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AB S TRACT

We present analytic formulae that approximate the evolution of stars for a wide range of

mass M and metallicity Z. Stellar luminosity, radius and core mass are given as a function of

age, M and Z, for all phases from the zero-age main sequence up to, and including, the

remnant stages. For the most part we find continuous formulae accurate to within 5 per cent

of detailed models. These formulae are useful for purposes such as population synthesis that

require very rapid but accurate evaluation of stellar properties, and in particular for use in

combination with N-body codes. We describe a mass-loss prescription that can be used with

these formulae, and investigate the resulting stellar remnant distribution.
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1 INTRODUCTION

The results of detailed stellar evolution calculations are required

for applications in many areas of astrophysics. Examples include

modelling the chemical evolution of galaxies, determining the

ages of star clusters, and simulating the outcomes of stellar

collisions. As stellar evolution theory, and our ability to model it,

is continually being improved (the treatment of convective over-

shooting and thermal pulses, for example) there is an ongoing

need to update the results of these calculations. For a recent

overview of problems in stellar evolution see Noels et al. (1995).

As with all theories, our understanding of stellar evolution must

be tested against observations. One way to do this is to attempt to

reproduce the findings of large-scale star surveys, such as the

Bright Star Catalogue (Hoffleit 1983) and the Hipparcos Cata-

logue (Perryman et al. 1997), using population synthesis. The

Hipparcos Catalogue is an excellent example of how improved

observing techniques can initiate a re-evaluation of many aspects

of stellar evolution theory (Baglin 1997; de Boer, Tucholke &

Schmidt 1997; Van Eck et al. 1998). In order to make population

synthesis statistically meaningful, it is necessary to evolve a large

sample of stars so as to overcome Poisson noise. If we synthesize

n examples of a particular type of star, we have an error of ^
���

n
p

;
which means that for rarer stars often millions of possible

progenitors are required to get a sufficently accurate sample.

However, detailed evolution codes can take several hours to

evolve a model of just one star. Thus it is desirable to generate a

large set of detailed models and present them in some convenient

form in which it is relatively simple to utilize the results at a later

stage.

There are two alternative approaches to the problem of using

the output of a series of stellar-evolution runs as data for projects

that require them. One approach is to construct tables (necessarily

rather large, especially if a range of metallicities and/or overshoot

parameter is to be incorporated) and interpolate within these

tables. The other is to approximate the data by a number of

interpolation formulae as functions of age, mass and metallicity.

Both procedures have advantages and disadvantages (Eggleton

1996), so we have worked on both simultaneously. Stellar models

have been available in tabular form for many years (Schaller et al.

1992; Charbonnel et al. 1993; Mowlavi et al. 1998). Stellar

populations cover a wide range of metallicity, so the ideal is to

have a set of models that cover the full range of possible

compositions and stellar masses. In a previous paper (Pols et al.

1998) we presented the results of stellar evolution calculations for

a wide range of mass and metallicity in tabular form. In the

present paper we report on the results of the second approach,

construction of a set of single-star evolution (SSE) formulae, thus

expanding the work of Eggleton, Fitchett & Tout (1989) along the

lines of Tout et al. (1996). It is more difficult in practice to find

analytic approximations of a conveniently simple nature for the

highly non-uniform movement of a star in the Hertzsprung±

Russell diagram (HRD) than it is to interpolate in tables, but the

resulting code is very much more compact and adaptable to the

requirements of, for example, an N-body code (Aarseth 1996) or

variable mass-loss. This is reinforced in the circumstance where

one wishes to include binary-star interactions, such as Roche-lobe

overflow, common-envelope evolution, and magnetic braking with

tidal friction, for example (Tout et al. 1997).
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In Section 2 we provide a brief overview of how stars behave as

they evolve in time, which introduces some of the terminology

that we use and will hopefully facilitate the understanding of this

paper. Section 3 describes the detailed models from which the

formulae are derived, and justifies the inclusion of enhanced

mixing processes. In Section 4 we outline the procedure to be used

for generating the SSE package. The evolution formulae are

presented in Section 5 for all nuclear burning phases from the

main sequence to the asymptotic giant branch. Our formulae are a

vast improvement on the work of Eggleton et al. (1989), not only

due to the inclusion of metallicity as a free parameter but also

because we have taken a great deal of effort to provide a more

detailed and accurate treatment of all phases of the evolution.

Features such as main-sequence formulae that are continuous over

the entire mass range and the modelling of second dredge-up

and thermal pulses will be discussed. Section 6 discusses the

behaviour of a star as the stellar envelope becomes small in mass

and outlines what happens when the nuclear evolution is

terminated. We also provide formulae which model the subsequent

remnant phases of evolution. In Section 7 we describe a compre-

hensive mass-loss algorithm which can be used in conjunction

with the evolution formulae, as well as a method for modelling

stellar rotation. Various uses for the formulae and future

improvements are discussed in Section 8, along with details of

how to obtain the formulae in convenient subroutine form.

2 STELLAR EVOLUTION OVERVIEW

A fundamental tool in understanding stellar evolution is the

Hertzsprung±Russell diagram (HRD), which provides a correla-

tion between the observable stellar properties of luminosity, L, and

effective surface temperature, Teff. Fig. 1 shows the evolution of a

selection of stars in the HRD from the zero-age main sequence

(ZAMS), where a star adjusts itself to nuclear burning equi-

librium, until the end of their nuclear burning lifetimes. As stars

take a relatively short time to reach the ZAMS, all ages are

measured from this point. The length of a star's life, its path on the

HRD, and its ultimate fate depend critically on its mass.

Stars spend most of their time on or near the main sequence

(MS) burning hydrogen to produce helium in their cores. To first

order, the behaviour of a star on the MS can be linked to whether it

has a radiative or convective core. Stars with M & 1:1M( have

radiative cores, while in higher mass stars a convective core

develops as a result of the steep temperature gradient in the

interior. During core hydrogen burning on the MS, low-mass stars

will move upwards in L and to higher Teff on the HRD, while

higher mass stars will also move upwards in L but to a region of

lower Teff. The MS evolution will end when the star has exhausted

its supply of hydrogen in the core. Low-mass stars will continue

expanding as they evolve off the MS, but for higher mass stars

with convective cores the transition is not so smooth. Owing to

mixing in the core there is a sudden depletion of fuel over a large

region, which leads to a rapid contraction over the inner region at

core-hydrogen exhaustion. This causes the hydrogen-exhausted

phase gap, or MS hook, which occurs on a thermal time-scale. The

different features of MS evolution are illustrated by comparing the

evolution tracks for the 1.0-M( and 1.6-M( stars in Fig. 1.

The immediate post-MS evolution towards the right in the HRD

occurs at nearly constant luminosity and is very rapid. For this

reason very few stars are seen in this phase, and this region of the

HRD is called the Hertzsprung gap (HG), or the subgiant branch.

During this HG phase the radius of the star increases greatly,

causing a decrease in Teff. For cool envelope temperatures the

opacity increases, causing a convective envelope to develop. As

the convective envelope grows in extent, the star will reach the

giant branch (GB), which is the nearly vertical line corresponding

to a fully convective star, also known as the Hayashi track. All

stars ascend the GB, with the hydrogen-exhausted core contracting

slowly in radius and heating while the hydrogen-burning shell is

eating its way outwards in mass and leaving behind helium to add

to the growing core. As the stars move up the GB, convection

extends over an increasing portion of the star. The convective

envelope may even reach into the previously burnt (or processed)

regions, so that burning products are mixed to the surface in a

process called dredge-up.

Eventually, a point is reached on the GB where the core

temperature is high enough for stars to ignite their central helium

supply. For massive stars, M * 2:0M(; this takes place gently.

When core helium burning (CHeB) begins, the star descends along

the GB until contraction moves the star away from the fully

convective region of the HRD and back towards the MS in what is

called a blue loop. During CHeB, carbon and oxygen are produced

in the core. Eventually, core helium is exhausted and the star

moves back to the right in the HRD. The size of the blue loop

generally increases with mass, as can be seen by comparing the

4.0-M( and 10.0-M( tracks in Fig. 1. Lower mass stars have

degenerate helium cores on the GB, leading to an abrupt core-

helium flash at helium ignition (HeI). The star then moves down

to the zero-age horizontal branch (ZAHB) very quickly. The initial

position of a star along the ZAHB depends on the mass of the

hydrogen-exhausted core at the time of ignition and on the mass in

the overlying envelope. Those stars with lower mass, i.e.,

shallower envelopes, appear bluer because there is less mass to

shield the hot hydrogen-burning shell. It is also possible for stars

of very high mass, M * 12:0M(; to reach high enough central

temperatures on the HG for helium to ignite before reaching the

GB. The 16.0-M( star in Fig. 1 is such an example. As a result,

these stars bypass the GB phase of evolution.

Evolution after the exhaustion of core-helium is very similar to

evolution after core-hydrogen exhaustion at the end of the MS.

The convective envelope deepens again, so that the star once more

moves across towards the Hayashi track to begin what is called the

asymptotic giant branch (AGB). On the AGB the star consists of a

dense core composed of carbon and oxygen surrounded by a

helium-burning shell which adds carbon to the degenerate core.

Initially the hydrogen-burning shell is extinguished so that the

luminosity is supplied exclusively by the helium-burning shell,

characterizing the early AGB (EAGB) phase. If the star is massive

enough the convective envelope can reach into the hydrogen-

exhausted region again (second dredge-up). When the helium-

burning shell catches up with the hydrogen-rich envelope, the

hydrogen shell re-ignites and the two grow together, with the

hydrogen-burning shell supplying most of the luminosity. During

the following phase the helium shell is unstable, which can cause a

helium shell flash in which the helium shell will suddenly release

a large amount of luminosity. The energy released in the flash

expands the star, resulting in the hydrogen shell cooling so much

that it is extinguished. Convection once again reaches downward

past the dead hydrogen shell. This mixes helium to the surface, as

well as carbon that was mixed out of the helium shell by flash-

driven convection. As the star subsequently contracts, the convec-

tion recedes and the hydrogen shell re-ignites but has now moved

inwards in mass due to the envelope convection. This process is

called the third dredge-up. The star continues its evolution up the
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AGB with the hydrogen shell producing almost all of the lumin-

osity. The helium shell flash can repeat itself many times, and the

cycle is known as a thermal pulse. This is the thermally pulsing

asymptotic giant branch (TPAGB).

The stellar radius can grow to very large values on the AGB;

this lowers the surface gravity of the star, so that the surface

material is less tightly bound. Thus mass-loss from the stellar

surface can become significant, with the rate of mass-loss actually

accelerating with time during continued evolution up the AGB.

Unfortunately, our understanding of the mechanisms that cause

this mass-loss is poor, with possible suggestions linking it to the

helium shell flashes or to periodic envelope pulsations. Whatever

the cause, the influence on the evolution of AGB stars is

significant. Mass-loss will eventually remove all of the stars

envelope so that the hydrogen-burning shell shines through. The

star then leaves the AGB and evolves to higher Teff at nearly

constant luminosity. As the photosphere gets hotter, the energetic

photons become absorbed by the material which was thrown off

while on the AGB. This causes the material to radiate, and the star

may be seen as a planetary nebula. The core of the star then begins

to fade as the nuclear burning ceases. The star is now a white

dwarf (WD) and cools slowly at high temperature but low

luminosity.

If the mass of the star is large enough, M * 7M(; the carbon-

oxygen core is not degenerate and will ignite carbon as it

contracts, followed by a succession of nuclear reaction sequences

which very quickly produce an inner iron core. Any further

reactions are endothermic and cannot contribute to the luminosity

of the star. Photodisintegration of iron, combined with electron

capture by protons and heavy nuclei, then removes most of the

electron degeneracy pressure that was supporting the core, and it

begins to collapse rapidly. When the density becomes large

enough, the inner core rebounds, sending a shockwave outwards

through the outer layers of the star that have remained suspended

above the collapsing core. As a result, the envelope of the star is

ejected in a supernova (SN) explosion, so that the AGB is

effectively truncated at the start of carbon burning and the star has

no TPAGB phase. The remnant in the inner core will stabilize to

form a neutron star (NS) supported by neutron degeneracy

pressure, unless the initial stellar mass is large enough that

complete collapse to a black hole (BH) occurs.

