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Abstract. Based on the Solar Standard Model SSM we developed a
solar model in hydrostatic equilibrium using two polytropes, each one
associated to the radiative and convective zones of the solar interior. Then
we apply small periodic and adiabatic perturbations on this bi-polytropic
model in order to obtain eigenfrequencies and eigenfunctions which are
in the p-modes range of low order 0 < ! < 5; for [ = 2, 3 these values
agrees with the observational GOLF data within a few percent.

1. Introduction

Polytropic models have largely been used in the study of NRO of a gaseous sphere
(Kopal 1949). We have computed the first modes of a bipolytropic model whose
indices no = 3.85 and n, = 1.5 describes both the radiative and convective zones
respectively of the solar interior. We used Cowling’s approximation (Cowling
1941) which reduces the order of the system of differential equations to 2 (instead
of 4). The radial part of the perturbation obeys equations (1) and (2) (Ledoux
& Walraven 1958):

dv L? Pty
-~ = |ZL_1 1
dr [02 ] p v (1)
dw Lo 2] _P
- = - N 2
dr 72 [J sz—lv 2)
where
1
v =r26rPT1 (3)
Pl
W= —7 (4)
P

are proper functions, [ is the degree of the spherical harmonic, I'; is the adiabatic
exponentent equal to %, o is the angular frequency, N is the Brunt-Vaisald
frequency and L; is the Lamb frequency.

The equations (1) and (2) and the boundary conditions lead to a eigenvalue

problem with eigenvalue 02, which is the problem to be solved.
319
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Figure 1.  Left. « at the solar interior due to SSM (Bahcall & Pin-
sonneault 2000). Regions with v constant are described by polytropic
process. The bipolytropic model is obtained if one assume two values
for «v; 5/3 in the convective zone, and 1.26 in the radiative zone. Right.
Solutions of the Lane-Emden equation ath the UV plane; the center
of the Sun as at U = 3.0, V = 0 and its surface at U =0, V = co. We
choose 6 = —0.0032 as a M-Solution for the convective zone.

2. Polytropes

Our unperturbed model consists of a gas of particles with spherical symmetry,
selfgravitating, in hydrostatic equilibrium and with its state equation given by:

P=Kp' = Kp'ta (5)

K and v are parameters that depend only on the polytropic index n, and the
mass and radius of the configuration. The polytrope theory developed by the
ends of the XIX century, can be used to know the dynamical structure of a
star, within which local quasistatic thermodynamic changes follows a polytropic
process, i.e. one in which the specific heat remains constant. This approach
can be used in some regions of Sun’s interior. We have used the pressure and
the density data from the sophisticated SSM of Bahcall and Pinsonneault to

plot v = dLL’:f; vs ¢ with z = r/Rg. Various regions clearly emerge. Of these

regions, the outermost one (y; = 1.677, i.e. n; = 1.50) represents the convective
zone where heat transport is achieved by adiabatic convection. It’s SSM output
in Fig. 1 is approximated rather well by a constant straight line indicating a
polytropic behavior. The second intermediate zone labeled radiative zone in Fig.
1 can be approach by a polytrope y5 = 1.26, i.e. ng = 3.85. This two polytropes
have been used by Hendry (1993). However, there are analytic approaches to the
nuclear zone developed by Bludman and Kennedy (1999), which can be explored
in multipolytropic models of Sun’s structure.

2.1. Two Polytropes Within the Sun

Following Hendry (Hendry, 1993) we used &, 8 as the variables in the Lane-
Emden equation for the convective zone with index ny, and 7, ¢ as the vari-
ables for the radiative zone with index ng. The parametric polytropes for the
convective and radiative zones are respectively
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Figure 2.  Propagation Diagram for the bp model (solid line), for the
polytropic index 3 (thin line) model and for the MSE (dashed lines).

P = Kips, with p = 46(&)" (6)
P = Kpp"®, with p = dop(n)>* (7)
The main challenge is to learn how to fit these two polytropes together.

Since the physical quantities P, p and M are continuous across the interface
(not 6 or ¢), the variables U and V given by

_ g
U= 7 (8)
V = (_”i_%w (9)

are be very useful (Chandrasekhar,1939).

