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ABSTRACT 

 

We have collected polarimetric ice sounding radar data on Brunt, George VI and Ronne ice shelves using a vector 

network analyser as a continuous wave step-frequency radar. Being a wideband phase sensitive instrument, the radar 

allowed the vectorial nature of the interaction between radio waves and the ice and reflecting surface to be explored. 

Single crystals of ice are birefringent not only at optical frequencies but also at radar ones, so in an ice sheet the average 

crystal orientation fabric determines the overall level of birefringence. The polarisation of radio waves is changed by 

the birefringent nature of the ice and by the reflecting surface, whether an internal layer or the basal boundary. By 

transmitting and receiving on orthogonal linearly polarised aerials, we could use a scattering matrix approach to 

determine parameters related to the physical properties and nature of both the ice and the reflecting surface. The 

polarisation behaviour will have to be allowed for when processing ice penetrating SAR data. 

 

1  INTRODUCTION 

 
The depolarisation behaviour of ice sheets on radar waves transmitted through them and reflected from the base or from 

internal horizons has been recognised since the early days of radio-echo sounding in the 1960s [1]. Several studies have 

been made of the phenomenon but the relatively unsophisticated equipment in use until recently meant that only power 

could be measured, not phase [2-10]. Extracting relevant physical parameters required aerials to be rotated to gather 

sufficient measurements. Hargreaves [9, 10] rotated crossed dipoles and obtained reflections from internal layers in 

Greenland. He interpreted his results in terms of an overall birefringence of the ice and established the relationship 

between a crystal orientation fabric and the birefringence. Woodruff and Doake [6] rotated separate transmitting and 

receiving dipoles over Bach Ice Shelf in the Antarctic Peninsula to distinguish between grounded and floating ice. 

 
By measuring phase as well as amplitude, it is possible to construct a polarimetric radar that requires only orthogonal 

aerials, making it suitable for airborne use. It is possible to simulate from measurements on orthogonal linearly 

polarised aerials the observations that would have been made at any other polarisation state, for example different 

orientations of linearly polarised aerials or even circularly polarised ones. 

 

Polarimetric radars have been flown on aircraft (e.g. AirSAR, CARABAS, E-SAR, SASAR, etc) and satellites (e.g. 

ERS1/2, RADARSAT, etc) for studying the earth’s surface. They tend to be associated with synthetic aperture radars 

(SAR) and operate at frequencies too high for significant penetration into ice sheets, although P-band (~450 MHz) or 

VHF (~140 MHz) SARs might be successful if flown at suitable terrain clearances. There are also ground based 

polarimetric systems for investigating small regions. Polarimetric information is normally used to help discriminate 

targets in SAR images rather than infer physical properties of the target surfaces.  

 
Early attempts with a ground based radar to produce SAR images of glacier beds were time consuming [11-13] and 

covered only a very small area, so the technique was not pursued. With modern radar equipment there seems no real 

impediment to achieving our goal of imaging the bed of a glacier. This ability would revolutionise the interpretation of 

basal conditions on ice sheets, ice streams and ice shelves. However, ground based systems would have limited areal 

coverage and airborne systems would require lower operating frequencies than normally used for airborne SARs. In 

either case there is the problem of correcting for distortion caused by refraction and birefringence in the ice. 

Polarimetric information will be needed to sharpen SAR images.  

 

Both the ice and reflecting surfaces are of interest, the ice sheet because of the crystal fabric responsible for the 

birefringence, which in turn is a product of the strain/stress history of the ice sheet, and the reflecting surfaces for the 

insight they can give into internal processes and the nature and conditions of the basal zone. Fabric evolution can be 

  



  

included in an ice sheet model to predict the birefringence, which can be checked by field measurement. Such 

modelling work will also have to include realistic reflecting characteristics for basal and internal layers. Even if the 

polarisation parameters are not reproduced precisely, their variation and pattern of change with position over an area 

can be compared. 