Stars with M * 15M( are severely affected by mass-loss

during their entire evolution and may lose their envelopes during

CHeB, or even on the HG, exposing nuclear processed material. If

this occurs, then a naked helium star is produced and such stars, or

stars about to become naked helium stars, may be Wolf±Rayet

stars. Wolf±Rayet stars are massive objects which are found near

the MS, are losing mass at very high rates, and show weak, or no,

hydrogen lines in their spectra. Luminous blue variables (LBVs)

are extremely massive post-MS objects with enormous mass-loss

rates in a stage of evolution just prior to becoming Wolf±Rayet

stars. Naked helium stars can also be produced from less massive

stars in binaries as a consequence of mass transfer.

Variations in composition can also affect the stellar evolution

time-scales as well as the appearance of the evolution on the HRD,

and even the ultimate fate of the star. A more detailed discussion

of the various phases of evolution can be found throughout this

paper.

Figure 1. Selected OVS evolution tracks for Z � 0:02; for masses 0.64,

1.0, 1.6, 2.5, 4.0, 6.35, 10, 16, 25 and 40M(.

Figure 2. Same as Fig. 1 for Z � 0:001: The 1.0-M( post-helium flash

track has been omitted for clarity.
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3 STELLAR MODELS

The fitting formulae are based on the stellar models computed by

Pols et al. (1998). They computed a grid of evolution tracks for

masses M between 0.5 and 50M(, and for seven values of

metallicity, Z � 0:0001; 0.0003, 0.001, 0.004, 0.01, 0.02 and 0.03.
They also considered the problem of enhanced mixing, such as

overshooting beyond the classical boundary of convective

instability. Its effect was modelled with a prescription based on

a modification of the Schwarzschild stability criterion, introducing

a free parameter dov (which differs from the more commonly used

parameter relating the overshooting distance to the pressure

scaleheight; see Pols et al. 1998 for details). The tracks computed

with a moderate amount of enhanced mixing (given by dov � 0:12
and labelled the OVS tracks by Pols et al. 1998) were found to

best reproduce observations in a series of sensitive tests involving

open clusters and ecliping binaries (see SchroÈder, Pols & Eggleton

1997 and Pols et al. 1997, 1998). We consequently use these OVS

tracks as the data to which we fit our formulae.

For each Z, 25 tracks were computed, spaced by approximately

0.1 in logM, except between 0.8 and 2.0M( where four extra

models were added to resolve the shape of the MS, which changes

rapidly in this mass range. Hence we dispose of a data base of 175

evolution tracks, each containing several thousand individual

models.

A subset of the resulting OVS tracks in the HRD are shown in

Fig. 1 for Z � 0:02 and Fig. 2 for Z � 0:001: The considerable

variation of model behaviour introduced by changes in metallicity

is illustrated by Fig. 3. Detailed models of the same mass, M �
6:35M(; are shown on the HRD for three different metallicities,

Z � 0:0001; 0.001 and 0.02. Not only does a change in

composition move the track to a different position in the HRD,

but it also changes the appearance of each track, as can be seen by

considering the extent of the hook feature towards the end of the

MS and the blue loops during core helium burning. Furthermore,

the Z � 0:0001 model ignites helium in its core while on the

Hertzsprung gap, as opposed to the other models which evolve up

the giant branch before reaching a high enough core temperature

to start helium burning. In addition, the nuclear burning lifetime of

a star can change by as much as a factor of 2 owing to differences

in composition, as shown in Fig. 4 for a set of 2.5-M( models.

This emphasizes the need to present the results of stellar evolution

calculations for an extensive range of metallicity.

Mass-loss from stellar winds was neglected in the detailed

stellar models, mainly because the mass-loss rates are uncertain by

at least a factor of 3. We do include mass-loss in our analytic

formulae in an elegant way, as will be described in Section 7.1,

which allows us to experiment easily with different mass-loss rates

and prescriptions.

4 PROCEDURE

We assign each evolution phase an integer type, k, where:

0�MS star M & 0:7 deeply or fully convective

1�MS star M * 0:7
2�Hertzsprung Gap (HG)

3� First Giant Branch (GB)

4�Core Helium Burning (CHeB)

5�Early Asymptotic Giant Branch (EAGB)

6�Thermally Pulsing Asymptotic Giant Branch (TPAGB)

7�Naked Helium Star MS (HeMS)

8�Naked Helium Star Hertzsprung Gap (HeHG)

9�Naked Helium Star Giant Branch (HeGB)

10�Helium White Dwarf (HeWD)

11�Carbon/Oxygen White Dwarf (COWD)

Figure 4. Radius evolution as a function of stellar age forM � 2:5M(; for
metallicities 0.0001, 0.001 and 0.02. Tracks are from the detailed models,

and run from the ZAMS to the point of termination on the AGB.

Figure 3. Detailed OVS evolution tracks for M � 6:35M(; for

metallicities 0.0001, 0.001 and 0.02.
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12�Oxygen/Neon White Dwarf (ONeWD)

13�Neutron Star (NS)

14�Black Hole (BH)

15�massless remnant,

and we divide the MS into two phases to distinguish between

deeply or fully convective low-mass stars and stars of higher mass

with little or no convective envelope, as these will respond

differently to mass-loss.

To begin with, we take different features of the evolution in

turn, e.g., MS lifetime, ZAHB luminosity, and first try to fit them

as f (M) for a particular Z in order to get an idea of the functional

form. We then extend the function to g(M, Z), using f (M) as a

starting point. In this way we fit formulae to the end-points of the

various evolutionary phases, as well as to the time-scales. We then

fit the behaviour within each phase as h(t,M, Z), e.g., LMS(t,M, Z).

As a starting point we take the work of Tout et al. (1996), who

fitted the zero-age main-sequence luminosity (LZAMS) and radius

(RZAMS) as a function of M and Z. Their aim, as is ours, was to

find simple computationally efficient functions which are

accurate, continuous and differentiable in M and Z, such as

rational polynomials. This is achieved using least-squares fitting

to the data after choosing the initial functional form. In most cases

we determine the type of function, the value of the powers, and the

number of coefficients to be used, simply by inspecting the shape

of the data; however, in some cases, such as the luminosity±core

mass relation on the giant branch, the choice will be dictated by an

underlying physical process. For the ZAMS, accuracy is very

important because it fixes the star's position in the HRD. Tout et al.

(1996) achieved LZAMS accurate to 3 per cent and RZAMS accurate

to 1.2 per cent over the entire range. For the remainder of the

functions we aim for rms errors less than 5 per cent and preferably

a maximum individual error less than 5 per cent, although this has

to be relaxed for some later stages of the evolution where the

behaviour varies greatly with Z, but also where the model points

are more uncertain owing to shortcomings in stellar evolution

theory.

5 F ITT ING FORMULAE

In this section we present our formulae describing the evolution as

a function of mass M and age t. The explicit Z-dependence is in

most cases not given here, because it would clutter up the

presentation. This Z-dependence is implicit whenever a coefficient

of the form an or bn appears in any of the formulae. The explicit

dependence of these coefficients on Z is given in Appendix A.

Coefficients of the form cn, whose numerical values are given in

this section, do not depend on Z.

We adopt the following unit conventions: numerical values of

mass, luminosity and radius are in solar units, and values of time-

scales and ages are in units of 106 yr, unless otherwise specified.

We begin by giving formulae for the most important critical

masses, Mhook (the initial mass above which a hook appears in the

MS), MHeF (the maximum initial mass for which helium ignites

degenerately in a helium flash) and MFGB (the maximum initial

mass for which helium ignites on the first giant branch). Values for

these masses are given in table 1 of Pols et al. (1998), estimated

from the detailed models for seven metallicities. These values can

be accurately fitted as a function of Z by the following formulae,

where z � log�Z=0:02�:

Mhook � 1:0185� 0:160 15z� 0:0892z2; �1�

MHeF � 1:995� 0:25z� 0:087z2; �2�

MFGB � 13:048�Z=0:02�0:06
1� 0:0012�0:02=Z�1:27 : �3�

Based on the last two critical masses, we make a distinction into

three mass intervals, which will be useful in the later descriptions:

(i) low-mass (LM) stars, with M , MHeF; develope degenerate

helium cores on the GB and ignite helium in a degenerate flash at

the top of the GB;

(ii) intermediate-mass (IM) stars, with MHeF # M # MFGB;
which evolve to the GB without developing degenerate helium

cores, also igniting helium at the top of the GB, and

(iii) high-mass (HM) stars, with M . MFGB; ignite helium in

the HG before the GB is reached, and consequently do not have a

GB phase.

Note that this definition of IM and HM stars is different from the

more often used one, based on whether or not carbon ignites non-

degenerately.

5.1 Main sequence and Hertzsprung gap

To determine the base of the giant branch (BGB), we find where

the mass of the convective envelope MCE first exceeds a set

fraction of the envelope mass ME as MCE increases in the HG.

From inspection, the following fractions

MCE � 2
5
ME M & MHeF

MCE � 1
3
ME M * MHeF

generally give a BGB point corresponding to the local minimum

in luminosity at the start of the GB. We define helium ignition as

the point where LHe � 0:01L for the first time. For HM stars this

will occur before the BGB point is found, i.e., no GB, and thus we

set tBGB � tHeI for the sake of defining an end-point to the HG, so

that BGB is more correctly the end of the HG (EHG), as this is

true over the entire mass range.

The resultant lifetimes to the BGB are fitted as a function of M

and Z by

tBGB � a1 � a2M
4 � a3M

5:5 �M7

a4M
2 � a5M

7
: �4�

Fig. 5 shows how equation (4) fits the detailed model points for

Z � 0:0001 and 0.03, which are the metallicities which lead to the

largest errors. Over the entire metallicity range the function gives

an rms error of 1.9 per cent and a maximum error of 4.8 per cent.

In order that the time spent on the HG will always be a small

fraction of the time taken to reach the BGB, even for LM stars

which do not have a well-defined HG, the MS lifetimes are taken

to be

tMS � max�thook; xtBGB�; �5�

where thook � mtBGB and

x � max�0:95; min�0:952 0:03�z� 0:30103�; 0:99�� �6�

m � max 0:5; 1:02 0:01max
a6

Ma7
; a8 �

a9

Ma10

� �h i

: �7�

Note that m is ineffective forM , Mhook; i.e., stars without a hook
feature, and in this case the functions ensure that x . m.

So we now have defined the time at the end of the MS, tMS, and

the time taken to reach the start of the GB (or end of the HG),
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tBGB, such that

t : 0:0 ! tMS MS evolution

t : tMS ! tBGB HG evolution:

The starting values for L and R are the ZAMS points fitted by

Tout et al. (1996). We fit the values at the end of the MS, LTMS and

RTMS, as well as at the end of the HG,

LEHG �
LBGB M , MFGB

LHeI M $ MFGB

(

REHG �
RGB�LBGB� M , MFGB

RHeI M $ MFGB

(

:

The luminosity at the end of the MS is approximated by

LTMS � a11M
3 � a12M

4 � a13M
a16�1:8

a14 � a15M
5 �Ma16

; �8�

with a16 < 7:2: This proved fairly straightforward to fit, but the

behaviour of RTMS is not so smooth and thus requires a more

complicated function in order to fit it continuously. The resulting

fit is

RTMS � a18 � a19M
a21

a20 �Ma22
M # a17 �9a�

RTMS � c1M
3 � a23M

a26 � a24M
a26�1:5

a25 �M5
M $ Mp; �9b�

with straight-line interpolation to connect equations (9a) and (9b)

between the end-points, where

Mp � a17 � 0:1; 1:4 # a17 # 1:6;

and c1 � 28:672 073 � 1022; a21 < 1:5; a22 < 3:1 and a26 < 5:5:
Note that for low masses, M , 0:5; where the function is being

extrapolated we add the condition

RTMS � max�RTMS; 1:5RZAMS�

to avoid possible trouble in the distant future.

The luminosity at the base of the GB is approximated by

LBGB � a27M
a31 � a28M

c2

a29 � a30M
c3 �Ma32

; �10�

with c2 � 9:301 992; c3 � 4:637 345; a31 < 4:6 and a32 < 6:7:
The description of LHeI, RGB and RHeI is given in later sections.

