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S U M M A R Y

A model is suggested to simulate the physical aspect of diagenesis in porous rocks. A bidisperse

ballistic deposition model with relaxation of deposited grains is used to generate the porous

structure. Sedimentation and erosion are allowed to restructure the pore space as a fluid flows

through the rock. The effect of this restructuring of the pore space on permeability is studied.

The Navier–Stokes equation is solved numerically by the finite difference method to determine

the pressure and velocity distributions in the pore space. We find that though deposition is the

dominant process in our model of diagenesis, reducing the porosity, the permeability may

increase dramatically in some cases. These are when the erosion takes place at a single narrow

constriction in the pore channel.
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1 I N T RO D U C T I O N

The process of ‘diagenesis’, restructures sedimentary rocks after the

initial process of sand deposition. This affects dynamic properties

of electrical and fluid transport through the pore network. Generat-

ing a realistic porous rock structure by a simple computer algorithm

is itself a challenging problem. Much work has been done in this

direction (Dasgupta et al. 2000; Dutta & Tarafdar 2003; Manwart

et al. 2000; Øren & Bakke 2003; Pape et al. 1999; Schwartz et al.

1993). After creating a porous structure, one studies its properties,

such as porosity, permeability to fluid flow and electrical conduc-

tivity, when the pores are filled with conducting brine. When real

rocks are formed, the geological process of diagenesis (Pettijohn

1984) leads to erosion as well as formation of mineral deposits or

cementation, which gradually change the pore structure and hence,

porosity and permeability.

Real rocks are 3-D structures with highly tortuous and often frac-

tal pore spaces. Before attempting simulation of this daunting geom-

etry, we present here, as a preliminary study a simpler 2-D version.

We generate a porous stochastic structure in 2-D and simulate flow

of a single fluid through it, using a numerical finite difference solu-

tion of the steady state Navier–Stokes equation. Next, we introduce

a simplified algorithm to mimic diagenesis, which deposits solid

material at low- fluid velocity regions and erodes the solid rock,

where velocity is high. This changes details of the pore channel

and results in a change in permeability. While this may not be an

entirely faithful representation of the true situation, it gives an idea

of changes, which may occur at the submacroscopic level and can

be a first step towards tackling the 3-D problem in all its complex-

ity. Our present treatment of diagenesis does not take into account

molecular diffusion or details of chemical reactions occurring dur-

ing diagenesis. These may be introduced in future extensions of the

model.

Our study shows that simulation of diagenesis by the present

algorithm with net deposition dominating over erosion, leads inter-

estingly to an overall increase in permeability. We discuss the reason

behind this seemingly paradoxical result on the basis of the details

of restructuring of the pore channel.

Our results are seemingly in conflict with the general belief that

permeability necessarily decreases with porosity. This effect is not

a result of the flow itself shaping the pore channel, as in our model.

Molecular diffusion and compaction with grains being crushed are

probably responsible for permeability reduction with porosity.

2 C R E AT I N G T H E RO C K S T RU C T U R E

A N D F L O W C H A N N E L S

We follow the procedure discussed in (Dutta & Tarafdar 2005) to

generate a porous structure with a connected rock phase. Under

appropriate conditions, the pore phase is also connected. We refer

to this model as the Relaxed Bidisperse Ballistic Deposition Model

(RBBDM).

The basic algorithm is to deposit particles of two different sizes

ballistically. In 2-D (1 + 1 model), we drop square 1 × 1 and elon-

gated 2 × 1 ‘grains’ on a linear substrate. The square grains are

chosen with a probability p and elongated grains with probabil-

ity (1−p). The presence of the longer grains leads to gaps in the

structure. The porosity �, defined as the vacant fraction of the total

volume (area in 2-D) depends on the value of p. Variation of � with

p follows a logarithmic law as discussed in Dasgupta et al., (2000);

Tarafdar & Roy (1998). For very high p, the pores are isolated, but

as p decreases, pores spanning the sample start to appear. It was

shown that in 3-D, the sample spanning pores are fractal (Dutta &

Tarafdar 2003). This is the basic BBDM, without relaxation, stud-

ied by Dasgupta et al. (2000); Dutta & Tarafdar (2003); Tarafdar &
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Figure 1. The rule for deposition and toppling of an unstable grain to a

relaxed position in RBBDM is illustrated. The broken outline shows the

position the topmost large grain relaxes to.

Roy (1998). In the RBBDM, a relaxation of the grains deposited in

an unstable position is introduced in Dutta & Tarafdar (2005). This

accounts partially for the compaction during growth of sedimentary

rocks.

The elongated grains are deposited with their long axis horizontal.

