
Spectroscopically and Spatially Resolving the Components of Close Binary Stars
ASP Conference Series, Vol. 318, 2004
R. W. Hilditch, H. Hensberge, and K. Pavlovski (eds.)

Improvement of Spectroscopic Binary Star Orbits
Through the Use of Spectral Disentangling

David E. Holmgren

SMART Technologies, Inc., Bay 8, 1420 28 Street N.W., Calgary,
Alberta, T2T 6G1, Canada

Abstract. A review of orbit improvement for spectroscopic and eclipsing
binary stars is presented. Specifically, capabilities for orbital and line profile
analyses of these systems using the KOREL disentangling program (Hadrava
1995; 1997) are discussed. After a short literature review, criteria and possible
paths for orbital improvement are presented, namely a procedure for including
visual data in a disentangling solution, along with possible optimization algo-
rithms. A solution “template”, based on the study of V578 Mon by Hensberge
et al. (2000), is presented. Analyses of specific systems are presented, showing
explicitly how disentangling has resulted in improved orbits and a better general
understanding of each system. Comparisons with more traditional methods such
as cross - correlation are made for this purpose.

1. Introduction

Disentangling of the optical wavelength range spectra of spectroscopic and eclips-
ing binary star systems is a powerful tool for advancing our knowledge of stellar
dimensions and hence stellar evolution. The intent of this review is to provide
a sense of what can be attained through the careful use of disentangling.

One can view disentangling as the logical extension of cross - correlation
(CCF hereafter) radial velocity measurement (Simkin 1974, Hill 1982) and to-
mographic spectral separation (Baguolo & Gies 1991). The two-dimensional
CCF measurement (Zucker & Mazeh 1994) and broadening function (Rucinski
1992) techniques should also be recalled in this context.

Disentangling represents a significant advance because both radial velocity
(RV hereafter) measurement and orbit computation are handled together in
a self - consistent manner; they are no longer separate, distinct operations.
The technique also allows one to take full advantage of the information present
in digital spectra, with the high dynamic range of modern solid-state sensors
allowing the detection of very weak signals, such as the spectrum of a faint
secondary star. This is of particular importance in studies of binary systems in
nearby galaxies.

The present review will be limited to a discussion of early-type binary sys-
tems, as it is to these systems which spectral disentangling has largely been
applied. Following a short literature review in the next section, paths to or-
bit improvement will be discussed, along with a solution “template” for disen-
tangling. Finally, analyses of specific systems (β Sco A and AR Cas) will be
presented to demonstrate what can be attained with disentangling, and to com-
pare this technique to more traditional methods of RV measurement and orbital
solution.
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2. Disentangling - a literature review

A technical review of spectral disentangling is presented by Hadrava (2004, this
volume), although the original papers by both Hadrava (1995; 1997) and Simon
& Sturm (1994) should be consulted, especially for implementation details and
extensions.

It is worth making the distinction between the Fourier domain approach
used by Hadrava, and the wavelength domain method of Simon and Sturm. As
Hadrava notes in his review in this volume, the two approaches are entirely
equivalent; one can think in this respect of the momentum and position repre-
sentations used in quantum theory. The great advantage of the Fourier domain
approach is that it makes the application of disentangling much more tractable;
the matrices involved in computing the solution are of the order of the number
of stars in the system being analyzed as opposed to the number of data points
in a spectrum (which can be quite large). The latter requires sparse matrix and
SVD techniques to be used in computing the solution, whereas KOREL requires
only FFT and simplex optimization routines.

The underlying model in KOREL is one in which two single-star spectra
are shifted in radial velocity to match the positions of the component spectra
of a binary system at any particular orbital phase. This includes implicitly the
light ratio at the corresponding wavelength. In the frequency domain, this ve-
locity shifting results, via the convolution theorem, in a linear set of equations
for the Fourier components of the individual component spectra. Solving these
equations at each frequency allows the Fourier transform of each component
spectrum to be built up. The orbit is then recovered by optimizing this calcu-
lation over the orbital elements. An inverse FFT at the end of the optimization
produces the component spectra, which can then be cross-correlated with the
blended spectra to produce a set of RVs.

To date, spectral disentangling has played a role in the analyses of over 16
binary systems, most of them of early spectral type. Table 1 summarizes these in
chronological order. What is interesting to note about these is that many of the
studies are of binary systems either in star clusters (e.g., V578 Mon, V497 Cep)
or in nearby galaxies (e.g., HV 982). Also, much of the work has been done using
Hadrava’s KOREL code. Many workers are clearly pushing the capabilities of
KOREL in applying it to these relatively faint systems.

3. Paths to orbit improvement

The combination of RV measurement and orbit calculation in disentangling al-
lows for a self-consistent analysis of a system. But how can one measure orbit
“improvement”? Some possibilities are: computing the RMS error of fit and the
covariance matrix, determining the errors in the RVs, consideration of the phase
coverage of the data, and the quality of the spectra themselves (i.e., signal-to-
noise ratio). As disentangling effectively side-steps radial velocity measurement,
finding the errors in the RVs themselves is no longer a consideration. The RMS
error of the fit, often taken to be the RV error itself (±σ1 in km s−1), involves
certain assumptions (e.g., normality of the fit residuals) which may or may not
be met with a given data set. With disentangling, what matters more is phase
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Table 1. Binary system studies using spectral disentangling techniques.