5.1.1 Main-sequence evolution

On the MS we define a fractional time-scale

t � t

tMS

: �11�

As a star evolves across the MS, its evolution accelerates so that it

is possible to model the time dependence of the logarithms of the

luminosity and radius by polynomials in t . Luminosity is given by

log
LMS�t�
LZAMS

� aLt� bLt
h � log

LTMS

LZAMS

2 aL 2 bL

� �

t2

2 DL�t21 2 t22� �12�

and radius by

log
RMS�t�
RZAMS

� aRt� bRt
10 � gt40

� log
RTMS

RZAMS

2 aR 2 bR 2 g

� �

t3 2 DR�t31 2 t32�;

�13�
where

t1 � min�1:0; t=thook� �14�

t2 � max 0:0;min 1:0;
t2 �1:02 e�thook

ethook

� �� �

�15�

for e � 0:01.
We add DL and DR as pertubations to the smooth polynomial

evolution of L and R in order to mimic the hook behaviour for

M . Mhook: In effect, we have

LMS�t� � La�t�=Lb�t�;

Figure 5. Time taken to reach the base of the giant branch as a function of

stellar mass as given by equation (4), shown against the detailed model

points, for Z � 0:0001 and 0.03 which give the worst fit of all the

metallicities. The maximum error over the entire metallicity range is

4.8 per cent, and the rms error is 1.9 per cent.

Figure 6. Luminosity evolution on the main sequence for a typical detailed

model with a hook feature (star points) decomposed into two functions: a

smooth polynomial (solid line) and a pertubation function (dot-dashed

line).
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where La(t) is a smooth function describing the long-term

behaviour of LMS(t), and Lb(t) is another smooth function

describing short-term pertubations where

log Lb�t� � DL�t21 2 t22�;

and the action of t2 achieves a smooth transition over Dt � ethook:
This decomposition of L(t) into La(t) and Lb(t) for a typical

detailed model is illustrated by Fig. 6. The luminosity pertubation

is approximated by

DL �

0:0 M # Mhook

B
M 2Mhook

a33 2Mhook

� �0:4

Mhook , M , a33

min
a34

Ma35
;
a36

Ma37

� �

M $ a33

8

>

>

>

>

>

<

>

>

>

>

>

:

�16�

where B � DL�a33�; 1:25 # a33 # 1:6; a35 < 0:4 and a37 < 0:6.
The radius pertubation is approximated by

DR �

0:0 M # Mhook

a43
M 2Mhook

a42 2Mhook

� �0:5

Mhook , M # a42

a43 � �B2 a43�
M 2 a42

2:02 a42

� �a44

a42 , M , 2:0

a38 � a39M
3:5

a40M
3 �Ma41

2 1:0 M $ 2:0; �17�

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

where B � DR�M � 2:0�; a41 < 3:6; 1:1 # a42 # 1:25 and

a44 < 1:2.
The exponent h � 10 in equation (12), unless Z # 0:0009 when

it is given by

h �
10 M # 1:0

20 M $ 1:1;

(

�18�

with linear interpolation between the mass limits.

The remaining functions for this section are those that describe

the behaviour of the coefficients in equations (12) and (13). The

fact that these can appear messy and complicated in places reflects

rapid changes in the shape of the L and R evolution for the detailed

models as a function ofM as well as Z. This is illustrated in Figs 7,

8, 9 and 10, which also show the tracks derived from these

functions, exhibiting that our efforts have not been in vain. The

fitting of the coefficients is also complicated by the sensitivity of

equations (12) and (13) to small changes in the values of the

coefficients. Ideally, we would like all the functions to be smooth

and differentiable across the entire parameter space, but in some

places this has to be sacrificed to ensure that the position of all the

fitted tracks on the HRD is as accurate as possible. This is deemed

necessary as the main use of the functions is envisaged to be the

simulation of colour±magnitude diagrams for comparison with

observations.

The luminosity a coefficient is approximated by

aL � a45 � a46M
a48

M0:4 � a47M
1:9

M $ 2:0; �19a�

Figure 7. Luminosity evolution on the main sequence as given by equation (12) (solid line) and from the detailed models (points) for selected masses with a

metallicity of 0.001.
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where a48 < 1:6; and then

aL �

a49 M , 0:5

a49 � 5:0�0:32 a49��M 2 0:5� 0:5 # M , 0:7

0:3� �a50 2 0:3��M 2 0:7�=�a52 2 0:7� 0:7 # M , a52

a50 � �a51 2 a50��M 2 a52�=�a53 2 a52� a52 # M , a53

a51 � �B2 a51��M 2 a53�=�2:02 a53� a53 # M , 2:0;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�19b�

where B � aL�M � 2:0�; 1:0 # a52 # 1:1 and 1:1 # a53 #

1:25:
The luminosity b coefficient is approximated by

bL � max�0:0; a54 2 a55M
a56 �; �20�

where a56 < 0:96: Then, if M . a57 and bL . 0:0;

bL � max�0:0;B2 10:0�M 2 a57�B�;

where B � bL�M � a57� and 1:25 # a57 # 1:6.
The radius a coefficient is approximated by

aR � a58M
a60

a59 �Ma61
a66 # M # a67; �21a�

where a60 < 1:8 and a61 < 2:3; and then

aR �

a62 M , 0:5

a62 � �a63 2 a62��M 2 0:5�=0:15 0:5 # M , 0:65

a63 � �a64 2 a63��M 2 0:65�=�a68 2 0:65�
0:65 # M , a68

a64 � �B2 a64��M 2 a68�=�a66 2 a68� a68 # M , a66

C � a65�M 2 a67� a67 , M;

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

�21b�

where B � aR�M � a66�; C � aR�M � a67�; 0:8 # a66 # 1:6;
3:5 # a67 # 7:2 and 0:8 # a66 # 1:0.
The radius b coefficient is approximated by bR � b 0

R 2 1; where

b 0
R � a69M

3:5

a70 �Ma71
2:0 # M # 16:0; �22a�

with a71 < 3:5 and 1:4 # a74 # 1:6; and then

b 0
R �

1:06 M # 1:0

1:06� �a72 2 1:06��M 2 1:0�=�a74 2 1:06�
1:0 , M , a74

a72 � �B2 a72��M 2 a74�=�2:02 a74� a74 # M , 2:0

C � a73�M 2 16:0� 16:0 , M

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�22b�

where B � b 0
R�M � 2:0�; C � b 0

R�M � 16:0�.

Figure 8. Same as Fig. 7 for Z � 0:02.
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If M . a75 � 0:1; then g � 0:0; where 1:0 # a75 # 1:6:
Otherwise

g �

a76 � a77�M 2 a78�a79 M # 1:0

B� �a80 2 B� M 2 1:0

a75 2 1:0

� �a81

1:0 , M # a75

C 2 10:0�M 2 a75�C a75 , M , a75 � 0:1;

8

>

>

>

<

>

>

>

:

�23�

where a79 < 9:4; a81 < 2:5; B � g�M � 1:0� and C � a80; unless
a75 � 1:0 when C � B.

Following Tout et al. (1997), we note that low-mass MS stars

can be substantially degenerate below about 0.1M(, so we take

RMS � max�RMS; 0:0258�1:0� X�5=3 M21=3� �24�

for such stars, where X � 0:762 3:0Z is the initial hydrogen

abundance (Pols et al. 1998).

5.1.2 Hertzsprung-gap evolution

During the HG we define

t � t2 tMS

tBGB 2 tMS

: �25�

Then for the luminosity and radius we simply take

LHG � LTMS

LEHG

LTMS

� �t

�26�

RHG � RTMS

REHG

RTMS

� �t

: �27�

On the MS we do not consider the core to be dense enough with

respect to the envelope to actually define a core mass, i.e.,

Mc;MS � 0:0: The core mass at the end of the HG is

Mc;EHG �
Mc;GB�L � LBGB� M , MHeF

Mc;BGB MHeF # M , MFGB

Mc;HeI M $ MFGB;

8

>

>

<

>

>

:

�28�

where Mc,GB, Mc,BGB and Mc,HeI will be defined in Sections 5.2

and 5.3. At the beginning of the HG we set Mc;TMS � rMc;EHG;
where

r � 1:586�M5:25

2:434� 1:02M5:25
; �29�

and simply allow the core mass to grow linearly with time so that

Mc;HG � ��12 t�r� t�Mc;EHG: �30�

If the HG star is losing mass (as described in Section 7.1), it is

necessary to take Mc,HG as the maximum of the core mass at the

previous time-step and the value given by equation (30).

5.2 First giant branch

The evolution along the first giant branch (GB) can be

modelled, following Eggleton et al. (1989), using a power-law

Figure 9. Radius evolution on the main sequence as given by equation (13) (solid line) and from the detailed models (points) for selected masses with a

metallicity of 0.001.
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core mass±luminosity relation,

L � DMp
c : �31�

The evolution is then determined by the growth of the core mass

as a result of hydrogen burning which, in a state of thermal

equilibrium, is given by

L � EXe
_Mc ) _Mc � AHL; �32�

where

Xe � envelope mass fraction of hydrogen;

E � the specific energy release and

AH � hydrogen rate constant:

Thus

dMc

dt
� AHDM

p
c ; �33�

which upon integration gives

Mc � ��p2 1�AHD�tinf 2 t��
1

12p �34�
or

L � D��p2 1�AHD�tinf 2 t��
p

12p ; �35�
so that the time evolution of eitherMc or L is given and we can then

simply find the other from theMc±L relation. Also, when L � LBGB
we have t � tBGB; which defines the integration constant

tinf � tBGB � 1

AHD�p2 1�
D

LBGB

� �

p21
p

: �36�

Now, as noted in Tout et al. (1997), the single power law L / M6
c is

a good approximation to the evolution for small Mc, but the relation

flattens out as Mc approaches the Chandrasekhar mass MCh. They

expanded the relation to consist of two power-law parts. We use an

improved form which, albeit somewhat more ad hoc, follows much

better the actual time evolution along the GB. Our Mc±L relation

has the form

L � min�BMq
c ;DM

p
c� �q , p�; �37�

so that the first part describes the high-luminosity end and the

second the low-luminosity end of the relation, with the two crossing

at

Mx �
B

D

� �

1
p2q

: �38�

The parameters B, D, p and q are constants in time for each

model, and indeed are constant in mass for M , MHeF: For M $

MHeF it is necessary to introduce a dependence on initial mass so

that we actually have a Mc±L±M relation. The only region in the

Mc±L parameter space where we find that a Z-dependence is

required is in the value of D for M , MHeF: The parameters are

p �
6 M # MHeF

5 M $ 2:5

(

q �
3 M # MHeF

2 M $ 2:5

(

B � max�3 � 104; 500� 1:75 � 104M0:6�

Figure 10. Same as Fig. 9 for Z � 0:02.
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logD �
5:37� 0:135z �� D0� M # MHeF

max�21:0; 0:975D0 2 0:18M; 0:5D0 2 0:06M�
M $ 2:5

8

>

>

<

>

>

:

with linear interpolation over the transition region, MHeF , M ,

2:5; in order to keep the parameters continuous in M. Thus

isochrones constructed with these functions will not give a

discontinuity on the GB. The behaviour of equation (37) is shown

in Fig. 11 as the fit to selected model points (note how the relation

flattens out as the luminosity increases).

Equation (34) now becomes

Mc;GB �
��p2 1�AHD�tinf;1 2 t��

1
12p t # tx

��q2 1�AHB�tinf;2 2 t��
1

12q t . tx

8

>

<

>

:

�39�

for tBGB # t # tHeI; where

tinf;1 � tBGB � 1

�p2 1�AHD

D

LBGB

� �

p21
p

�40�

tx � tinf;1 2 �tinf;1 2 tBGB�
LBGB

Lx

� �

p21
p

�41�

tinf;2 � tx �
1

�q2 1�AHB

B

Lx

� �

q21
q

: �42�

The GB ends at t � tHeI; corresponding to L � LHeI (see Section

5.3), given by

tHeI �
tinf;1 2

1

�p2 1�AHD

D

LHeI

� �

p21
p

LHeI # Lx

tinf;2 2
1

�q2 1�AHB

B

LHeI

� �

q21
q

LHeI . Lx

8

>

>

>

>

>

<

>

>

>

>

>

:

: �43�

The value used for AH depends on whether we take the PP chain

or the CNO cycle as the hydrogen-burning mechanism, with the

CNO cycle being the more likely on the GB. Now

E � eCNO=m�He4� < 6:018 � 1018 erg g21
;

thus

AH � �EXe�21 � 2:373 83 � 10219 g erg21

) AH < 1:44 � 1025 M( L21
(

Myr21;

i.e., logAH � 24:84: In practice, there are small deviations from

thermal equilibrium which increase with stellar mass. As the value

of AH fixes the rate of evolution on the GB and thus the GB time-

scale, it is important for it to be accurate, especially if we want to

use the formulae for population synthesis. We find that the

detailed models are best represented if we introduce a mass-

dependent AH, i.e., AH
0 , where

logA 0
H � max�24:8;min�25:7� 0:8M;24:1� 0:14M��:

Some representative values of AH
0 as a function of initial stellar

mass are shown in Table 1, along with approximate values for the

GB lifetime and the time taken to reach the GB.

