

p

qs{1,vn
p ,vn

pv
n
p}W (x − xn

p ) (1)

Parsek2D solves the second-order Maxwell’s equation for the electric field E
(here in CGS units):

∇2E −
1

c2

∂2E

∂t2
=

4π

c2

∂J

∂t
+ 4π∇ρ (2)

the magnetic flux B is then calculated by integrating the Faraday’s Law of
induction:

∂B

∂t
= −c∇× E (3)

The field acting on particles is then calculated by interpolation from the grid
to the particles. The particles (with mass ms and charge qs where s labels
the species of the particles) are advanced using the nonrelativistic equation of
motion:

dxp

dt
= vp ,

dvp

dt
=

qs

ms
(E +

vp

c
× B) (4)

2.1. Implicit Maxwell’s Solver

In the implicit PIC (Brackbill & Forslund 1982; Lapenta et al. 2006 ), Eq. (2) is
differentiated implicitly in time from time level n to time level n + 1 as follows:

En+1 − (c∆t)2∇2En+1 = En + c∆t(∇×Bn −
4π

c
Jn+1/2)− (c∆t)2∇4πρn+1 (5)

After the electric field En+1 has been evaluated, the magnetic field is advanced
in time:

Bn+1 = Bn − c∆t∇× En+1 (6)

The difficulty of solving the implicit PIC arises because the new electric field in
Eq. (5) depends on the new values of particle position and velocities through
Eqs. (1), and vice-versa particles position and velocity depend on the new electric
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field. The exact implicit method iterates on all these equations together, but
the computational cost of such exact implicit PIC would be prohibitive. The
approximated implicit PIC used by Parsek2D is called implicit moment method
and is based on a second order in time Taylor expansion of the interpolation
function W (x − xn+1

p ) (Vu & Brackbill 1992). The expansion is made around
the particle position at the previous time step:

W (x − xn+1
p ) = W (x − xn

p ) + (xn − xn+1
p )∇W (x − xn

p ) + ... (7)

The new values for ρn+1 and Jn+1/2 are calculated by extrapolation of inter-
polation functions, and they are inserted in Eq. (5). After a series of algebraic
manipulations (Vu & Brackbill 1992) an equation for En+1 is obtained:

(I + χn) · En+1 − (c∆t)2(∇2En+1 + ∇∇ · (χn · En+1)) =

En + c∆t(∇× Bn −
4π

c
Ĵn) − (c∆t)2∇4πρ̂n

(8)

where I is the identity matrix and χ is called implicit susceptibility for similarity
of Eq. (8) to the field equation in dielectric media, and it is defined as:

χ· =
∑

ns

χs · , χn
s · ≡

1

2
(ωps∆t)2R(Ωs

∆t

2
)· (9)

and ρ̂n and Ĵ are modified source terms for the Maxwell’s equations:

ρ̂n = ρn − ∆t∇ · Ĵ , Ĵ =

ns
∑

s

R(Ωs
∆t

2
) · (Js −

∆t

2
∇Πs) (10)
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where Ωs ≡
qs

ms

B
n

c , and ωps =
√

(4πρsqs)/ms are the cyclotron frequency vector
and plasma frequency for species s. To ensure that the charge density continuity
equation is satisfied, the electric field must be corrected with:

Ẽn+1 = En+1 −∇Φ , ∇2Φ = ∇ · En+1 − 4πρn (11)

The box scheme is used for the spatial differentiation of spatial operators
in the field Eqs. (8) and (11). Boundary conditions for the electromagnetic
field implemented in Parsek2D include the perfect conductor, open, and periodic
boundary conditions. Equations (8) and (11) are solved by matrix-free Gener-
alized Minimal Residual (GMRes) and Conjugate Gradient(CG) iterative linear
solvers. It has been shown that the implicit PIC is linearly unconditionally sta-
ble, but subject to an accuracy condition vthe∆t/∆x < 1(Brackbill & Forslund
1982). Furthermore the method is more robust against the finite grid instability,
allowing a larger grid spacing. In the case of simulations of the geomagnetic tail,
the implicit PIC time step and grid spacing are tens to hundreds of times larger
(depending on the ion to electron mass ratio used) than those allowed by an
explicit PIC.
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2.2. Implicit Particle Mover

After the electromagnetic fields have been calculated with the Maxwell’s solver,
the computational particles are advanced by solving the Newton’s equation of
motions. The Eqs. (4) are implicitly time differentiated as follows:

xn+1
p = xn

p + vn+1/2
p ∆t , vn+1

p = vn
p +

qs

ms
(En+1

1/2
+

v
n+1/2
p × Bn+1

1/2

c
)∆t (12)