Let us start by considering the convective zone. We take n; = 1.5 thus
& = 3.6538 and 6 = —0.2033. Though, this polytrope is not being used in
the vecinity of ¢ = 0, it is possible to consider all of the solutions of the Lane-
Emden equation for n; = 1.5. These may be generated beginning at &; with
an arbitrary starting slope and integrating inwards. Solutions with starting
slopes less negative than 6] are of particular interest (in the literature, they are
referred as M-solutions) since these are the ones which intersect the polytrope
that represents the radiative zone. Four such solutions, translated into the U,
V variables, are shown in Fig. 1 (Right). Solutions with starting slopes more
negative than 6}, (F-solutions) do not intersect the radiative polytrope and so
do not need to be considered here.
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Knowing 6(¢) and ¢(n) we can deduce the density and pressure curves p(r)
and P(r). The above model yields a central density of p, = 1.299 x 10° Kgm™3
and a central pressure of P, = 2.237 x 106 Nm~2,

3. NRO in a Bi-Polytropic Model (BPM)

Space oscillation properties of the solutions of equations (1) and (2) are related
to the signs of the coefficients given in the second members of these equations.
Space oscillations are allowed only in the regions where these coefficients have
opposite signs. The limits of these regions are defined by

Il + )T, P

o? = N? (11)

In the (z,w?) plane, these equations define two curves. In Fig. 2 we have
plotted them as a continuous line for the bipolytropic model. Have been denoted
p-modes and g-modes the regions of this plane corresponding to the conditions
of position in the star and frequency, allowing spatial oscillations. These regions
are characterized by the possibility of existence of progressive acoustic waves
and progressive gravity waves respectively (Scuflaire 1974). Thus we shall refer
to these regions as the acoustic and the gravity regions. We have also plotted
in the same figure the frequencies of the first p-modes for bipolytropic model.

The equations (1) and (2) are very convenient for the analytical discussion,
but for the numerical computations we use the more appropriate form:

dy [+1 [ x GM@p(q )
- = —y+ — — =y — 12
dz  z [ y+w2z] T RoP \BY 7 (12)
dz 1 q
E:E[ 2y—lz]+R@A(§y—z) (13)

where we have put:

Ro = z (14)
]V% = q (15)
é; = Yy (16)
CI;J(\DJZIO = glz (17)
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Figure 3. Some p-modes for a polytropic models. Figures A
and B corresponds to the n = 3 model. C, D, E, and F are the same
modes but in the bipolytropic model. The units of o,,; are uHz.
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Figure 4. Comparison with GOLF data for [ = 2 (circle) and [ = 4
(star). The e value is given by € = 100% x (oBpM — 0GOLF/0BPM )

The regularity condition at the centre, first requires that

Wy—1lz=0 (19)

and second, at the surface, the cancellation of the lagrangian perturbation of
the pressure is written by

q
Ey—ZZO (20)

In order to determine the solution uniquely, we impose the normalizing
condition

y=1 (21)

at the centre. With a trial value for w? we integrate equations (12) and (13),
with initial conditions (19) and (21) using Runge-Kutta method, with a step size
taken from paper of Christensen-Dalsgaard [Christensen-Dalsgaard et al.,1994].
Usually this solution does not satisfy equation (20) and a new integration is
performed with another value of w?. This procedure is repeated until equation
(20) is satisfied, using a Newton-Raphson method to improve the value of w?.
The radial displacement §(r) and the pressure perturbation P’ are periodic
space functions; the variables v(r) and w(r) vary strongly from the center to the
surface, then it is impossible to plot them directly along the axes. However, the

d Ro P’
80y and ¢ = +logyo(1 + | 4555,
have been plotted in Fig. 3, their signs are chosen according to the signs of the
variables d(r) and P'.

most appropiate functions ¢ = 4 log;(1 +

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2002ASPC..269..319C

FZ002ASPC. ~Z697 ~319C!

p-Modes of Low Order in a Solar Model 325

4. Conclusions

Although we do not use an atmosphere model and the input physics is described
by polytrope structure, the modes obtained from the bipolytropic model are
close to the observacional data. We show in Fig. 4 a comparison with GOLF
data!, showing an agreement within a few percent (roughly between 4.5% and
7%) up to a radial order of 30.
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