Evolution on the GB actually falls into two fairly distinct

categories depending on whether the initial mass of the star is

greater than or less than MHeF . If M , MHeF; then the star has a

degenerate helium core on the GB, which grows according to the

Mc,GB relation derived from equation (37). When helium ignites at

the tip of the GB, it does so degenerately resulting in the helium

flash. However, for IM stars on the GB,M $ MHeF; the helium core

is non-degenerate and the relative time spent on the GB is much

shorter, and thus the models show that Mc,GB is approximately

constant from the BGB to HeI. In this case we still use all the above

equations to calculate the time-scales and the luminosity evolution,

but the corresponding value ofMc is a dummy variable. The actual

core mass at the BGB is given by a mass-dependent formula

Mc;BGB � min�0:95Mc;BAGB; �C � c1M
c2 �

1
4 �; �44�

with C � Mc�LBGB�MHeF��4 2 c1M
c2
HeF; ensuring that the formula

is continuous with the Mc±L relation at M � MHeF; and Mc,BAGB

given by equation (66). The constants c1 � 9:209 25 � 1025 and

c2 � 5:402 216 are independent of Z, so that for large enough M

we have Mc;BGB < 0:098M1:35; independent of Z. Thus, on the GB

we simply take

Mc;GB � Mc;BGB � �Mc;HeI 2Mc;BGB�t M $ MHeF; �45�

with

t � t2 tBGB

tHeI 2 tBGB

to account for the small growth of the non-degenerate core, while

Mc,GB is given by equation (39) for M , MHeF:Mc,HeI is described

in Section 5.3.

Furthermore, as giants have a deep convective envelope and

thus lie close to the Hayashi track, we can find the radius as a

function of L and M,

RGB � A�Lb1 � b2L
b3 �; �46�

Figure 11. Relation between core mass and luminosity on the giant branch,

showing the fit to points taken from selected detailed models given by

equation (37) (solid lines).

Table 1. A selection of values for the
mass-dependent hydrogen rate constant,
with approximate time-scales also listed.

M logA 0
H

tHeI2tBGB
tBGB

tBGB=Myr

1.0 24.8 6:4 � 1022 104

2.0 24.1 2:0 � 1022 103

5.0 23.4 2:4 � 1023 102

Comprehensive analytic formulae for stellar evolution 553

q 2000 RAS, MNRAS 315, 543±569



where

A � min�b4M2b5 ; b6M
2b7 �;

and b1 < 0:4; b2 < 0:5 and b3 < 0:7: A useful quantity is the

exponent x to which R depends on M at constant L, RGB / M2x:
Thus we also fit x across the entire mass range by A � bM2x; i.e.,
a hybrid of b5 and b7, to give

x � 0:304 06� 0:0805z� 0:0897z2 � 0:0878z3 � 0:0222z4;

�47�

so that it can be used if required. Thus for Z � 0:02; as an

example, we have

RGB < 1:1M20:3�L0:4 � 0:383L0:76�: �48�

Fig. 12 exhibits the accuracy of equation (46) for solar-mass

models of various metallicity.

5.3 Core helium burning

The behaviour of stellar models in the HRD during CHeB is fairly

complicated and depends strongly on the mass and metallicity. For

LM stars, helium ignites at the top of the GB and CHeB

corresponds to the horizontal branch (including the often observed

red clump); the transition between the helium flash and the start of

steady CHeB at the ZAHB is very rapid, and we take it to be

instantaneous. For IM stars, CHeB can be roughly divided in two

phases, namely descent along the GB to a minimum luminosity,

followed by a blue loop excursion to higher Teff connecting

back up to the base of the AGB (BAGB). However, not all IM

stars exhibit a blue loop, in some cases staying close to the

GB throughout CHeB (the so-called `failed blue loop').

Sometimes the blue loop is also followed by another period

of CHeB on the GB, but this is usually much shorter than the

first phase and we choose to ignore it. For HM stars, helium

ignites in the HG and CHeB also consists of two phases,

namely a blue phase before reaching the GB, followed by a red

(super)giant phase.

For the purpose of modelling, we define the blue phase of

CHeB as that part which is not spent on the giant branch. This

means that the position in the HRD during the blue phase can in

fact be quite red, e.g., it includes the red clump and failed blue

loops. By definition, for the LM regime the whole of CHeB is

blue. For IM stars, the blue phase comes after the RG phase, while

for HM stars it precedes the RG phase.

The transition between the LM and IM star regime occurs

over a small mass range (a few times 0.1M(), but it can be

modelled in a continuous way with a factor of the form 1�
a exp 15�M 2MHeF� in the LM formulae (see below). With a of

order unity, this factor can be neglected if M ! MHeF: We also

require continuity of LM CHeB stars with naked helium stars

when the envelope mass goes to zero. The formulae are also

continuous between IM and HM stars for Z # 0:002: For higher Z,
however, there is a discontinuity in the CHeB formulae at M �
MFGB; because the transition becomes too complicated to model

continuously while keeping the formulae simple.

Figure 12. Relation between radius and luminosity on the giant branch as given by equation (46) (solid line) and from the detailed models (crosses) for

1.0M( at various metallicities.
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The luminosity at helium ignition is approximated by

LHeI �

b9M
b10

1� a1 exp 15�M 2MHeF�
M , MHeF

b11 � b12M
3:8

b13 �M2
M $ MHeF

8

>

>

>

<

>

>

>

:

�49�

with a1 � �b9Mb10
HeF 2 LHeI�MHeF��=LHeI�MHeF�: The radius at

helium ignition is RHeI � RGB�M; LHeI� for M # MFGB; and

RHeI � RmHe for M $ max�MFGB; 12:0�; with RmHe given by

equation (55) below. If MFGB , M , 12:0; we take

RHeI � RmHe

RGB�LHeI�
RmHe

� �m

; m � log�M=12:0�
log�MFGB=12:0�

: �50�

The minimum luminosity during CHeB for IM stars, reached at

the start of the blue phase, is given by

Lmin;He � LHeI
b14 � cMb15�0:1

b16 �Mb15
�51�

with

c � b17

M0:1
FGB

� b16b17 2 b14

M
b15�0:1
FGB

;

so that Lmin;He � b17LHeI at M � MFGB: Continuity with HM stars,

for which there is no minimum luminosity, is achieved by taking

b17 � 1 for Z # 0:002 (but b17 , 1 for Z . 0:002�: The radius at
this point is RGB�M; Lmin;He�.
For LM stars the ZAHB luminosity LZAHB takes the place of

Lmin,He. To model the ZAHB continuously both with the minimum

luminosity point at M � MHeF and with the naked helium star

ZAMS (see Section 6.1) for vanishing envelope mass �M � Mc�;
the ZAHB position must depend on Mc as well as M. We define

m � M 2Mc

MHeF 2Mc

; �52�

so that 0 # m # 1; and then take

LZAHB � LZHe�Mc� �
1� b20

1� b20m1:6479

� b18m
b19

1� a2 exp 15�M 2MHeF�
; �53�

a2 �
b18 � LZHe�Mc�2 Lmin;He�MHeF�

Lmin;He�MHeF�2 LZHe�Mc�
;

where LZHe is defined by equation (77). (Note that this a2 is not a

constant but depends on Mc.) For the ZAHB radius we take

RZAHB � �12 f �RZHe�Mc� � fRGB�LZAHB�; �54�

f � �1:0� b21�mb22

1:0� b21mb23
:

This formula ensures, apart from continuity at both ends, that

RZAHB is always smaller than the GB radius at LZAHB.

The minimum radius during the blue loop is approximated by

RmHe �
b24M � �b25M�b26Mb28

b27 �Mb28
M $ MHeF: �55�

Then for M , MHeF; we simply take

RmHe � RGB�LZAHB�
RmHe�MHeF�

RGB�LZAHB�MHeF��

� �m

to keep RmHe continuous, where m � M/MHeF.

The luminosity at the base of the AGB (or the end of CHeB) is

given by

LBAGB �

b29M
b30

1� a3 exp 15�M 2MHeF�
M , MHeF

b31 � b32M
b33�1:8

b34 �Mb33
M $ MHeF

8

>

>

>

<

>

>

>

:

�56�

with a3 � �b29Mb30
HeF 2 LBAGB�MHeF��=LBAGB�MHeF�: The radius

at the BAGB is simply RAGB(M, LBAGB), as given by equation

(74).

The lifetime of CHeB is given by

tHe �

{b39 � �tHeMS�Mc�2 b39��12 m�b40}
��1� a4 exp 15�M 2MHeF�� M , MHeF

tBGB
b41M

b42 � b43M
5

b44 �M5
M $ MHeF

8

>

>

>

>

<

>

>

>

>

:

�57�

with a4 � �tHe�MHeF�2 b39�=b39: The term involving tHeMS(Mc)

ensures continuity with the lifetime of a naked helium star with

M � Mc as the envelope mass vanishes. The lifetime of the blue

phase of CHeB relative to tHe depends in a complicated way on M

and Z; it is roughly approximated by

tbl �

1 M , MHeF

b45
M

MFGB

� �0:414

�abl log
M

MFGB

� �b46

MHeF # M # MFGB

�12 b47�
f bl�M�

f bl�MFGB�
M . MFGB;

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�58�

truncated if necessary to give 0 # tbl # 1; where

abl � 12 b45
MHeF

MFGB

� �0:414
" #

log
MHeF

MFGB

� �

2b46

and

f bl�M� � Mb48 12
RmHe�M�

RAGB�LHeI�M��

� �b49

:

The second term in the IM part of equation (58), with abl as

defined, ensures that tbl � 1 at M � MHeF: By taking b45 � 1 for

Z # 0:002; we also have tbl � 1 at M � MFGB: The HM part also

yields tbl � 1 atM � MFGB for Z # 0:002; so that the transition is
continuous for low Z. For Z . 0:002 the transition is regretably

discontinuous. Finally, the radius dependence of fbl ensures that

tbl � 0 at the same mass where RmHe � RAGB�LHeI�; i.e., where
the blue phase vanishes.

During CHeB, we use the relative age t � �t2 tHeI�=tHe; which
takes values between 0 and 1. We define tx as the relative age at

the start of the blue phase of CHeB, and Lx and Rx are the

luminosity and radius at this epoch. Hence tx � 0 for both the LM

and HM regime, and tx � 12 tbl for IM stars,

Lx �
LZAHB M , MHeF

Lmin;He MHeF # M , MFGB

LHeI M $ MFGB

8

>

>

<

>

>

:

�59�
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and

Rx �
RZAHB M , MHeF

RGB�Lmin;He� MHeF # M , MFGB

RHeI M $ MFGB

8

>

>

<

>

>

:

: �60�

Then the luminosity during CHeB is modelled as

L �
Lx

LBAGB

Lx

� �l

tx # t # 1

Lx
LHeI

Lx

� �l 0

0 # t , tx

8

>

>

>

>

<

>

>

>

>

:

�61�

where

l � t2 tx

12 tx

� �j

; j � min�2:5;max�0:4;RmHe=Rx��; �62�

l 0 � tx 2 t

tx

� �3

: �63�

The actual minimum radius during CHeB is Rmin �
min�RmHe;Rx�; because equation (55) for RmHe can give a value

that is greater than Rx (this property is used, however, to compute

j above). Furthermore, we define ty as the relative age at the end

of the blue phase of CHeB, and Ly and Ry as the luminosity and

radius at t � ty: Hence ty � 1 for LM and IM stars, and ty � tbl
for HM stars. Ly is given by equation (61) �Ly � LBAGB for M #

MFGB�; and Ry � RAGB�Ly�: The radius during CHeB is modelled

as

R �
RGB�M; L� 0 # t , tx

RAGB�M; L� ty , t # 1

Rmin exp�jrj3� tx # t # ty;

8

>

>

<

>

>

:

�64�

where

r � ln
Ry

Rmin

� �

1
3 t2 tx

ty 2 tx

� �

2 ln
Rx

Rmin

� �

1
3 ty 2 t

ty 2 tx

� �

: �65�

The core mass Mc,HeI at helium ignition is given by the Mc±L

relation for LM stars, while for M $ MHeF the same formula can

be used as for the BGB core mass (equation 44), replacing

Mc�LBGB�MHeF�� with Mc�LHeI�MHeF�� to ensure continuous

transition at M � MHeF: For M . 3M(; Mc,HeI is nearly equal

to Mc,BGB. The core mass at the BAGB point is approximated by

Mc;BAGB � �b36Mb37 � b38�
1
4 ; �66�

where b36 < 4:36 � 1024; b37 < 5:22 and b38 < 6:84 � 1022: In
between, the core mass is taken to simply increase linearly with time:

Mc � �12 t�Mc;HeI � tMc;BAGB: �67�

5.4 Asymptotic giant branch

During the EAGB, when the hydrogen-burning shell is extinct, the

(hydrogen-exhausted) core mass Mc,He (which we have been

calling Mc so far, because it was the only significant core) stays

constant at the value Mc,BAGB. Within the hydrogen-exhausted

core a degenerate carbon-oxygen core, Mc,CO, has formed and

begins to grow. At a time corresponding to the second dredge-up

phase the growing Mc,CO catches the hydrogen-exhausted core,

and the TPAGB begins. From then on, Mc,CO and Mc,He are equal

and grow at the same rate (we neglect the mass, about 0.01M(, of

the thin helium layer between the two burning shells).