If a larger particle settles on a smaller particle, a one step overhang is

created if there is no particle immediately below the protruding end

of the larger particle. If a second larger particle settles midway on the

previous large particle, a two-step overhang is created, if there is no

supporting particle immediately below the protrusion of the second

overhang. This two-step overhang is not stable and the second large

particle topples over if possible, according to the scheme shown in

Fig. 1.

The relaxation obviously decreases the porosity and in RBBDM

� is maximum for p = 0.5. The configuration average of this value is

ϕ = 0.3635, whereas for the unrelaxed BBDM, � decreases mono-

tonically with p.

In the present 2-D model, it is obviously impossible to have both

rock and pore phases connected in both x- and y- directions. We

consider the y- direction as vertical, and thus the solid phase in

necessarily connected in this direction. For fluid flow, we look for

pore channels spanning the sample in the y-direction.

The simulation procedure is described in detail in Dasgupta et al.

(2000); Dutta & Tarafdar (2003); Dutta & Tarafdar (2005); Tarafdar

& Roy (1998). Here, we show the nature of the 2-D pore structure

in Figs. 2a and 2b, for different p.

The maximum porosity attained here is below the percolation

threshold in 2-D for random percolation (Stauffer & Aharony 1994).

Though the present algorithm is different from random percolation,

we may expect most of the configurations generated for finite sizes

of about 128 × 128 to have no pore channel spanning the cluster. We

reject those configurations which do not percolate and choose only

those where at least one spanning pore exists. The connected chan-

nels are identified by the well-known algorithm given by Hoshen &

Kopelman 1976. Earlier stochastic models of porous rock structure

(Jin et al. 2004; Manwart et al. 2000; Pape et al. 1999. ) reproduce

successfully the final structure. On the other hand, RBBDM attempts

to simulate the generation process of the rock, leading naturally to

a realistic structure.

3 F L U I D F L O W I N C O N N E C T E D

C H A N N E L S

We assume that a homogeneous and incompressible Newtonian fluid

is flowing through connected channels, similar to those shown in

Figs 2(a) and (b). The pressure difference driving the flow may be

due to gravity, if we consider our 2-D ‘rock’ to be vertical. If it is

lying in a horizontal plane, the pressure may be supposed to arise

from sources other than gravity.

Figure 2. (a) We show the 2-D porous structures generated by RBBDM for

the fraction of small grains ‘p’ = 0, with porosity 0.34. The sample is of size

128 × 128. (b) We show the 2-D porous structures generated by RBBDM

for the fraction of small grains ‘p’ = 0.9, with porosity 0.25. The sample is

of size 128 × 128.

In order to apply the finite difference method for numerical so-

lution described below, it is necessary for the minimum width of

the pore channel to be at least 3 units in terms of the smallest

unit of resolution. This is because, with no-slip boundary condi-

tions, the 2 sites (or cells), adjacent to the walls of the pore have

zero velocity, so to have a finite flow, there must be a third cell

between these 2, having non-zero velocity. Increasing this num-

ber from 3, as much as practicable will generate the true parabolic

velocity profile. However, in view of limited computer time and

memory, we have at present restricted this minimum number to 4.

This means that, each site (either solid or vacant) we have gener-

ated by RBBDM, described above, has to be replaced by a 4 × 4

square grid, increasing the linear size of our sample 4 times. Each of

these smaller squares is henceforth our new unit. This ensures that

fluid may flow through even the narrowest channel in our system.

We are interested in finding the pressure and velocity distribution

in the channel. The relevant equations describing the pressure and

velocity and the method of numerically solving these is detailed be-

low. We have broadly followed the procedure described by Sarkar

et al. (2004) with some necessary departures appropriate to our

problem.

The equation of motion for such a fluid is given by Navier–Stokes

equation.

ρ





∂
⇀

V

∂t
+ (

⇀

V .
⇀

∇)
⇀

V



 +
⇀

∇ P − µ∇2
⇀

V =
⇀

f e, (1)
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Figure 3. The grid cells for pressure P and velocity components u and v are shown here. The unprimed coordinates represent a vacant site in the real pore

space, the heavy black line is the pore–solid interface and the primed quantities represent the pressure and velocity introduced in the image cell to preserve

proper boundary conditions described in the text. The figure on the left is for the vertical boundary and the the right-hand side figure is for the horizontal.

where
⇀

V represents the velocity vector, P is the pressure,
⇀

f e is the

external force per unit volume, ρ and µ are the density and the

dynamic viscosity of the fluid. We also assume that the fluid flow

is slow enough so that the inertial terms ρ(
⇀

V .
⇀

∇)
⇀

V can be neglected

and there are no external forces acting on the fluid. This gives rise

to a simplified form of equation (1) known as Stoke’s equation.

∂
⇀

V

∂t
= −

1

ρ

⇀

∇ P + η∇2
⇀

V , (2)

where η = µ/ρ is the kinematic viscosity.