En+1

1/2
, and Bn+1

1/2
are the electric and magnetic field, calculated at the midpoint

of the orbit xn+1/2 = (xn+1 + xn)/2. If v
n+1/2
p is expressed as average of vn

p

and vn+1
p , then Eq. (12) can be solved for vn+1

p . Taking the dot product and

cross product of B with vn+1
p and with ṽp = vn

p + (qs∆t/ms)E
n
1/2

, Eq. (12) for

vn+1
p becomes

vn+1
p = (ṽp +

qs∆t

msc
ṽp ×Bn+1

1/2
+ (

qs∆t

msc
)2(ṽp ·B

n+1

1/2
)Bn+1

1/2
)/(1 + (Ωs∆t)2) (13)

Because the electric and magnetic field depend on the mid-orbit position of the
particle, an iterative procedure is needed to solve Eq. (13).

2.3. Implementation of the Implicit Particle-in-Cell

Parsek2D is a 2D1
2

PIC: it uses a two dimensional cartesian space, and three
components vector quantities. The domain decomposition technique is used on
parallel computers. For implicit PIC where the cost of particle moving and of
field solving are of the same order (unlike explicit PIC where most of the cost
resides with the particles), it is crucial that both field solving and particle mov-
ing be parallelized efficiently. A key aspect of efficiency is the need to retain
the particles and cells belonging to a subdomain on the same processor. A large
amount of information is exchanged between grid and particles residing in the
same physical domain and therefore it is crucial to avoid that this information
exchange results in communication. The simulation box is divided among pro-
cessors using a generic cartesian virtual topology. Particles are divided among
processors also depending on their location, and communicated to adjacent pro-
cessors if exiting from the processor domain.

Parsek2D has been written entirely in C++, and compiles on the freely
available GNU gcc compiler. An Object-Oriented design has been followed in
writing Parsek2D using the so-called lite object orientation approach presented
in a previous work (Markidis et al. 2005). The variables related to particles,
are organized as arrays in Particle objects and divided depending on the species
(electrons, ions,...). The Electromagnetic field constitutes a whole object, that
comprises the electromagnetic field and field sources variables. Class inheritance,
and polymorphism make easy for developers to add new code to Parsek2D,
without overwriting the existing code.

Explicit PIC codes already require very large memory to store the informa-
tion of all the particles. The implicit PIC requires more computer memory to
store additional intermediate variables, such as ρ̂, Ĵ. Parallel computer memory
is needed in order to run simulations with large number of particles and grid
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nodes. The choice of shared memory machines is therefore currently not feasible
and distributed memory machine (clusters) have to be used to simulate large
scale problems. The parallelization of the code is based on MPI libraries and
blocking communication has been chosen for the communication among proces-
sors. Input files are in the Key Value Format (KVF) and the output and restart
files are written in the HDF5 format.

Figure 1. The magnetic field at three subsequent times (mi/me = 1836).

3. Results

The implicit moment method has found numerous applications over the years,
see Ricci et al. (2002) and Brackbill & Cohen (1985) for a review. Parsek2D has
been tested on several problems involving space and astrophysical plasma. As
an example, we show a selection of results obtained for a magnetic reconnection
simulation in support of the NASA MMS mission. The simulation box has size
20dix10di, where di is the ion skin depth, defined as c/ωpi. The initial current
sheet has thickness 0.5 di. The prescriptions of the GEM challenge (Ti/Te = 5,
vth,e/c = 0.1) are chosen for the other plasma parameters (except the mass ratio
that is chosen as mi/me = 1836 instead of the standard 25).

Figure 1 shows the initial magnetic field configuration and its evolution in
response to the standard GEM perturbation (Birn et al. 1987): two regions are
initialized with opposite magnetic fields and break up reconnecting and form-
ing two magnetic islands. In presence of a uniform out of plane magnetic field
(referred to in the literature as guide field), the reconnection process produces
very high electron accelerations along the separatrices. In this region, the elec-
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trons travel much faster than the ions leading to the onset of a Buneman-like
instability, displayed in the contour plot of the parallel electric field as areas
of repeating dipolar fields (in small red circles in Figure 2 in a simulation with
mi/me = 64) (Goldman et al. 2008).

Figure 2. The parallel electric field and electron velocity (mi/me = 64).
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