So on the EAGB we set

Mc � Mc;He � Mc;BAGB:

Inside this core, Mc,CO grows by He-shell burning, at a rate

dictated by the Mc±L relation. Thus we can compute the evolution

of Mc,CO and L in the same way as was done for GB stars using

equations (37) and (39) with Mc replaced by Mc,CO, tBGB replaced

by tBAGB �� tHeI � tHe� and LBGB replaced by LBAGB. We also

need to replace AH with the value appropriate for helium burning,

AHe. The detailed models (Pols et al. 1998) on the EAGB show

that the carbon-oxygen core is composed of 20 per cent carbon

and 80 per cent oxygen by mass, so for every four carbon atoms

produced by the triple-a reaction, three will capture an a particle

and be converted to oxygen. Thus

E � e3a � 0:75eCa
15m�H� < 8:09 � 1017 erg g21;

so that

AHe � �EXHe�21 � 7:66 � 1025 M( L21
(

Myr21 �68�

using XHe < 0:98: Although massive stars �M * 8� do not

actually follow a Mc±L relation for the CO core, by making the

proper (ad hoc) assumptions about the constants in the relation, we

can still effectively model their evolution in the same way as for

true AGB stars.

As already mentioned, the EAGB ends when the the growing

CO core reaches the hydrogen-exhausted core. If 0:8 ,

Mc;BAGB , 2:25; the star will undergo a second dredge-up phase

at the end of the EAGB phase. During this second dredge-up the

core mass is reduced to

Mc;DU � 0:44Mc;BAGB � 0:448:

We assume that the second dredge-up takes place instantaneously at

the moment when Mc,CO reaches the value Mc,DU, so that also

Mc;CO � Mc at that point (but note that there is then a sudden

discontinuity in Mc � Mc;He�: Similarly, for Mc;BAGB # 0:8; the

EAGB ends whenMc,CO reachesMc,He without a second dredge-up,

i.e., Mc;DU � Mc;BAGB: Stars with Mc;BAGB . 2:25 do not undergo

second dredge-up, as they can ignite carbon non-degenerately, and

their evolution terminates before they ever reach the TPAGB.

To determine when the transition from EAGB to TPAGB

occurs, we can simply insert Mc,DU into the Mc±L relation to find

LDU. Then we calculate

tDU �
tinf;1 2

1

�p2 1�AHeD

D

LDU

� �

p21
p

LDU # Lx

tinf;2 2
1

�q2 1�AHeB

B

LDU

� �

q21
q

LDU . Lx

8

>

>

>

>

>

<

>

>

>

>

>

:

: �70�

Thus if t . tDU; the TPAGB has begun and the hydrogen-

exhausted and helium-exhausted cores grow together as a common

core. Once again the Mc±L relation is obeyed, and once again we

can use it in the same way as we did for GB stars if we replace

tBGB by tDU and LBGB by LDU. As we have both hydrogen and

helium shell burning in operation, we must also replace AH by an

effective combined rate AH,He, where

AH;He �
AHAHe

AH � AHe

. 1:27 � 1025 M( L21
(

Myr21: �71�
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There is, however, an added complication that it is possible for

LDU . Lx: In this case, tinf,1 and tx are not needed, and tinf,2 is

given by

tinf;2 � tDU � 1

�q2 1�AH;HeB

B

LDU

� �

q21
q

: �72�

In this way the L evolution (and thus the R evolution) remains

continuous through the second dredge-up.

On the TPAGB we do not model the thermal pulses

individually, but we do take into account the most important

effect of the thermally pulsing behaviour on the long-term

evolution, namely that of third dredge-ups. During each interpulse

period, the helium core grows steadily, but during the thermal

pulse itself the convective envelope reaches inwards and takes

back part of the mass previously eaten up by the core. The fraction

of this mass is denoted by l. Frost (1997) shows that models with

4 # M # 6 and 0:004 # Z # 0:02 have similar overall behaviour

in l , where l increases quickly and reaches approximately 0.9

after about 5 pulses at which it stays nearly constant for the

remaining pulses. For lower mass stars there is no evidence for

such a high l , with a value of 0.3 more likely for models of

approximately solar mass, and then a steady increase of l with M

to reach lmax < 0:9 before M � 4 (Lattanzio 1989; Karakas et al.,

in preparation) Thus we simply take l as constant for each M

without any Z-dependence,

l � min�0:9; 0:3� 0:001M5�: �73�
Hence the secular growth of the core mass is reduced with respect

to that given by the Mc±L relation by a fraction l . On the other

hand, detailed calculations show that the luminosity evolution

with time follows the same relation as without third dredge-up

(Frost 1997), i.e., it keeps following equations (37) and (39) as if

Mc were not reduced by dredge-up. In other words, the Mc±L

relation is no longer satisfied in the presence of third dredge-up,

but we can use it nevertheless to compute the evolution of L, while

Mc is modified as follows:

Mc � Mc;DU � �12 l��M 0
c 2Mc;DU�;

where M 0
c is from the Mc±L relationship, with no dredge-up, and

Mc,DU is the value of Mc at the start of the TPAGB.

The radius evolution is very similar to that of the GB, as the

stars still have a deep convective envelope, but with some slight

modifications. The basic formula is the same,

RAGB � A�Lb1 � b2L
b50 �: �74�

where indeed b1 and b2 are exactly the same as for RGB, and

b50 � b55b3 for M $ MHeF: Also, for M $ MHeF,

A � min�b51M2b52 ; b53M
2b54 �;

which gives

RAGB � 1:125M20:33�L0:4 � 0:383L0:76�;
as an example, for Z � 0:02: For M , MHeF the behaviour is

slightly altered, so we take

b50 � b3

A � b56 � b57M

for M # MHeF 2 0:2 and linear interpolation between the

bounding values for MHeF 2 0:2 , M , MHeF; which means

that for M � 1:0 and Z � 0:02 the relation gives

RAGB < 0:95�L0:4 � 0:383L0:74�:

In Fig. 13 we show the radius evolution of a 5.0-M( star, for

Z � 0:001 and 0.02, from the ZAMS to the end of the AGB, from

both the rapid evolution formulae and the detailed models. The

AGB phase of the evolution is recognized by the sharp increase in

radius following the phase of decreasing radius during the CHeB

blue loop. An accurate fit to the AGB radius is required if the

formulae are to be used in conjunction with binary evolution

where factors such as Roche-lobe overflow and tidal circulariza-

tion come into play. In fact, Fig. 13 shows that we achieve an

accurate fit for all phases of the evolution.

We have now described formulae which cover all phases of the

evolution covered by the detailed grid of stellar models. Figs 14

and 15 show synthetic HRDs derived from the formulae and are

designed to be direct comparisons to Figs 1 and 2, respectively.

The excellent performance of the fitting formulae is clearly

evident.

6 F INAL STAGES AND REMNANTS

The AGB evolution is terminated, if not by complete loss of the

envelope, when the CO-core mass reaches a maximum value given

by

Mc;SN � max�MCh; 0:773Mc;BAGB 2 0:35�: �75�

When this maximum core mass is reached before the envelope is

lost, a supernova explosion is assumed to take place. For stars

with Mc;BAGB # 2:25; this should occur during the TPAGB phase.

In practice, mass-loss will prevent it from doing so in most cases

of single star evolution, but it may occur as a consequence of

binary evolution. For such stars, we make a further distinction

based on whether Mc,BAGB exceeds 1.6M(. For Mc;BAGB , 1:6;
when the CO-core mass reaches MCh carbon ignites in a

degenerate flash, leading to a thermonuclear explosion. It is

uncertain whether we should expect this to occur for normal SSE,

but if it does, then the supernova would be something like `type

IIa' �Ia� hydrogen�; and we assume that such a supernova leaves

no stellar remnant.

For 1:6 # Mc;BAGB # 2:25; the detailed models show that

carbon ignites off-centre under semidegenerate conditions when

Figure 13. Radius evolution from the ZAMS to the end of the AGB for a

5.0-M( star, for metallicities 0.001 and 0.02, showing the detailed model

points (solid lines) and the fitted tracks (dot-dashed lines).
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Mc;CO * 1:08 (Pols et al. 1998). Carbon burning is expected to

lead to the formation of a degenerate ONe core (Nomoto 1984),

while the star continues its evolution up the AGB. When the core

mass reaches MCh, the ONe core collapses owing to electron

capture on Mg24 nuclei. The resulting supernova explosion

leaves a neutron star remnant (Section 6.2.2). The limiting

Mc,BAGB values of 1.6 and 2.25M( correspond to initial stellar

masses denoted traditionally by the symbols Mup and Mec,

respectively. The values of Mup and Mec depend on metallicity

(see table 1 of Pols et al. 1998), this dependence follows from

inverting equation (66) for the values Mc;BAGB � 1:6 and 2.25,

respectively.

If the envelope is lost before Mc reaches Mc,SN �� MCh� on the

TPAGB, the remnant core becomes a white dwarf. This will be the

case for almost all cases of normal SSE. For Mc;BAGB , 1:6; this
will be a CO white dwarf; for Mc;BAGB $ 1:6; it will be a ONe

white dwarf (Section 6.2.1).

Stars with Mc;BAGB . 2:25 develop non-degenerate CO cores

which grow only slightly before undergoing central carbon

burning, rapidly followed by burning of heavier elements. Here,

Mc,SN is the CO-core mass at which this burning takes place,

because the core mass does not grow significantly after carbon

burning. Very quickly, an Fe-core is formed which collapses

owing to photodisintegration, resulting in a supernova explosion.

The supernova leaves either a neutron star or, for very massive

stars, a black hole (Section 6.2.2). We assume that a black hole

forms if Mc;SN . 7:0; corresponding to Mc;BAGB . 9:52.
This means that the lowest mass star to produce a NS has an

initial mass Mp in the range Mup # Mp # Mec; with the actual

value ofMp depending greatly on the mass-loss rate. Observations

would tend to suggest that Mp < Mec (Elson et al. 1998), and

indeed we find that with our adopted mass-loss rate (Section

7.1) almost all cases of SSE result in WD formation for

M # Mec.

While most stars have their nuclear burning evolution

terminated on the TPAGB, we must make allowances for cases

of enhanced mass-loss, e.g., owing to binary evolution processes,

that result in termination at an earlier nuclear burning stage. If the

star loses its envelope during the HG or GB phases, then it will

become either a HeWD (Section 6.2.1), if it has a degenerate core

�M , MHeF�; or a zero-age naked helium star (Section 6.1). If

during CHeB M � Mc; then an evolved naked helium star is

formed with the degree of evolution determined by the amount of

central helium already burnt. Thus the age of the new star is taken

to be

t � t 0 2 t 0HeI
t 0He

� �

tHeMS; �76�

where the primes denote times for the original star, and tHeMS is

given by equation (79). When the envelope is lost during the

EAGB so that Mc;He � M; a naked helium giant (Section 6.1) is

formed as unburnt helium still remains within Mc,He through

which the growing Mc,CO is eating. The age of the new star will be

fixed by using Mc � Mc;CO and M � Mc;He in the HeGB Mc±t

relation (see Section 6.1). We note that although naked helium

stars are nuclear burning stars, i.e., not a final state, we still label

them as a remnant stage because they are the result of mass-loss.

Also, when a WD, NS or BH is formed, the age of the star is reset

so that the remnant begins its evolution at zero-age to allow for

cooling (Section 6.2).