System Reference

V453 Cyg Simon & Sturm (1994)
Y Cyg Simon et al. (1994)
β Cep Hadrava & Harmanec (1996)
V436 Per Harmanec et al. (1997)
β Sco A Holmgren et al. (1997)
AR Aur Zverko et al. (1997)
SZ Cam Lorenz et al. (1998)
V606 Cen Lorenz et al. (1999)
AR Cas Holmgren et al. (1999)
η Lyr A Bisikalo et al. (2000)
V578 Mon Pavlovski & Hensberge (2000)
V578 Mon Hensberge et al. (2000)
HV 982 FitzPatrick et al. (2002)
EROS 1044 Ribas et al. (2002)
o Leo Griffin (2002)
SMC binaries Harries et al. (2003)
HV 5936 FitzPatrick et al. (2003)
V497 Cep Yakut et al. (2003)
V436 Per Jańık et al. (2003)

coverage and data quality. If one thinks in particular of the reconstruction of
the component spectra, it should be clear that spectra well-distributed over all
orbital phases are required in order to sample all of the Doppler shift “bins” nec-
essary to completely recover a line profile. Of course, adequate phase coverage
is also necessary to recover the shape of the RV curve. Examples of just what
is meant by sufficient phase coverage will be illustrated later through examples.

However, to get the most out of disentangling, it is necessary to incorporate
all possible sources of data. This in turn points toward certain extensions of the
method.

3.1. Using visual data

The KOREL program can be used for the analysis of multiple systems and in
some cases, visual data may be available. These can take the form of position
angle and separation pairs (ρ, θ), or visibilities obtained from optical, infra-red,
speckle, and occultation interferometry. The visual data can then be viewed as
“constraints” on the disentangling solution. More to the point, the disentan-
gling and visual solutions can be combined directly, leading to something very
similar to the visual-spectroscopic orbit problem discussed by Morbey (1975).
Since KOREL minimizes a sum of squares S directly (involving the Fourier com-
ponents, as discussed above), the visual data can be included by extending the
sum of squares as (using position angle and separation as an example):

S = Sspectra +
∑

[∆θ

σθ

]2

+
∑

[∆ρ

σρ

]2
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where ∆θ,ρ denote fit residuals, and σθ,ρ denote measurement errors. An issue
here is the correct relative weighting of the terms from the spectra and from the
visual data, but this could also be handled by a penalty barrier method (Gill
et al. 1981) in which the latter is given an arbitary weight which is changed
systematically to find the limiting solution, i.e.,

lim
α→∞

Sspectra + αSvisual

In any case, the minimization would now include the usual visual orbit pa-
rameters a, e, i, ω,Ω, T, P (semi-major axis in arcsec, eccentricity, inclination,
longitude of periastron, longitude of the ascending node, time of periastron pas-
sage, and orbital period). After converging such a solution, computation of the
system parallax is straightforward.

3.2. Optimization

At present, KOREL uses the simplex method (a multi-dimensional “amoeba”,
Press et al. 1992) to compute a solution. However, it may be desirable to use
derivative - based methods, even for refining the solution. This would add some
complexity as numerical derivatives with respect to the orbital elements would
be required. What might be more effective in this case would be the variable
metric algorithm, in which estimates of the gradient and inverse Hessian H−1

(i.e., the inverse of the least-squares normal equations matrix) of S are updated
iteratively. An advantage of this technique is that it is possible to start with a
poor initial estimate of H−1 and still converge. Of course, the inverse Hessian
at the solution is directly related to the covariance matrix.

An alternative estimation model that could be used is the Gauss-Helmert
one, in which both the model parameters and data are adjusted. This is the
rigorously correct approach for nonlinear least-squares problems in several vari-
ables. It is described by Jefferys (1980, 1981) and also by Eichhorn & Xu (1990)
in the context of visual binary orbits. If this approach were to be used, it would
likely result in a more realistic covariance matrix.

4. A solution template

The study of the system V578 Mon by Hensberge et al. (2000, Fig. 1) provides a
framework for obtaining a self-consistent model of a binary system, by correctly
accounting for the “feedback” between different sources of data. However, for a
given binary system, not all sources of data may be present (e.g., there may be
no light curve). Here, a generalization of this approach is proposed. Given that
visual data (position angles and separations, or interferometer visibilities) may
be available, especially if the system is a multiple one, these could be integrated
into the framework. Once the “feedback loop” is stabilized, then one could go
on to compute covariance matrices, system dereddening, component magnitudes
and so forth. Figure 1 illustrates this. Even if the visual data were not inte-
grated directly into the disentangling, a separate program for analysing visual
data and/or light curves could be used to generate the appropriate feedback
mechanism.
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Figure 1. The interaction between results produced by disentangling (KO-
REL) and other sources of data.