The equation of continuity is represented as

⇀

∇.
⇀

V +
∂ρ

∂t
= 0. (3)

Since the fluid is incompressible, the second term vanishes resulting

in
⇀

∇
⇀

V = 0. (4)

Equations (2) and (4) are solved numerically, by applying the method

of finite difference.

Pressure and scalar component of velocity can be discretized for

both space and time through finite difference equations.

Taking discrete time finite difference of eqs. (2) and (4), we get

the following

⇀

V n+1 −
⇀

V n

�t
= −

1

ρ

⇀

∇ Pn+1 + η∇2
⇀

V n+1, (5)

⇀

∇
⇀

V n+1 = 0. (6)

The physical significance of eq. (6) is that the velocity obeys the

equation of continuity at an advanced step (n+1), while its change

over time from n to (n+1) is computed from eq. (5).

Taking divergence of eq. (5), we get

⇀

∇.
⇀

V n+1 −
⇀

∇.
⇀

V n

�t
= −

1

ρ
∇2 Pn+1 + η∇2(

⇀

∇.
⇀

V n+1). (7)

Substituting eq. (6) in (7), we get

∇2 Pn+1 =
ρ

�t
(

⇀

∇.
⇀

V n). (8)

Equation (5) can be rearranged as

⇀

V n+1 − η�t∇2
⇀

V n+1 =
⇀

V n −
�t

ρ

⇀

∇ Pn+1. (9)

In our problem, we have applied a pressure gradient between the

two ends of the pore channel embedded within the rock. The fluid

is assumed to enter through the inlet with an unknown velocity. As

it continues to flow through the channel, its motion is determined

by the pressure gradient acting on it.

The initial condition is taken as n = 0,
⇀

V n =
⇀

V 0 = 0. The updated

pressure Pn+1 is computed from eq. (8), which is used in eq. (9) to

compute the updated velocity
⇀

V n+1. The new velocity
⇀

V n+1 is then

used as
⇀

V n and eq. (8) and (9) are iterated till the steady state is

reached. Steady- state flow is one in which the velocity vector is

independent of time. Numerically, this condition is satisfied when

|V n+1 − V n|α < ε, where ε is a very small quantity, defined by the

user depending on the accuracy required. If this condition is satisfied

after m iterations then Pm and
⇀

V m are the steady state solutions for

pressure and velocity, respectively.

The pore channel is divided into square grid-cells. P is the pres-

sure at the centre of a grid-cell, u and v are the components of
⇀

V

defined on the faces of the grid-cells, such that they are mutually

perpendicular as shown in Fig. 3.

Equations (8) and (9) can be represented as the following after ap-

plying central finite difference approximation for spatial derivatives

of pressure and the velocity components.

Here, �x is the spatial discretization unit, and in our case, it is

equal to the side of the square grid-cells. Hence, �x = �y.

Pn+1
i−1, j − 2Pn+1

i, j + Pn+1
i+1, j

(�x)2
+

Pn+1
i, j−1 − 2Pn+1

i, j + Pn+1
i, j+1

(�x)2

=
ρ

�t

[

un

i+ 1
2 , j

− un

i− 1
2 , j

2
(

�x

2

) +

vn

i, j+ 1
2

− vn

i, j− 1
2

2
(

�x

2

)

]

, (10)

un+1

i+ 1
2 , j

− η�t

(

un+1

i− 1
2 , j

− 2un+1

i+ 1
2 , j

+ un+1

i+ 3
2 , j

(�x)2

+

un+1

i+ 1
2 , j−1

− 2un+1

i+ 1
2 , j

+ un+1

i+ 1
2 , j+1

(�x)2

)

= un

i+ 1
2 , j

−
�t

ρ

(

Pn+1
i+1, j − Pn+!

i, j

�x

)

,
(11)
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vn+1

i, j− 1
2

− η�t

(

vn+1

i, j− 3
2

− 2vn+1

i, j− 1
2

+ vn+1

i, j+ 1
2

(�x)2

+

vn+1

i−1, j− 1
2

− 2vn+1

i, j− 1
2

+ vn+1

i+1, j− 1
2

(�x)2

)

= vn

i, j− 1
2

−
�t

ρ

(

Pn+1
i, j − Pn+1

i, j−1

�x

)

.
(12)

To numerically calculate the pressure and the velocity components,

sequential updating of the eqs. (10), (11) and (12) have been done

in the order of increasing i and j. However, an examination of these

equations reveal that the values of pressure and velocity compo-

nents at grid cells placed after the cell at which calculation is be-

ing done are required at any time step. For example in eq. (10),

to calculate Pn+1
i, j , the updated values of Pn+1

i+1, j and Pn+1
i, j+1 are re-

quired. Here, we have approximated these values at the n + 1th time

step to be equal to their corresponding values at the nth time step.