Figure 14. Same as Fig. 1, but tracks are from the evolution formulae. Figure 15. Same as Fig. 2, but tracks are from the evolution formulae.
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6.1 Naked helium stars

The formulae described in this section are based on detailed stellar

evolution models for naked helium stars, computed by one of the

authors (ORP) with the same code as used for the stellar models

described in Section 3. First, a helium ZAMS of homogeneous

models in thermal equilibrium was constructed, with composition

X � 0; Y � 0:98 and Z � 0:02: Starting from this ZAMS,

evolution tracks were computed for masses between 0.32 and

10M(, spaced by approximately 0.1 in logM. For masses below

2M(, the tracks were computed until the end of shell helium

burning, and for M . 2M(; up to or through central carbon

burning. These models will be discussed in more detail in a

forthcoming paper (Pols, in preparation).

The following analytic formulae provide an accurate fit to the

ZAMS luminosity and radius of naked helium stars with

Z � 0:02:

LZHe �
15 262M10:25

M9 � 29:54M7:5 � 31:18M6 � 0:0469
; �77�

RZHe �
0:2391M4:6

M4 � 0:162M3 � 0:0065
: �78�

The central helium-burning lifetime (helium MS) is approximated

by

tHeMS � 0:4129� 18:81M4 � 1:853M6

M6:5
: �79�

The behaviour of L and R during central helium burning can be

approximated by

LHeMS � LZHe�1� 0:45t� at2� �80�

and

RHeMS � RZHe�1� bt2 bt6�; �81�

where t � t=tHeMS; and t is counted from the He ZAMS. a and b

are dependent on mass, as follows:

a � max�0; 0:852 0:08M� �82�

and

b � max�0; 0:42 0:22 logM�: �83�
The evolution after the helium MS is dominated by the growth

of the degenerate C-O core for low-mass stars, and by evolution

up to carbon burning for M * 2: Low-mass helium stars follow an

approximate core mass±luminosity relation (e.g. Jeffery 1988),

and we compute their evolution making use of this relation just as

we do for GB stars (Section 5.2). For massive helium stars,

although they do not properly follow such a relation, an ad hoc

Mc±L relation can be used to also describe their evolution. The

following formula works for the whole mass range:

LHeGB � min�BM3
c ;DM

5
c�; �84�

with B � 4:1 � 104 and D � 5:5 � 104=�1� 0:4M4�: The first

term models the `real' Mc±L relation followed by low-mass

helium stars, while the second, mass-dependent term mimics the

behaviour for high-mass stars. The evolution of L and Mc with

time is obtained from equation (84) and the equivalents of

Equations (39)±(42), with AH replaced by AHe as given by

equation (68), tBGB replaced by tHeMS, and LBGB replaced by LTHe.

LTHe is the value of L at the end of the helium MS, i.e., LHeMS

given by equation (80) at t � 1: The post-HeMS radius can be

approximated by

RHeGB � min�R1;R2�; �85�

R1 � RZHe

L

LTHe

� �0:2

�0:02 exp
L

l

� �

2 exp
LTHe

l

� �� �

; �86�

l � 500
2�M5

M2:5
; �87�

R2 � 0:08L0:75: �88�

The first term of R1 models the modest increase in radius at low

mass and/or L, and the second term the very rapid expansion and

redward movement in the HRD for M * 0:8 once L is large

enough. The star is on what we call the naked helium HG (HeHG)

if the radius is given by R1. The radius R2 mimics the Hayashi

track for helium stars on the giant branch (HeGB). We make the

distinction between HeHG and HeGB stars only because the latter

have deep convective envelopes and will therefore respond

differently to mass-loss.

The final stages of evolution are equivalent to those of normal

stars, i.e., as discussed in Section 6, but with Mc,BAGB replaced by

the helium-star initial mass M in equation (75) as well as in the

discussion that follows it. If M , 0:7M(; the detailed models

show that shell helium burning stops before the whole envelope is

converted into C and O. We mimic this by letting a helium star

become a CO WD when its core mass reaches the value

Mc;max � min�1:45M 2 0:31;M�; �89�

as long as Mc;max , Mc;SN.

6.2 Stellar remnants

6.2.1 White dwarfs

We distinguish between three types of white dwarf, namely those

composed of He (formed by complete envelope loss of a GB star

with M , MHeF; expected only in binaries), those composed of C

and O (formed by envelope loss of a TPAGB star with M , Mup;
see above), and those composed mainly of O and Ne (envelope

loss of a TPAGB star with Mup # M # Mec�: The only distinction

we make between CO and ONe white dwarfs is in the way they

react to mass accretion. If MWD �Macc . MCh; after accreting an

amount of mass Macc, then a CO WD explodes without leaving a

remnant, while an ONe WD leaves a neutron star remnant with

mass MNS � 1:17� 0:09�MWD �Macc� (see later in Section

6.2.2). The Chandrasekhar mass is given by

MCh <
5:8

m2
e

� �

M(;

so it is composition-dependent, but the mean molecular weight per

electron is me < 2; except for low-mass MS stars in cataclysmic

variables, so we use MCh � 1:44 at all times.

The luminosity evolution of white dwarfs is modelled using

standard cooling theory (Mestel 1952); see Shapiro & Teukolsky

(1983, p. 85):

LWD � 635MZ0:4

��A�t � 0:1��1:4 ; �90�

where t is the age since formation, and A is the effective baryon

number for the WD composition. For He WDs we have A � 4; for
CO WDs A � 15; and for ONe WDs A � 17: Equation (90) is

Comprehensive analytic formulae for stellar evolution 559

q 2000 RAS, MNRAS 315, 543±569



adequate for relatively old WDs. The addition of a constant in the

factor �t � 0:1� mimics the fact that the initial cooling is rather

faster than given by Mestel theory, as well as ensuring that it does

not start at infinite L, so that we effectively start the evolution at a

cooling age of 105 yr. Note that the initial cooling of the WD is

modelled by the small-envelope pertubation functions on the

TPAGB (see Section 6.3).

The radius of a white dwarf is given by

RWD � max RNS; 0:0115

��������������������������������������������������

MCh

MWD

� �2=3

2
MWD

MCh

� �2=3
s

2

4

3

5 �91�

as in Tout et al. (1997).

6.2.2 Neutron stars and black holes

When a neutron star or black hole is formed in one of the

situations given above, we assume that its gravitational mass is

given by

MNS � 1:17� 0:09Mc;SN; �92�

where Mc,SN is the mass of the CO-core at the time of supernova

explosion. With equation (75), this leads to a minimum NS mass

of 1.3M(, and the criterion for BH formation Mc;SN . 7:0 gives a

maximum NS mass and minimum BH mass of 1.8M(.

The NS cooling curve is approximated by assuming that photon

emission is the dominant energy loss mechanism, which should be

true for t $ 106 yr (see Shapiro & Teukolsky 1983, p. 330):

LNS � 0:02M2=3

�max�t; 0:1��2 : �93�

The upper limit is calibrated to give Teff < 2 � 106 K; which is

appropriate for the Crab pulsar and is set constant for the first

105 yr to reflect the scatter in the observations of Teff for pulsars

with an age less than 105 yr. Equation (93) also ensures that LNS ,

LWD at all times, and that neutron stars will cool faster than white

dwarfs.

The radius of a NS is simply set to 10 km, i.e.,

RNS � 1:4 � 1025.

We take the black hole radius as the Schwarzschild radius:

RBH � 2GMBH

c2
� 4:24 � 1026MBH: �94�

The corresponding luminosity of a BH is approximately given by

LBH � 1:6 � 10250

M2
BH

�95�

(Carr & Hawking 1974), which will be negligible except for

extremely low-mass objects, and thus we actually set

LBH � 10210 �96�
to avoid floating-point division by zero.

Note that for all remnants we set Mc � M for convenience.

6.3 Small-envelope behaviour and hot subdwarfs

In general, the equations in Section 5 accurately describe the

nuclear burning evolution stages as outlined by our grid of

detailed models. However, we also find it necessary to add some

pertubation functions which alter the radius and luminosity when

the envelope becomes small in mass, in order to achieve a smooth

transition in the HRD towards the position of the remnant. Take,

for example, the AGB radius where

RAGB / M2x;

so that as M decreases due to mass-loss from a stellar wind RAGB

will increase and the star moves further to the red in the HRD. In

fact, as the envelope mass (Menv) gets very small, the star becomes

bluer and moves across the HRD to WD temperatures. In the same

way we would also expect the luminosity growth rate to decrease

until the luminosity levels off at some approximately constant

value for small Menv.

Thus for any nuclear burning evolution stage where there is a

well-defined core and envelope (i.e., not the MS), we define

m � M 2Mc

M

� �

min 5:0;max 1:2;
L

L0

� �k� �� �

; �97�

where L0 � 7:0 � 104; k � 20:5 for normal giants, and

m � 5
Mc;max 2Mc

Mc;max

� �

�98�

for helium giants. Then, if m , 1:0; we perturb the luminosity and

radius using

L 0 � Lc
L

Lc

� �s

�99�

R 0 � Rc

R

Rc

� �r

; �100�

where

s � �1� b3��m=b�3
1� �m=b�3 �101�

r � �1� c3��m=c�3m0:1=q

1� �m=c�3 ; �102�

with

b � 0:002max 1;
2:5

M

� �

�103�

c � 0:006max 1;
2:5

M

� �

�104�

q � loge
R

Rc

� �

: �105�

The luminosity and radius of the star are then given by L 0 and R 0.
In the above formulae, Lc and Rc are the luminosity and radius

of the remnant that the star would become if it lost all of its

envelope immediately. Thus we set M � Mc in the appropriate

remnant formulae. If the star is on the HG or GB, then we have,

for M , MHeF,

Lc � LZHe�Mc�
Rc � RZHe�Mc�;

otherwise

Lc � LWD�Mc�;

i.e., equation (90) with A � 4 and t � 0,

Rc � RWD�Mc�:

During CHeB the remnant will be an evolved helium MS star so
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we use Mc and t � �t2 tHeI�=tHe in equations (80) and (81) to

give Lc and Rc, respectively. On the EAGB the remnant will be a

helium HG or GB star with M � Mc;He; so that Lc comes from the

HeGB Mc±L relation with Mc � Mc;CO and Rc from RHeGB �
�Mc;He; Lc�: For the TPAGB, HeHG and HeGB the remnant will

most likely be a CO WD, so

Lc � LWD�Mc�;

i.e., equation (90) with A � 15 and t � 0,

Rc � RWD�Mc�:

Fig. 16 shows how a model incorporating mass-loss (using the

prescription outlined in Section 7.1) and the small-envelope

pertubation functions deviates from a model without either. No

difference is evident until the stellar wind becomes appreciable as

the star evolves up the AGB. As the envelope mass is reduced, the

star initially moves to the right of the AGB, becoming redder in

accordance with equation (74). Then, as the envelope is reduced

even further in mass, the star moves to the left in the HRD, under

the influence of the pertubation functions, becoming bluer as the

hot core starts to become visible. Thus we have in effect mimicked

the planetary nebulae nucleus phase of evolution which finishes

when the star joins up with the white dwarf cooling track (marked

by a cross in the figure). The behaviour of the core mass±

luminosity relation for the same models is shown in Fig. 17. Both

the helium and the carbon-oxygen cores are shown on the AGB

until second dredge-up when the helium core is reduced in mass

and the two grow together. It can be seen that after second dredge-

up the slope of the relation changes as a result of third dredge-up

during the TPAGB phase.

We should note that Rc can be used directly as a fairly accurate

estimate of the current core radius of the star except when Rc is

given by RWD. In that case, nuclear burning will be taking place in

a thin shell separating the giant core from the envelope, so that the

core will be a hot subdwarf for which we assume the radius Rc .

5RWD�Mc�: It is also necessary to check that Rc # R in all cases.

7 MASS -LOSS AND ROTATION

7.1 Mass-loss

We now describe a particular mass-loss prescription which is

independent of the previous formulae and fits observations well.