 

In this paper, we concentrate on describing the polarisation behaviour of radio waves propagating through and reflected 

within and at the base of ice sheets. Ground based radar data on ice shelves are analysed using a scattering matrix 

approach to determine physical properties of both the ice and the reflecting surfaces. 

 

2  PROPAGATION OF ELECTROMAGNETIC WAVES IN ICE 

 

Single crystals of naturally occurring ice Ih are uniaxially birefringent with the optic axis coinciding with the 

crystallographic c-axis. We make the assumption that a polycrystalline ice sheet also exhibits a birefringent behaviour, 

with a strength determined by the crystal orientation fabric [10]. Plane wave solutions of Maxwell’s equations show that 

only two directions are allowed for propagation, the extraordinary wave in the plane containing the optic axis and the 

ordinary wave in the plane perpendicular to it [10]. Ice is optically positive, so that the velocity of the ordinary ray is 

greater than the extraordinary ray. The propagation vectors are different in the two directions, leading to a change in 

phase between the field components such that an incident wave that is linearly polarised will become elliptically 

polarised after passing through the medium.  

 

2.1 Sinclair scattering matrix 

 

Coherent backscatter of completely polarised plane electromagnetic waves from deterministic targets is described by a 

2x2 complex scattering matrix called the Sinclair matrix [14], which is the analogue of the Jones matrix in optical or 

forward scattering (i.e. transmission) situations. In the ‘Back Scatter Alignment’ (BSA) convention [15], which uses a 

common 2-dimensional orthonormal polarization basis for the transmitted and received waves, the Sinclair matrix is 

symmetric for reciprocal targets. A brief derivation and description follows. 

 

Let E(z) be a complex vector describing a plane harmonic electromagnetic wave travelling in the z direction. In a 

Cartesian coordinate frame (x, y) transverse to z, the total electric field vector E is given by 

 

E = Ex x + Ey y, 

with the field components given by 

Ex = Ex0 exp i(ωt - kz) 

Ey = Ey0 exp i(ωt - kz + δ) 

 

where ω is the angular frequency, t is time, k is the wavenumber, δ is the phase difference between components, Ex0, Ey0 

are the amplitudes of the components and x, y are unit vectors in the x, y directions respectively. The column vector 

E = [Ex, Ey]
T
 = [Ex0, Ey0 exp(iδ)]

T
, where the common factor exp i(ωt - kz) has been removed, is called the Jones vector 

([�]
T 

is transpose).  

 

In the monostatic radar case, by introducing at the aerial a common Cartesian coordinate system for the domain and 

range [16, p5] of the scattering matrix, SM, the backward scattering process can be described by the field equation for 

radar polarimetry [14] 

E
s
= SM E

i 
                                                                                         (1) 

 

where the superscripts s and i denote scattering and incidence. The Sinclair scattering matrix is given by: 
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The Sinclair matrix SM links the forward travelling wave with the backscattered one, in the same 2-dimensional 

coordinate system orthogonal to the direction of travel.  

 

In physical optics, an eigenmode analysis of the scattering matrix gives the two (complex) eigenvectors corresponding 

to the two orthogonal polarisation states which are transmitted and received at the same polarisation state, while the 

  



  

eigenvalues are the corresponding (complex) amplitudes of these two states. A similar relationship exists for radar 

polarimetry, where however, the polarisation invariants are determined from the coneigenvector equation [16, p245], 

known in the radar community as Kennaugh’s pseudo-eigenvalue equation [14], 

 

SM x = λ x
*
                                                                                   (2)

 

 

where x
*
 is the complex conjugate of the coneigenvector x and λ is a coneigenvector of SM. Eq. 2 is the basic equation 

of radar polarimetry [18]. 

 

2.1  Ice sheet representation 

 

For near-vertical propagation through an ice sheet, we assume that a (monochromatic) wave has its electric field 

components in the x and y directions of a rectangular coordinate system based in the near-horizontal surface (Fig. 1). 