Apart from affecting the convergence rate of the steady-state pres-

sure and velocity values, this approximation does not affect the final

distribution.

Equations for the evolution of the pressure and velocity compo-

nents are as follows:

Pn+1
i, j =

1

4

[

Pn+1
i−1, j + Pn

i+1, j + Pn+1
i. j−1 + Pn

i, j+1

−
ρ�x

�t

(

un

i+ 1
2 , j

− un

i− 1
2 , j

+ vn

i, j+ 1
2

− vn

i, j− 1
2

)

]

, (13)

un+1

i+ 1
2 , j

=
1

4 + γ

[

un

i+ 1
2 , j+1

+ un+1

i− 1
2 , j

+ un

i+ 3
2 , j

+ un+1

i+ 1
2 , j−1

+γ un+1

i+ 1
2 , j

−
�x

µ

(

Pn+1
i+1, j − Pn+1

i, j

)

]

, (14)

vn+1

i, j− 1
2

=
1

4 + γ

[

vn

i, j+ 1
2

+ vn+1

i−1, j− 1
2

+ γ vn+1

i, j− 1
2

+ vn+1

i, j− 3
2

+ vn

i+1, j− 1
2

−
�x

µ

(

Pn+1
i, j − Pn+1

i, j−1

)

]

, (15)

where

γ =
(�x)2

η�t
.

Equations (13), (14) and (15) are applied to each of the grids

lying within the pore channel. The above equations are solved by

Gauss–Seidel’s iterative method. If there are n number of cells in a

row, there are (n + 1) number of u s to solve. Similarly the num-

ber of v s to solve is one more than the number of cells in that

column.The boundary conditions required for solving the equations

are

(1) u = v = 0 at the pore–rock boundary.

(2) The pressures at inlet and outlet of the pore channel are

specified as desired.

(3) When the eqs. (10), (11) and (12) are applied to grid-cells

having at least one face coinciding with the physical boundary

of the system, terms outside the flow region appear, which do

not exist physically. Here, we superimpose imaginary nodes out-

side the boundary, often referred to as image-grids (Aziz & Settari

1979).

The rigid interface between pore and matrix exhibit a no-slip

boundary condition. Let v′ be the y component of the velocity be-

yond a vertical rigid wall in the imaginary grid. For no-slip condition

at the boundary, v′ = −v1, where v1 is the y component of the ve-

locity in the pore grid. Also since
⇀

∇.
⇀

V = 0 in the fluid cell, it

follows that for
⇀

∇.
⇀

V
′

= 0 to vanish in the imaginary cell, u′ = u1.

The left-hand figure in Fig. 3 summarizes the boundary condition

across the vertical wall. Here, u1 is the × component of the velocity

in the fluid cell (Harlow & Welch 1965).

Analogous boundary conditions for velocity are applied at a hori-

zontal wall (right hand figure in Fig. 3). To summarize, the velocity

boundary conditions at no-flow boundaries—the normal velocity

component remains the same, while the tangential velocity reverses.

(4) The consistency of the boundary condition for P with the

vanishing of the normal velocities on the boundary should be main-

tained.

Substitution of the velocity boundary condition as enlisted in (3) in

eqs. (14) and (15) yield the following:

P ′n+1 = Pn+1
1 ± 2µ

un+1
1

�x
, (16)

P ′n+1 = Pn+1
1 ± 2µ

vn+1
1

�x
, (17)

where P1 is the pressure at the centre of the pore-cell, P′ is

the pressure at the centre of the adjacent imaginary cell, “+”

sign is for fluid to the left of the wall and “−” for fluid to the

right.

Equations (16) and (17) indicate that to calculate pressure in the

imaginary cells, we need to know the velocity in the fluid cell at

the same time step.To circumvent this problem and simplify our

numerical computations, we approximate velocities to be vanishing

near the walls (u1 = 0, v1 = 0) only when an expression for P′ needs

to be found. This yields P′ = P1 which is the pressure in the fluid

cell. Physically the result implies that the pressure gradient across

a no-flow boundary should be zero which can be easily seen from

Darcy’s equation (Aziz & Settari 1979).

(5) We put some restrictions at the inlets/outlets to define the

mode in which the fluid should enter and leave the pore-channel.

Imaginary cells are superimposed adjacent to the pore-cells at the

inlets and outlets outside the pore channel. We assume the fluid

flows normally to the inlets/outlets, which allows us to equate the

tangential velocity component in the imaginary cell to zero. Hence,

to satisfy continuity in the imaginary cell, the normal component

has to remain unchanged within the cell.