On the GB and beyond, we apply mass-loss to the envelope

according to the formula of Kudritzki & Reimers (1978),

_MR � h4 � 10213 hLR

M
M( yr21; �106�

with a value of h � 0:5: Our value for h is within the limits set by

observations of horizontal branch morphology in Galactic

globular clusters (Iben & Renzini 1983), and we do not include

a Z-dependence in equation (106) as there is no strong evidence

that it is necessary (Iben & Renzini 1983; Carraro et al. 1996). On

the AGB, we apply the formulation of Vassiliadis & Wood (1993),

log _MVW � 211:4� 0:0125�P0 2 100max�M 2 2:5; 0:0��;

to give the observed rapid exponential increase in MÇ with period

before the onset of the the superwind phase. The steady superwind

phase is then modelled by applying a maximum of _MVW �
1:36 � 1029LM( yr21: P0 is the Mira pulsation period given by

logP0 � min�3:3;22:072 0:9 logM � 1:94 logR�:
For massive stars we model mass-loss over the entire HRD

using the prescription given by Nieuwenhuijzen & de Jager

(1990),

_MNJ � 9:6 � 10215 Z

Z(

� �1=2

R0:81L1:24M0:16 M( yr21

for L . 4000M(; modified by the factor Z
1/2 (Kudritzki et al.

1989).

For small hydrogen-envelope mass, m , 1:0; we also include a

Wolf±Rayet-like mass-loss (Hamann, Koesterke & Wessolowski

1995; Hamann & Koesterke 1998), which we have reduced to give

_MWR � 10213L1:5�1:02 m�M( yr21;

where m is given by equation (97). The reduction is necessary in

Figure 16. Synthetic evolution tracks on the HRD for a 5.0-M( star

without mass-loss (dot-dashed line) and with mass-loss (points). The cross

marks where the WD cooling track begins.

Figure 17. Relation between core mass and luminosity for a 5.0-M( star

as given by the formulae without mass-loss (dot-dashed line) and with

mass-loss (points). Both the helium and carbon-oxygen cores are shown

for the EAGB phase.
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order to produce sufficient black holes to match the number

observed in binaries.

We then take the mass-loss rate as the dominant mechanism at

that time:

_M � max� _MR; _MVW; _MNJ; _MWR�M( yr21:

In addition, we add a LBV-like mass-loss for stars beyond the

Humphreys±Davidson limit (Humphreys & Davidson 1994),

_MLBV � 0:1�1025RL1=2 2 1:0�3 L

6 � 105
2 1:0

� �

M( yr21;

if L . 6 � 105 and 1025RL1=2 . 1:0; so that _M � _M � _MLBV.

For naked helium stars we include the Wolf±Rayet-like mass-

loss rate to give

_M � max� _MR; _MWR�m � 0��M( yr21:

The introduction of mass-loss means that we now have two mass

variables, the initial mass M0 and the current mass Mt�� M�: From
tests with mass-loss on detailed evolution models we found that the

luminosity and time-scales remain virtually unchanged when mass-

loss is included, during the GB and beyond, but that the radius

behaviour is very sensitive. Thus we use M0 in all formulae that

involve the calculation of time-scales, luminosity or core mass, and

we useMt in all radius formulae. When a MS star loses mass, which

may occur in a stellar wind for massive stars or as a result of mass

transfer, it will evolve down along the MS to lower L and Teff
because of the decrease in central density and temperature. The

luminosity responds to changes in mass because the size of the core

depends on the mass of the star, and therefore M0, which is more

correctly the effective initial mass, is kept equal to the current

mass while the star is on the MS. We must effectively age the star,

so that the fraction of MS lifetime remains unchanged, by using

t 0 � t 0MS

tMS

t;

where primes denote quantities after a small amount of mass-loss

�t 0MS . tMS; thus t 0 . t�: Even though the star has been aged

relative to stars of its new mass, its remaining MS lifetime has

been increased. Naked helium MS stars must also be treated in the

same way with tMS replaced by tHeMS. During the giant phases of

evolution the age determines the core mass which will be

unaffected by mass changes at the surface, as the core and

envelope are effectively decoupled in terms of the stellar structure,

so that the age and the initial mass do not need to be altered. HG

stars will respond to changes in mass on a thermal time-scale, and

thus, as our detailed models show is necessary, we keep M0 � Mt

during the HG, and the star is aged according to

t 0 � t 0MS �
�t 0BGB 2 t 0MS�
�tBGB 2 tMS�

�t2 tMS�

whenever mass is lost. However, as the core mass depends on M0,

see Equations (28)±(30), there exists a limiting value beyond

which M0 cannot be decreased. To do otherwise would lead to an

unphysical decrease in the core mass. Therefore our treatment of

mass-loss on the HG is a mixture of the way the MS and giant

phases are treated which in a sense reflects the transitional nature

of the HG phase of evolution.

When a LM star experiences the helium flash and moves to the

ZAHB we reset M0 � Mt; so that t � tHeI�M0� as it is now a new

star with no knowledge of its history. We also resetM0 � Mt when

naked helium star evolution is begun.

7.1.1 The white dwarf initial±final mass relation

If a star is to evolve to become a WD, the minimum mass possible

for the WD is the core mass at the start of the TPAGB. Thus an

accurate empirical relation between WD masses and the initial

mass of their progenitors provides an important calibration of the

mass-loss required on the AGB. This helps to constrain h in

equation (106) which, for now, is basically a free parameter. The

commonly used method to obtain the initial±final mass relation

(IFMR) for white dwarfs is to use WDs that are members of

clusters with known ages. Their radii, masses and cooling times

can be obtained spectroscopically so that by subtracting the

cooling time from the cluster age the time spent by the progenitor

from the ZAMS to the AGB can be estimated. The initial

progenitor mass,Mi, must then be derived using appropriate stellar

models, so that this a semi-empirical method for defining the

IFMR. Using data from WDs in Galactic open clusters, Weidemann

(1987) derived such a semi-empirical IFMR as shown in Fig. 18.

As Jeffries (1997) rightly points out, an IFMR derived by this

method will be sensitive to the amount of core overshooting

included in the stellar evolution models. The effect of increased

overshooting is to decrease the derived cluster age, thus increasing

the progenitor lifetime and decreasing Mi. The IFMR will also be

sensitive to changes in metallicity.

Jeffries (1997) presents initial and final masses for four WDs

found in the young open cluster NGC 2516, which has a

metallicity of Z . 0:009: The initial progenitor masses are

derived from the stellar models of Schaerer et al. (1993) with

Z � 0:008 and moderate core overshooting. We show the data

points for these four WDs in Fig. 18, as well as the IFMR given by

our formulae for Z � 0:02 and 0.004 (the IFMR for Z � 0:009
will lie between these two), and the corresponding core mass at

the start of the TPAGB. As the TPAGB core mass is the minimum

possible mass for the WD, it is clear that our formulae are in

disagreement with the semi-empirical IFMR of Weidemann

Figure 18. Relation between white dwarf mass and the ZAMS mass of its

progenitor, i.e., the initial-final mass relation (IFMR). The IFMR from the

evolution formulae (solid line) is given for Z � 0:02 and 0.004, as well as

the corresponding core masses at the start of the TPAGB (dotted lines).

The vertical lines correspond to Mup. Weidemann's (1987) semi-empirical

IFMR (dot-dashed line) and the NGC 2516 white dwarfs (crosses) from

Jeffries (1997) are shown.
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(1987). Jeffries (1997) was in similar disagreement with the semi-

empirical IFMR. However, the IFMRs from our formulae are in

good agreement with the NGC 2516 data, taking the associated

errors of the data points into account. Thus there is no contra-

diction with the mass-loss prescription used for the formulae;

however, we note that an empirical IFMR is required before

concrete conclusions can be drawn.

7.2 Rotation

As we plan to use the evolution routines for single stars in binary

star applications, it is desirable to follow the evolution of the stars'

angular momentum. To do this, we must start each star with some

realistic spin on the ZAMS. A reasonable fit to the vÅ rot MS data of

Lang (1992) is given by

�vrot�M� � 330M3:3

15:0�M3:45
km s21; �107�

so that

V � 45:35
�vrot

RZAMS

yr21: �108�

The angular momentum is then given by

Jspin � IV � kMR2V;

where the constant k depends on the internal structure, e.g., k �
2=5 for a solid sphere and k � 2=3 for a spherical shell. In fact, we
find the angular momentum by splitting the star into two parts,

consisting of the core and the envelope, so that

Jspin � �k2�M 2Mc�R2 � k3McR
2
c�V; �109�

where k2 � 0:1; based on detailed giant models which reveal k �
0:1Menv=M; and k3 � 0:21 for an n � 3=2 polytrope such as a

WD, NS or dense convective core. This works well for post-MS

stars which have developed a dense core whose rotation is likely to

have decoupled from the envelope, while also representing the

near uniform rotation of homogenous MS stars which have Mc �
0:0: When the star loses mass in a stellar wind, the wind will carry

off angular momentum from the star at a rate given by

_J � k _Mh;

where h � R2V: Thus

Jspin � Jspin 2
2
3
DMR2V �110�

when the star loses an amount of mass DM, where we take k �
2=3; as we assume that all the mass is lost uniformly at the surface

of the star, i.e., from a spherical shell.

We also include magnetic braking for stars that have

appreciable convective envelopes where

_Jmb � 5:83 � 10216 Menv

M
�RV�3 M( R2

(
yr22; �111�

with V in units of years. However, following Rappaport, Verbunt

& Joss (1983), we do not allow magnetic braking for fully

convective stars, M , 0:35.
For most stars, Menv is simply given by M 2Mc; however, the

case is slightly more complicated for MS and HG stars. Our detailed

models show that MS stars are fully convective for M , 0:35 so

thatMenv;0 � M; and that MS stars withM . 1:25 have little or no
convective envelope so that Menv;0 � 0:0; independent of Z. In

between, we take

Menv;0 � 0:35
1:252M

0:9

� �2

0:35 # M # 1:25:

The convective envelope, if it is present, will diminish as the star

evolves across the MS, so we take

Menv � Menv;0�1:02 t�1=4;

where

t � t

tMS

;

and Menv,0 is effectively the ZAMS value. On the HG we assume

that the convective core gradually establishes itself so that

Menv � t�M 2Mc�;

where

t � t2 tMS

tBGB 2 tMS

:

8 D ISCUSS ION

The possible paths of evolution through the various phases

described in the preceeding sections are illustrated in Fig. 19. In

Fig. 20 we show the distribution of remnant masses and types, as a

function of initial stellar mass, for Population I and II stars as

given by the rapid evolution code. The distribution approximates

what we would see if a population of single stars were to be

evolved to the current age of the Galaxy. The variation in

behaviour produced by a change in metallicity should once again

be noted. These variations are due to changes in the evolution rates

as a function of initial mass, brought about by changes in the

composition. The initial mass above which stars will become

black holes rather than neutron stars is not well constrained, which

is why we use the maximum AGB core mass in the formulae to

decide the outcome, corresponding to a transition at M0 . 30M(

(varying with metallicity). It can also be seen from Fig. 20 that,

above this mass, a small pocket of neutron star formation occurs in

what would normally be assumed to be a region of black hole

formation on the diagram. This behaviour corresponds to a

massive star losing its envelope on the HG so that the star enters

the naked helium MS phase, where the mass-loss rate increases,

causing a reduction in M0. As a result, a lower value than

otherwise expected for MNS is given by equation (92) when the

naked helium evolution ends.

The formulae described in this paper are available in convenient

subroutine form as a SSE package, which we also term `the rapid

evolution code', that contains:

(i) EVOLVE The main routine which, amongst other things,

initializes the star, chooses the time-steps and implements mass-loss.

(ii) ZCNSTS Subroutine which sets all the constants of the for-

mulae which depend on metallicity so that there is no Z-dependence

elsewhere. This needs to be called each time Z is changed.

(iii) STAR Subroutine which derives the landmark time-scales

and luminosities that divide the various evolution stages. It also

calculates tN, which is an estimate of the end of the nuclear

evolution, i.e., when Mc � min�Mt;Mc;SN�; assuming no further

mass-loss.

(iv) HRDIAG Subroutine to decide which evolution stage the star

is currently at, and then to calculate the appropriate L, R and Mc.

(v) ZFUNCS Contains all the detailed evolution formulae as

functions.

(vi) MLWIND derives the mass-loss as a function of evolution

stage and the current stellar properties.
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In the absence of mass-loss, STAR is required only at the

beginning of the evolution, and then HRDIAG can be called at any

age to return the correct stellar quantities. When mass-loss is

included, HRDIAG must be called often enough that only a small

amount of mass is lost during each time-step. STAR also needs to

be called often, as some time-scales need to be reset after changes

of type, e.g., start of the HeMS, as do some luminosities, e.g.,

LZAHB depends on the envelope mass at the helium flash.