The near-vertical plane containing the effective optic axis is taken to define the y direction [9], whose bearing is initially 

unknown and is one of the parameters to be determined. The rectangular coordinate system (x', y') in which the 

measurements are made is orientated at an angle ε to the x-axis. The ice sheet is modelled as a birefringent medium 

characterised by a two-way phase shift, δ, and orientation of the effective optic axis, ε. Reflection from a rough surface 

at near-normal incidence is described by different reflection coefficients along orthogonal axes oriented at an angle γ to 

the optic axis ((S,S) in Fig. 1). Although each Fresnel reflection coefficient will in general be complex, the effect on the 

polarisation behaviour will be given by their ratio, r (taken so that r �1) which is assumed to be real. Backscatter of a 

fully polarised wave, transmitted on a linearly polarised aerial at an angle β to the x-axis and received on a linearly 

polarised aerial at an angle θ to the x-axis, can be described by [19]: 

 

E
R
 (θ) = R(θ) P(δ/2) R(γ) S(r) R(-γ) P(δ/2)R(-β) E

T
                                                 (3) 

 

where ER = [ERx ,  0]
T
 and ET = [ETx , 0]

T
 in their respective aerial coordinate systems (Fig. 1) and 
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Here, P is the phase shift matrix, S the target scattering matrix and R the rotation matrix. 

 

 

 
 

 

Fig. 1. Relationship between coordinate systems for field measurements, reflecting surface and optic axis. Tx is the 

orientation of transmitting aerial, Rx the orientation of the receiving aerial. 

  



  

In polarimetry it is conventional to refer to orthogonally polarised wave directions as H (horizontal) and V (vertical), 

where for oblique incidence of a wave onto a scattering surface these directions bear some obvious relation to the 

directions of the transmitted E vector. Although for the near normal incidence used in glacier sounding there is no real 

distinction between H and V, we shall use the convention as a convenient means of distinguishing between waves 

transmitted along the x�-axis (H) and the y�-axis (V). For transmitting and receiving on orthogonal (e.g. linearly) 

polarised aerials where H is orientated at an angle ε to the x-axis, Eq.3 can be written as 

 

ER = R(ε) P(δ/2) R(γ) S(r) R(-γ) P(δ/2) R(-ε) ET                                                                  (4)  

 

where for brevity we write 

 

ER = [H, V]
T
, ET = [H, V]

T
 with the understanding that only one of the H or V components is implied in any single 

measurement with the stated aerial system. 

  

3  DECOMPOSITION OF SINCLAIR MATRIX 

 

Comparison of Eqs. 1 and 4 shows that the Sinclair matrix is given by 
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It is assumed, by Lorentz’ theorem of reciprocity, that HV=VH, so SM is symmetric. There are therefore six independent 

parameters that can be determined from the three complex elements of SM.  

 

For a three parameter model, where the ice sheet is described by two parameters, an optical axis direction ε and a phase 

shift δ, and the reflecting surface by a single parameter, r, the ratio of reflection coefficients in the two orthogonal 

directions parallel and perpendicular to the optic axis, all three can be found directly from a (con)eigenmode analysis. 

However, we find that three parameters are insufficient to fit the measurements and another one is required. There are 

cross-polarisation terms which can be accounted for by allowing the principal axes of the reflecting surface to be 

oriented at an angle γ to the optic axis. While this modification is not the only way of introducing the cross-polarised 

terms (for example, it is mathematically equivalent to having non-zero off-diagonal terms in the (symmetric) target 

scattering matrix S) it has the advantage of having a simple physical interpretation which can be easily visualised and 

related to real surfaces. 

 

An iterative/analytical method has been used to decompose the scattering matrix SM into its constituent matrices to give 

the values of the 4 parameters (����������). An ‘absolute’ amplitude and phase (R, f) can also be calculated, which can be 

considered as a normalising factor for the scattering matrix.  