3.1 Validation of the model

The u and v values are calculated on the faces of the grid-cells; for

example at (i + 1

2
, j) and (i, j − 1

2
), respectively. The pressure and

velocity of the grid are stored in a double dimensional array whose

arguments refer to the i and j positions, respectively. Since these

arguments have to be of the integer data type, we superpose two

different matrices of grid-cells; one for solving the us and the other

for solving the vs. The one for us is such that the point (i + 1

2
, j)

which was on the face of a cell in the original grid structure is the

centre of a cell in the first new grid structure. Similarly for v s,

the point (i, j − 1

2
), which was on the face of a cell in the original

grid structure serves as the centre of a cell in the second new grid

structure (Fig. 4).
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Figure 4. The relative placements of the grids for pressure P and velocity components for x- and y- directions are illustrated.

Hence the equations, which are fed to the computer system appear

as

Pn+1
i, j =

1

4

[

Pn+1
i−1, j + Pn

i+1, j + Pn+1
i. j−1 + Pn

i, j+1

−
ρ�x

�t

(

un
i+1, j − un

i, j + vn
i, j+1 − vn

i, j

)

]

, (18)

un+1
i, j =

1

4 + γ

[

un
i, j+1 + un+1

i−1, j + un
i+1, j + un+1

i, j−1 + γ un+1
i, j

−
�x

µ

(

Pn+1
i, j − Pn+1

i−1 j

)

]

, (19)

vn+1
i, j =

1

4 + γ

[

vn
i, j+1 + vn+1

i−1, j + γ vn+1
i, j + vn+1

i, j−1 + vn
i+1, j

−
�x

µ

(

Pn+1
i, j − Pn+1

i, j−1

)

]

. (20)

We have used ε = 0.001, µ = 2 cp, ρ = 0.8 g/cc, �x = 10−2 cm,

�P = 1 dyne, �t = 0.25 × 10−4 s.

The proper choice of �x and �t is very crucial. Decreasing �x

and �t as far as possible can lead to better resolution, but keeping

in mind the limitations of computer resources, we chose the above

values.

Apart from calculation of pressure and velocity distribution, the

program developed also monitors the difference in the amount of

mass flowing in and out of the system. Ideally, it should be zero, since

we have assumed the fluid to be incompressible, but for the various

approximations some errors creep in and the difference does not

vanish identically. We have considered only those solutions where

the error in mass conservation ≤2.5 per cent. To test the accuracy

of our simulated model, we compare the results obtained through

simulation with the analytical solution of fluid flow on a plane rect-

angular geometry.

The areal flow rate Q can be formulated as

Q =
h3

12µ

∂ P

∂x
, (21)

where h is the width of the rectangular pore channel and ∂ P

∂x
is

the pressure gradient applied across the length of the pore chan-

nel. Comparing the average velocity calculated from eq. (21) and

from the simulation is one way to test the efficacy of the procedure

followed.

Usually, the minimum channel width considered to give a

parabolic velocity profile for Poiseuille flow is 8, we propose to

work with minimum channel width 4, to reduce computer require-

ment. To show that this does not change the qualitative nature of the

results, we calculate the average velocity for a straight channel of 4

and 8 cells width.

For a cell 4 cells wide in a system of size 128, we have

(vsim)av = 0.00560 and (vth)av = 0.00529

For a channel 8 cells wide in a 256 sized system, the same results

are

(vsim)av = 0.00969 and (vth)av = 0.01049.

Here, vsim represents the simulated result and vth the result calculated

from eq. (21).

We have also tested the velocity distribution on a branched chan-

nel for eight times (in a 256 size sample) and four times (in a

128 size sample) magnification of the RBBDM unit cell. The re-

sults, illustrated in Fig. 5, show that the distribution is very similar

in the two cases. The right-hand side branch in the figure is of nar-

rowest possible width. The percentage error in mass conservation

in the two cases is .00065 per cent for system size 256 and.0023

per cent for system size 128.

3.2 Results for pressure and velocity distribution

before diagenesis

Once the steady-state fluid flow is established through the sample,

the permeability is determined from Darcy’s law. We assume that

unit pressure difference is imposed across the sample and calculate

the flux, using the steady-state flow velocities. We have calculated

the permeability (κ) in 200 configurations for each value of p ranging
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Figure 5. Test results are shown for (a) 8 × 8 and (b) 4 × 4 magnification of the units in RBBDM. (a) and (b) show the velocity distribution obtained in a

branched channel with the same geometry for eight times magnification in a system of size 256 and four times in a system of size 128, respectively. The narrow

branch on the right has the minimum pore width possible in our system (i.e. eight cells in (a) and four cells in (b)). Velocity distributions obtained are essentially

similar.

from 0 to 0.9, where sample spanning pore channels were formed.