5. Examples of disentangling

The systems to be reviewed here are β Sco A (Holmgren et al. 1997) and AR
Cas (Holmgren et al. 1999). These give an indication of what can be attained
with disentangling under different circumstances.

5.1. β Sco A

This is an example of a system for which we have virtually complete informa-
tion. The orbit in three dimensions is available, as visual data from occultation
interferometry are available. This of course allows the parallax and distance to
be computed. Disentangling of the line profiles leads to the spectroscopic orbit,
radiative parameters, and rotational velocities. From all of this, the absolute
dimensions are found. Also, a measurable apsidal motion allows a mean inter-
nal structure constant (ISC) for each component to be found, hence providing
additional constraints on their evolutionary states.

The spectral data available consisted of 26 Reticon spectra at Hα, obtained
using the Ondřejov 2m telescope, and some 600 historical RVs found in the
literature. The latter were important in deriving a precise apsidal motion rate.
The KOREL disentangling solutions for He I 667.8 nm and Hα 656.3 nm were
well-defined as the phase coverage was sufficient, and the signal-to-noise ratios
of the spectra were all high. The telluric lines around Hα were treated as a
“third component”, whose orbit was known. The resulting component profiles
(not corrected for the light ratio) and RVs are shown in Fig. 2. Line photometry
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generated by KOREL (Hadrava 1997) indicated the possibility of an eclipse near
one conjunction.

Figure 2. Disentangled Hα line profiles (left) for β Sco A: primary (bottom),
secondary (middle), and telluric (top). The stellar profiles have not been
corrected for the light ratio. The radial velocity curves are shown in the right
panel.

The visual data consisted of two occultation (Moon and Jupiter) measure-
ments which, when combined with the RVs from the disentangling solution,
produced the system parallax. Here, the visual-spectroscopic orbit calculation
of Morbey (1975) was used.

Cross-correlation RV measurements were also made using He I 667.8 nm,
and it is interesting to compare the RMS errors of the orbit based on these data
with those from KOREL. The latter produced ±5.9 km s−1, as compared to ±7.8
km s−1 for the CCF data. The disentangling results are clearly an improvement
over the CCF method. Similarly, the Hα KOREL solution produced an RMS
error of ±6.5 km s−1. To put this further into context, a FOTEL solution for all
available RV data (including zero-point offsets for different sources of data), gave
±21 km s−1. Clearly, the KOREL solutions helped produce more well-defined
RV curves and hence a superior set of absolute dimensions.

5.2. AR Cas

This is a system well-known for presenting observational challenges; the orbital
period is very close to 6 sidereal days, and a light ratio ∼ 40 has prevented
direct detection of the secondary star. The extreme light ratio also presents a
challenge for KOREL.

Spectral data were obtained with the Ondřejov 2m telescope and Reticon
detector, and with the UBC 4096 CCD on both the 1.8m and 1.2m telescopes
of the Dominion Astrophysical Observatory. All spectra were centered on Hα.
Échelle spectra were obtained with the 2m telescope of the San Pedro Martir
observatory. The wavelength range covered by these data was 369.6 nm to 760.0
nm. Good phase coverage required telescopes on two continents.

A new light curve was obtained as well, again requiring observations from
sites at different longitudes (Hvar, San Pedro Martir, Tandogan, and Hippar-
chos). These data, as well as RVs available in the literature, were critical in
refining the apsidal motion rate. The light curve analysis resulted in improved
physical parameters (radii, temperatures) and light ratio.
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Figure 3. Disentangled Hα line profiles (left) for AR Cas: primary (bot-
tom), secondary (middle), and telluric (top). The stellar profiles have not
been corrected for the light ratio. The radial velocity curves are shown in the
right panel.

The disentangled profiles and radial velocity curves are shown in Fig. 3. The
primary spectrum is that of a B4V star, and it is worth pointing out here that
KOREL has correctly reconstructed the C II lines near 658.0 nm. The secondary
spectrum, that of an A6V star, was recovered using KOREL in both the red (Hα,
complete solution) and blue (decomposition only, no orbital solution). That the
solution gave a consistent result was checked using the blue data, specifically
the strength of the secondary’s Mg II 448.1 nm line. Model atmosphere spectra
were used for this purpose.

As with β Sco A, the telluric lines around Hα were treated as a third com-
ponent with variable line strengths and a known orbit.

A disentangling solution for He I 667.8 nm showed that this line is not
present in the secondary star, thus confirming its spectral classification. Also,
a set of difference spectra generated for this line indicated possible line profile
variability.

In terms of the orbital solution, the RMS error of the fit found by KOREL
was always smaller than that found through a conventional solution. CCF RV
measurements of He I 667.8 nm and other published RVs were used as input for
FOTEL, leading to a typical RMS error of ±8.50 km s−1. The corresponding
RMS error from KOREL for this line was ±6.03 km s−1, demonstrating the
better fit found by disentangling. For Hα, the RMS error for the primary was
±1.93 km s−1, and for the secondary ±8.13 km s−1. This shows that reliable
results can be obtained even in the case of a large light ratio.
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