 

We find that there is also a set of ‘complementary’ solutions ������������	������������) whose polarisation response or 

signature [15] has the same amplitude pattern but differs in phase by the amount, �. The matrix SMC formed by using the 

complementary values in Eq. 5 above for SM: 

 

SMC = R(�
���2) P���/2) R������) S(r) R����
��) P(���/2) R(-����/2) 

is related to SM by  

SM = SMC exp(i�). 

 

The need for complementary solutions is revealed when field data are analysed. When calculating parameter values 

over a continuous range of depths, the iterative/analytic solution method produces sudden jumps in the values of the 

parameters ����� and �. However, if the complementary solutions are calculated as well, the jumps are shown to be 

transitions between double-valued parameters (Fig. 2). The value of r is single valued, as reciprocal values of r do not 

affect the solution procedure. In a forward model, but not with real data, it is possible to distinguish between the ‘real’ 

and ‘complementary’ solutions. 
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Fig. 2. Plot of phase shift introduced in two-way path through the ice. There are two solutions to the scattering matrix, 

�� (dots) and ���� (crosses), both of which are needed to give a continuous variation of phase with depth. 

 

 

3.1  Coneigenmode analysis 

 

Complementary solutions may be connected with the fact that Eq. 2 always has two orthogonal solutions for x if the 

scattering matrix is symmetric [20]. We solve Eq. 2 by writing it in the form [16, p245],  

 

(SMSM
* 
)

 
x = �	�2 x 

 

where SM
*
 is the component-wise conjugate of SM, which

 
shows that the (positive) square roots of the eigenvalues of 

SMSM
*
 are the coneigenvalues of SM and the eigenvectors of SMSM

*
 are the coneigenvectors of SM. The form of the 

equation shows that for arbitrary φ the matrix SM exp(iφ) will have the same coneigenvectors and coneigenvalues as SM. 

There is also an inherent phase indeterminacy of the coneigenvalues arising from the nature of Eq. 2 [14]. If x is a 

solution and λ is a coneigenvalue of SM then λexp(2iφ) is also a coneigenvalue since, for arbitrary φ, 

 

SM (exp(iφ) x) = exp(2i3)
 λ(exp(iφ) x)

* 
. 

 

Not only are there an infinite number of coneigenvalues for a given (symmetric) matrix, there are an infinite number of 

(symmetric) matrices with the same coneigenvectors. This contrasts with ordinary eigenvalue equations, which have 

only finitely many distinct eigenvalues [16, p245]. Interpretation and significance of the phase indeterminacy is not 

fully understood [14].  

 

Thus, the coneigenvectors and coneigenvalues of SM and SMC, are identical. The value of r (or 1/r) can be found 

immediately from the coneigenvalues. 

 

4  DATA COLLECTION AND ANALYSIS 

 

A vector network analyser (HP8751A) was used as a step-frequency radar, transmitting a series of increasing tones 

(fixed frequencies with constant separation, ûf), each for a set length of time. Fourier techniques transform the signal to 

its equivalent pulse in the time domain. Usually a bandwidth of up to about 200 MHz was used, with transmit 

frequencies ranging from around 200 to 400 MHz. When processing the data, both the bandwidth and centre frequency 

can be adjusted. Thus we can either select the full bandwidth, which gives the highest depth resolution, or we can 

narrow the bandwidth and simulate the effect of moving a window across the full frequency range. This allows the 

frequency dependence of the scattering matrix parameters to be measured and also simulates the response of airborne 

radar systems, which have rather narrow bandwidths compared with the network analyser. Smaller bandwidths give less 

  



  

depth resolution, acting as a smoothing filter on the derived polarisation parameters. The relationship between the 

observed phase shift δ and the birefringence 
� is given by [19] 

 

δ = (2π/λ)(ne-no)2H = (2π/λ)∆n2H = 2πHnbf/c 

which can be recast as 

b= δc/(2π H n f) = δλ/(2π H n)                                                                           (6) 

 

where δ = phase shift measured in scattering matrix decomposition (i.e. two-way travel through the ice), H is thickness 

of layer, ε is the permittivity of ice, b the relative birefringence (=
�������
n/n), n the refractive index (=�), f the 

frequency of the radio waves, λ their wavelength and c the velocity of electro-magnetic waves in vacuo.   