We chose 100 configurations with one sample spanning channel and

100 with two channels. Configurations with more than two channels

were not detected in any trial. Since the system studied is below the

percolation threshold, we had to run more than 800 trial configu-

rations to get 100 configurations having a single connected chan-

nel. More than 13000 trial configurations had to be run to choose

100 having two connected channels. In every case, we generated a

128 × 100 sample from which a 32 × 32 sample was selected after

the porosity had stabilized. A sample larger than the system to be

studied has to be generated to avoid substrate effects, this is dis-

cussed in detail in Dutta & Tarafdar (2003).

The 32 × 32 sample was magnified to 128 × 128 sample as dis-

cussed previously and simulation was carried out on it. Pressure and

velocity distributions have been determined for all the 200 samples

for each value of porosity. Next, we subject the sample generated to

diagenesis according to the prescription detailed below.

4 D I A G E N E S I S

The restructuring of the pore space formed by deposition and com-

paction is termed diagenesis. Diagenesis takes place at a molecular

level, whereas the sand grains deposited are typically of the order

of microns. Diagenesis consists of two processes (i) the deposi-

tion on the surface or interstices between the grains from chemical

reactions in the pore-filling fluids and (ii) the dissolution of ma-

terial from the grains. The first process decreases the total pore

space, whereas the second increases it. Usually it is the deposition

or cementation which dominates, so the overall porosity decreases

with time due to diagenesis (Pettijohn 1984). There is no unique

relation between porosity and permeability, materials having same

porosity may have very different permeability. The pore geometry

and connectivity are crucial factors in determining permeability.

The Kozeny–Carman relation and its modifications (Dullien 1992)

are attempts to define connectivity. The specific surface area, i.e.

the area of the pore–grain interface per unit volume is a factor in

this formulation. Attempts have been made to calculate permeabil-

ity variation with porosity for the BBDM (Dasgupta et al. 2000;

Tarafdar & Roy 1998) using the Kozeny relation. However, if the

flow velocity is calculated numerically for a specific configuration

of the BBDM or RBBDM, the permeability for that configura-

tion can be determined directly, without resorting to approximate

models.

In the present work, our interest is to find the change in perme-

ability with diagenesis. So we first simulate the pore structure using

RBBDM, then calculate the flow velocity distribution and hence

permeability for configurations with one or more sample spanning

clusters. Next, we simulate diagenesis on those specific configura-

tions and finally recalculate the flow velocity, to find the change due

to diagenesis.

In simulating diagenesis, we have to agree upon a realistic algo-

rithm. It is reasonable to assume that deposition will occur at points

in the pore structure where the fluid is stagnant, i.e. flow velocity is

very low. We may expect erosion of projections on the pore walls

formed due to the stochastic ballistic deposition of grains. The orig-

inal ‘grains’ in the RBBDM have been already magnified 4 × 4

times to facilitate numerical solution of eqs. (10)–(12). So each of
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Figure 6. The detailed map of a typical connected channel, flow is upward,

from the bottom of the figure. The light grey outline shows the pore–rock

interface. Heavy black lines show the changes due to diagenesis. The black

lines within the pore channel represent erosion, marked by ‘e’, and the lines

outside show deposition, some are marked ‘d’. The deposition events clearly

outnumber erosion, but in this channel, erosion occurring at the mouth of

the channel increases permeability by 89 per cent.

the sites on the new mesh represent an area 16 times smaller than

the small grain size in the RBBDM. We deposit or erode these new

sites in our simulated ‘diagenesis’, so diagenesis is at a smaller level

than the grain size, as it should be. We specify a minimum velocity

vmin and deposit cementing material at all pore sites with velocity

lower than this. We specify also a maximum velocity vmax and erode

neighboring rock sites with velocities higher than that. Our choices

of these limits are not unique but serve the purpose of illustrating

the outcome of a possible physical diagenetic process, which is the

aim of this work.

After generating the velocity distribution for 200 spanning con-

figurations, inspection of the velocity profile at all sites at the

pore–matrix boundary, reveal the minimum velocity range between

10−13 to 10−5 cms−1 and maximum velocity of the order 10−2 cms−1.

We have selected deposition sites as those having a velocity lower

than 0.00014 cms−1(vmin). The erosion sites are chosen as those

having velocities greater than 0.02 cm s−1 (vmax). The net number

of deposition and erosion events is recorded. After the ‘diagenesis’

according to the prescription just described, the permeability is cal-

culated again using the same procedure described for the original

channel. Effect of diagenesis on permeability is studied for a range

of p varying from 0 to 0.9, which corresponds to initial porosities

in the range 0.25 to 0.34.

4.1 Calculation of permeability change with diagenesis

Now we subject the sample to diagenesis. The vacant sites within the

pore channel, where the fluid velocity is below vmin are filled up due

to cementation and the rock sites adjacent to pore sites with veloc-

ity above vmax are eroded. This simplified algorithm for diagenesis

results in change of the pore channel morphology. Typical changes

in a single pore channel for p = 0.2 are illustrated in Fig. 6. Figs.

7(a) and 7(b) show the effect of diagenesis on the velocity distri-

bution. With the diagenesis prescription described, we find that the

predominating process is deposition, which clearly dominates over

erosion. In fact, in none of the samples does erosion exceed cemen-

tation. Table 1 shows the percentage of configurations where erosion

occurred at different p for samples with single and double sample

spanning pore channels. In all cases however, including these, the

number of deposition events exceeded erosion events. It is evident

that our simulated diagenesis reduces porosity on the average.

We repeat the flow simulation procedure in the post-diagenesis

structures and calculate the change in permeability. Most of the sam-

ples show a very small (less than 1 per cent) decrease in permeability,

which is understandable as cementation is the dominating process.

However, very surprisingly, a significant number show a significant

increase in permeability, in spite of overall cementation, which is

close to 100 per cent in some cases. The percentage increase in per-

meability for the samples where increase was observed, is shown

in Fig. 8 for different p. The channel geometry and its change after

diagenesis for a few cases with high increase in κ , was scrutinized

individually. We found that in each case the erosion, though less

than the deposition, occurs at the pore inlet, outlet or a constriction

on the fluid-carrying branch of the channel backbone. Even a few

cementing grains eroded from the mouth of the channel can cause

a striking increase of permeability. Erosion at any other position

would not produce a significant change, but our algorithm intro-

duces erosion almost exclusively at such sites, so wherever there

was erosion, permeability increased.

Since it is not possible to map explicitly all the channels of in-

terest, we constructed an hourglass-shaped channel, with a narrow

constriction at the centre and subjected it to diagenesis. Erosion

was observed at the constriction, as expected and κ increased by 12

per cent, in this case.

The deposition events, though higher in number, always occur

at sites, usually dead ends, which are avoided by the moving fluid

anyway.

The average permeability (κ) before diagenesis and the average

percentage change in permeability after diagenesis (�κ) for all val-

ues of p are shown in Fig. 9. The values of κ may be compared with

permeability for real rocks which have a wide variation from 0.1 to

>50 cm2. Our values are in the range of porous cemented rocks,

aleurites and sandstones (10−2cm2) (Kobranova 1989). Of course,

this being a 2-D simulation, numerical values should not be taken

too seriously. It is interesting to note that κ and �κ , both have a

maximum close to p = 0.5. In RBBDM, the porosity also has a

maximum at p = 0.5, this is shown in the inset in Fig. 9.

6 D I S C U S S I O N

We have proposed an algorithm to mimic natural generation and

diagenesis of sedimentary rocks.

In the 3-D RBBDM, the sand grains are rectangular parallelepiped

in shape. Most reconstruction models consider spherical (Manwart

et al. 2000; Øren & Bakke 2002) grains or ellipsoidal grains with

different aspect ratio (Coelho et al. 1997). However, scrutiny of

thin section images (see e.g. Øren & Bakke 2002) shows that sand

grains are in fact significantly angular in shape. This is not sur-

prising, since the basic units are aggregates of poly-crystals. We

argue that a spherical or ellipsoidal grain approximation is as dras-

tic an oversimplification as the present cubic or rectangular grain

model (RBBDM). The two approaches represent two extreme pic-

tures. While the ellipsoidal grains give point contacts, rather than

the flat surface contacts of RBBDM, the corners and sharp angular
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Figure 7. (a) We show the velocity distribution before diagenesis. The variation in velocity shown in the code is in cm sec−1. (b) We show the velocity

distribution after diagenesis. Erosion and deposition at the positions shown in Fig. 6 lead to increased flow under the same pressure gradient as in (7a).

Permeability has increased by 89 per cent. The variation in velocity shown in the code is in cm sec−1.

Table 1. Percentage of configurations in which erosion occurred.

p → 0.0 0.2 0.4 0.5 0.6 0.8 0.9

Single channel E(1) 27 20 19 26 14 10 6

Double channel E(2) 33 47 40 38 40 28 9

Notes: Percentage of configurations with erosion, E(n) = number of

configurations with ‘n’ connected channels/ total number of configurations.

For p close to 1, erosion is very rare, the channels here are mainly narrow

straight columns.

structures produce more realistic pressure distributions than artifi-

cially rounded grains in RBBDM. Pittman 1979, discusses the im-

portance of angularity in making grains more susceptible to pressure

solution. Exact point contact between spheres is not very realistic

either, and compaction has to be introduced to expand the contact

area. We must further keep in mind that, all said and done, we

finally resort to finite element analysis to calculate transport prop-

erties and replace the simulated rock structure by a mesh of points.