 

When decomposing the Sinclair matrix at a single frequency, we can only determine δ modulo 2π. However, we can 

take advantage of the frequency dependence of the birefringence and the wide bandwidth of the radar to resolve this 2π 

ambiguity and give a more accurate lower bound to the birefringence. For a given depth, the values of the optic axis 

direction γ and phase shift δ were calculated for different centre frequencies covering the range of the original data. We 

modelled the observed behaviour by a two-layer ice sheet, with each layer having a different optic axis orientation and 

birefringence. The model parameters were adjusted to give a close fit to the observations, without a formal optimisation 

procedure being used (Fig. 3). This procedure also removes the ambiguity of having complementary solutions. 

 

5  RESULTS AND DISCUSSION 

 

Only very preliminary results are given here, to illustrate some of the principles discussed above. We took 

representative sites from Rutford Ice Stream grounding zone, Korff Ice Rise and the north-west corner of Ronne Ice 

Shelf, and analysed the radar data using a two-layer model for the frequency dependence of the orientation of the optic 

axis and the phase difference, /. Using Eq. 6 gives values of birefringence shown in Table 2. The greatest value of 

0.15% is well below the value of 1.1% given for the birefringence of a single ice crystal [21], suggesting that the ice 

fabric is rather weak and not particularly anisotropic. 

 

There is a clear distinction between the upstream sites (Rutford and Korff) where the birefringence is around the 0.1% 

level and the site near the ice front (NW Ronne) where it is about half that value. This can be understood if the lower 

layer of ice, with the strongest birefringence, is melting off into the sea and being replaced by randomly oriented snow 

crystals with a weaker fabric on the surface. 

 

When the radar data are displayed in the time domain, the equivalent pulse reflected from the base or an internal layer 

can be readily identified. Different orientations of the aerial give a small spread of arrival times. This spread is related 

to the birefringence, as the ordinary and extraordinary wave will travel at slightly different speeds. The relationship b = 


�������
n/n shows that a 0.1% level of birefringence will give a 1 m difference in apparent depth in ice 2000 m thick. 

.
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Fig. 3. Plot of frequency dependence of phase shift introduced in two-way path through the ice. Principal values are 

shown by dots (measured) and continuous line (modelled); complementary values are shown by crosses (measured) and 

dashed line (modelled). Model parameters: top layer, phase shift 215 degrees; bottom layer, phase shift 840 degrees. 

 

  



  

Table 2: Polarisation parameters. 

 
 Optic axis 

bearing 

Phase shift Thickness Initial 

frequency 

Relative 

birefringence 

 ε1 ε2 δ1 δ2 H (m) f0 (MHz) b (%) 

Rutford -40 30 50? 1400? 1570 273 .09? 

Korff -45 30 215 840 816 230 .15 

NW Ronne 90  -40 50 110 399 230 .05 

 

 

6  CONCLUSIONS 
 

The vector network analyser used as a polarimeter is a very powerful instrument for investigating the structure and 

properties of ice sheets and their reflecting horizons, both basal and internal. The polarisation parameters are consistent 

with observations that echo strength can vary by 20 dB or more depending on the orientation of the transmitting and 

receiving aerials. This variation needs to be taken into account when attempting to interpret echo strength data gathered 

from systems with only a single aerial orientation. Polarisation, as well as refraction, will also have to be allowed for 

when it becomes feasible to gather and process SAR data of the subglacial environment. A scattering matrix approach 

to collecting and analysing data can be used on an airborne system, opening up the possibility of developing a 

polarimetric airborne SAR capable of imaging the subglacial environment, such as glacier and ice stream beds. 
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