Unless a very fine mesh can be used, at a tremendous expense of

computer memory and time, the detailed contours of the square or

round grains hardly make a difference to the final results. What

really matters is the connectivity and gross structure of the pore

space.

Our treatment of diagenesis is purely from a physical point of

view, we have not taken into account the chemistry behind the grain

growth and dissolution processes. This is no doubt an oversimplifi-

cation, but we have taken into account the role of the flow process in

shaping the tortuous pore channels during mechanical deposition.

The usual approach is to allow growth of a cementing layer, either

uniformly on the grain surfaces, or specifically towards the pore

volume or in the pore throat (Jin et al. 2004; Øren & Bakke 2003;

Øren & Bakke 2002).

We consider moreover, flow under a pressure gradient, rather

than molecular diffusion. This is reasonable, since we are finally

interested in the permeability, with the implication that fluids are
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Figure 8. Here, we show the percentage increase in permeability in the channels wherever it has increased. Each bar denotes one configuration where κ

increased, its height shows the percentage increase for that particular configuration. Configurations further left to the bars shown have a non-zero height, too

small to be visible. The left column correspond to results for samples with a single spanning channel, the right-hand side graphs are the same results for samples

with two spanning channels. Diagrams from top to bottom correspond to p = 0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 0.9, respectively.

Figure 9. The average permeability (κ) (circular symbol) and change in permeability (�κ) (cross) due to diagenesis, for different p. Note that both quantities

are maximum in the interval p = 0.2 to 0.6. The corresponding porosities, before diagenesis, are also shown in the inset. The level of diagenesis we have applied

here does not change the porosity significantly.
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actually flowing through the pore space, under a finite pressure gra-

dient. So, according to our approach, this is the condition under

which diagenesis is reshaping the pore structure. (Hartmann et al.

2000) emphasize the importance of hydrological flow in channel

reshaping and suggest that the effect of diffusion in transporting

the reacting species is weaker. According to Hartmann et al., rapid

flow promotes leaching while a slower flux preferentially enhances

cementation. This is in accordance with our approach. The relative

effects of advection and molecular diffusion on channel reshaping is

also studied by (Detwiler et al. 2003) who discuss experiments and

simulation on the problem of erosion at different Peclet numbers.

Diffusion may play a significant role where the fluid is almost stag-

nant, but we consider here the other limiting case where the channel

length typically exceeds diffusion length and advection dominates

(see also Lobkovsky et al. 2005). A study with competing diffu-

sion and advection is in progress and we hope to report the results

soon.

Our prescription for diagenesis produces both erosion and cemen-

tation, with cementation dominating. However, reduction in perme-

ability due to the decrease in porosity is insignificantly small, though

it is observed in a larger number of cases. In the fewer instances

where there is permeability enhancement, the percentage increase

is in comparison, significantly large. So, on the average, we find

the net result of diagenesis to be increased fluid flow. However, we

have yet to study the effect of variation of the limits vmin and vmax,

and repeat the diagenetic process successively, these may change re-

sults considerably. Most importantly, we must extend the treatment

to 3-D, before we can actually compare with field data. At present,

we may only remark that both cementation and deposition occur

in diagenesis. The effect on permeability may also be positive or

negative for specific cases. So we suggest that our simple algorithm

may be adapted to explain these cases on varying the parameters

controlling diagensis. This work is a preliminary study in a 2-D ver-

sion of the original 3-D RBBDM. We expect to get more reliable

results from simulations in 3-D, since connectivity and flow prop-

erties are quite different in 2- and 3-D . However, considering the

many-fold increase in computer memory and time that a 3-D simu-

lation will require this initial 2-D study seems worthwhile. Another

difference of our simulation with the real situation is that in reality,

length scales for diagenesis and deposition are quite different. The

sand grains deposited are several orders of magnitude larger than

the typical size of cement deposits. In our model this difference

is only 16 times, being the difference between the smallest unit in

RBBDM generation and that for the diagenetic process. We hope to

report more detailed studies in future with modifications along these

lines.
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Sarkar, S., Toksöz, M.N. & Burn, D.R., 2004. Fluid Flow Modelling in Frac-

tures, MIT Earth Resources Laboratory Industry Consortium Meeting.

Schwartz, L.M., Martys, N., Bentz, D. P., Garboczi, E.J. & Torquato, S., 1993.

Cross-property relations and permeability estimation in model porous

media, Phys. Rev. E, 48, 4584–4591.

Stauffer, D. & Aharony, A., 1994. Introduction to percolation theory, Burgess

Science Press, Basingstoke, Great Britain.

Tarafdar, S. & Roy, S., 1998. A growth model for porous sedimentary rocks,

Physica B, 254, 28.

C© 2007 The Authors, GJI, 169, 1366–1375

Journal compilation C© 2007 RAS