The following time-steps, d tk, are assigned according to the

stellar type, k:

dtk �

1

100
tMS k � 0; 1

1

20
�tBGB 2 tMS� k � 2

1

50
�tinf;1 2 t� k � 3t # tx

1

50
�tinf;2 2 t� k � 3t . tx

1

50
tHe k � 4

1

50
�tinf;1 2 t� k � 5; 6t # tx

1

50
�tinf;2 2 t� k � 5; 6t . tx

1

20
tHeMS k � 7

1

50
�tinf;1 2 t� k � 8; 9t # tx

1

50
�tinf;2 2 t� k � 8; 9t . tx

max�0:1; 10:0t� k $ 10
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:

In addition, we impose a maximum TPAGB time-step of 5 �
1023 Myr so that important contributions from the small-envelope

pertubation functions are not missed. We also calculate d te, the

time to the next change of stellar type (e.g., dte � tMS 2 t for

Figure 20. Distribution of remnant masses and types after 1:2 � 1010 yr of

evolution, as a function of initial mass, for Z � 0:001 (hollow symbols)

and Z � 0:02 (filled symbols).
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Figure 19. Possible evolution paths through the various stellar evolution phases.
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k � 0; 1�; and d tN which is the current remaining nuclear lifetime

of the star (i.e., dtN � tN 2 t; assuming that the star is in a nuclear

burning stage; otherwise tN is set to some large dummy value). If

necessary we limit the time-step such that mass-loss will be less

than 1 per cent over the time-step,

dtml � 20:01
M

_M
;

and we also limit the time-step so that the radius will not change

by more than 10 per cent,

dtR � 0:1
R

j _Rj :

Therefore the time-step is given by

dt � min�dtk; dte; dtN; dtml; dtR�: �112�

In some cases the choice of time-steps is purely for aesthetic

purposes, so the size could easily be increased with no loss of

accuracy if extra speed is required, such as for evolving large

stellar populations. For example, the MS can be safely done in one

time-step, but then, for an individual star, the hook feature would

not appear on a HRD plotted from the resulting output.

Using the SSE package, we can evolve 10 000 stars up to the

age of the Galaxy in approximately 100 s of cpu time on a Sun

SparcUltra10 workstation (containing a 300-MHz processor).

Thus a million stars can be evolved in roughly the time taken to

compute one detailed model track. This speed, coupled with the

accuracy of the formulae, makes the SSE package ideal for any

project that requires information derived from the evolution of a

large number of stars. However, the formulae do not render the

model grid of Pols et al. (1998) redundant as it contains a wealth

of information detailing the interior structure of each star,

information that the formulae simply cannot provide. In fact, the

two approaches complement one another.

The evolution formulae described in this paper have been

incorporated into a rapid binary evolution algorithm so that we can

conduct population synthesis involving single stars and binaries.

The SSE subroutines have also been added to an N-body code for

the simulation of cluster populations. In the future we plan to

make dov a free parameter as a variable amount of convective

overshooting may be preferable, especially in the mass range of

1.0 to 2.0M(. Formulae that describe surface element abundances

will also be added so that the rapid evolution code can be used for

nucleosynthesis calculations.

To obtain a copy of the SSE package described in this paper,

send a request to the authors, who will provide the fortran

subroutines by ftp.
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APPENDIX A

The Z-dependence of the coefficients an and bn is given here.

Unless otherwise stated,

an � a� bz� gz2 � hz3 � mz4;

and similarly for bn, where

z � log�Z=0:02�:

The variables

s � log�Z�

and

r � z� 1:0

are also used.
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a b g h m

a1 1.593890(13) 2.053038(13) 1.231226(13) 2.327785(12)
a2 2.706708(13) 1.483131(13) 5.772723(12) 7.411230(11)
a3 1.466143(12) 21.048442(12) 26.795374(11) 21.391127(11)
a4 4.141960(22) 4.564888(22) 2.958542(22) 5.571483(23)
a5 3.426349(21)

a6 1.949814(11) 1.758178(10) 26.008212(10) 24.470533(10)
a7 4.903830(10)
a8 5.212154(22) 3.166411(22) 22.750074(23) 22.271549(23)
a9 1.312179(10) 23.294936(21) 9.231860(22) 2.610989(22)
a10 8.073972(21)

a 0
11 1.031538(10) 22.434480(21) 7.732821(10) 6.460705(10) 1.374484(10)

a 0
12 1.043715(10) 21.577474(10) 25.168234(10) 25.596506(10) 21.299394(10)

a13 7.859573(12) 28.542048(10) 22.642511(11) 29.585707(10)
a14 3.858911(13) 2.459681(13) 27.630093(11) 23.486057(12) 24.861703(11)
a15 2.888720(12) 2.952979(12) 1.850341(12) 3.797254(11)
a16 7.196580(10) 5.613746(21) 3.805871(21) 8.398728(22)

a11 � a 0
11a14

a12 � a 0
12a14

a b g h m

a 0
18 2.187715(21) 22.154437(10) 23.768678(10) 21.975518(10) 23.021475(21)

a 0
19 1.466440(10) 1.839725(10) 6.442199(10) 4.023635(10) 6.957529(21)

a20 2.652091(11) 8.178458(11) 1.156058(12) 7.633811(11) 1.950698(11)
a21 1.472103(10) 22.947609(10) 23.312828(10) 29.945065(21)
a22 3.071048(10) 25.679941(10) 29.745523(10) 23.594543(10)
a23 2.617890(10) 1.019135(10) 23.292551(22) 27.445123(22)
a24 1.075567(22) 1.773287(22) 9.610479(23) 1.732469(23)
a25 1.476246(10) 1.899331(10) 1.195010(10) 3.035051(21)
a26 5.502535(10) 26.601663(22) 9.968707(22) 3.599801(22)

log a17 � max�0:0972 0:1072�s1 3�; max{0:097; min�0:1461; 0:14611 0:1237�s1 2��}�
a18 � a 0

18a20
a19 � a 0

19a20

a b g h

a27 9.511033(11) 6.819618(11) 21.045625(11) 21.474939(11)
a28 3.113458(11) 1.012033(11) 24.650511(10) 22.463185(10)
a 0

29 1.413057(10) 4.578814(21) 26.850581(22) 25.588658(22)
a30 3.910862(11) 5.196646(11) 2.264970(11) 2.873680(10)
a31 4.597479(10) 22.855179(21) 2.709724(21)
a32 6.682518(10) 2.827718(21) 27.294429(22)

a29 � a 0a32
29

a b g h

a34 1.910302(21) 1.158624(21) 3.348990(22) 2.599706(23)
a35 3.931056(21) 7.277637(22) 21.366593(21) 24.508946(22)
a36 3.267776(21) 1.204424(21) 9.988332(22) 2.455361(22)
a37 5.990212(21) 5.570264(22) 6.207626(22) 1.777283(22)

a33 � min�1:4; 1:51351 0:3769z�
a33 � max�0:63552 0:4192z; max�1:25; a33��

a b g h

a38 7.330122(21) 5.192827(21) 2.316416(21) 8.346941(23)
a39 1.172768(10) 21.209262(21) 21.193023(21) 22.859837(22)
a40 3.982622(21) 22.296279(21) 22.262539(21) 25.219837(22)
a41 3.571038(10) 22.223625(22) 22.611794(22) 26.359648(23)
a42 1.9848(10) 1.1386(10) 3.5640(21)
a43 6.300(22) 4.810(22) 9.840(23)
a44 1.200(10) 2.450(10)

a42 � min�1:25; max�1:1; a42��
a44 � min�1:3; max�0:45; a44��
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a b g h

a45 2.321400(21) 1.828075(23) 22.232007(22) 23.378734(23)
a46 1.163659(22) 3.427682(23) 1.421393(23) 23.710666(23)
a47 1.048020(22) 21.231921(22) 21.686860(22) 24.234354(23)
a48 1.555590(10) 23.223927(21) 25.197429(21) 21.066441(21)
a49 9.7700(22) 22.3100(21) 27.5300(22)
a50 2.4000(21) 1.8000(21) 5.9500(21)
a51 3.3000(21) 1.3200(21) 2.1800(21)
a52 1.1064(10) 4.1500(21) 1.8000(21)
a53 1.1900(10) 3.7700(21) 1.7600(21)

a49 � max�a49; 0:145�
a50 � min�a50; 0:3061 0:053z�
a51 � min�a51; 0:36251 0:062z�
a52 � max�a52; 0:9�
a52 � min�a52; 1:0� for Z . 0:01
a53 � max�a53; 1:0�
a53 � min�a53; 1:1� for Z . 0:01

a b g h m

a54 3.855707(21) 26.104166(21) 5.676742(10) 1.060894(11) 5.284014(10)
a55 3.579064(21) 26.442936(21) 5.494644(10) 1.054952(11) 5.280991(10)
a56 9.587587(21) 8.777464(21) 2.017321(21)

a57 � min�1:4; 1:51351 0:3769z�
a57 � max�0:63552 0:4192z; max�1:25; a57��

a b g h m

a58 4.907546(21) 21.683928(21) 23.108742(21) 27.202918(22)
a59 4.537070(10) 24.465455(10) 21.612690(10) 21.623246(10)
a60 1.796220(10) 2.814020(21) 1.423325(10) 3.421036(21)
a61 2.256216(10) 3.773400(21) 1.537867(10) 4.396373(21)
a62 8.4300(22) 24.7500(22) 23.5200(22)
a63 7.3600(22) 7.4900(22) 4.4260(22)
a64 1.3600(21) 3.5200(22)
a65 1.564231(23) 1.653042(23) 24.439786(23) 24.951011(23) 21.216530(23)
a66 1.4770(10) 2.9600(21)
a67 5.210157(10) 24.143695(10) 22.120870(10)
a68 1.1160(10) 1.6600(21)

a62 � max�0:065; a62�
a63 � min�0:055; a63� for Z , 0:004
a64 � max�0:091; min�0:121; a64��
a66 � max�a66; min�1:6;20:3082 1:046z��
a66 � max�0:8; min�0:82 2:0z; a66��
a68 � max�0:9; min�a68; 1:0��
a64 � B � aR�M � a66� for a68 . a66
a68 � min�a68; a66�

a b g h

a69 1.071489(10) 21.164852(21) 28.623831(22) 21.582349(22)
a70 7.108492(21) 7.935927(21) 3.926983(21) 3.622146(22)
a71 3.478514(10) 22.585474(22) 21.512955(22) 22.833691(23)
a72 9.132108(21) 21.653695(21) 3.636784(22)
a73 3.969331(23) 4.539076(23) 1.720906(23) 1.897857(24)
a74 1.600(10) 7.640(21) 3.322(21)

a72 � max�a72; 0:95� for Z . 0:01
a74 � max�1:4; min�a74; 1:6��
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a b g h

a75 8.109(21) 26.282(21)
a76 1.192334(22) 1.083057(22) 1.230969(10) 1.551656(10)
a77 21.668868(21) 5.818123(21) 21.105027(11) 21.668070(11)
a78 7.615495(21) 1.068243(21) 22.011333(21) 29.371415(22)
a79 9.409838(10) 1.522928(10)
a80 22.7110(21) 25.7560(21) 28.3800(22)
a81 2.4930(10) 1.1475(10)

a75 � max�1:0; min�a75; 1:27��
a75 � max�a75; 0:63552 0:4192z�
a76 � max�a76;20:10155642 0:2161264z2 0:05182516z2�
a77 � max�20:38687762 0:5457078z2 0:1463472z2; min�0:0; a77��
a78 � max�0:0; min�a78; 7:4541 9:046z��
a79 � min�a79; max�2:0;213:32 18:6z��
a80 � max�0:0585542; a80�
a81 � min�1:5; max�0:4; a81��

a b g h m

b1 3.9700(21) 2.8826(21) 5.2930(21)
b4 9.960283(21) 8.164393(21) 2.383830(10) 2.223436(10) 8.638115(21)
b5 2.561062(21) 7.072646(22) 25.444596(22) 25.798167(22) 21.349129(22)
b6 1.157338(10) 1.467883(10) 4.299661(10) 3.130500(10) 6.992080(21)
b7 4.022765(21) 3.050010(21) 9.962137(21) 7.914079(21) 1.728098(21)

b1 � min�0:54; b1�
b2 � 1024:673920:9394s

b2 � min�max�b2;20:041671 55:67Z�; 0:47712 9329:21Z2:94�
b 0
3 � max�20:1451;22:27942 1:5175s2 0:254s2�

b3 � 10b
0
3

b3 � max�b3; 0:73071 14265:1Z3:395� for Z . 0:004
b4 � b4 1 0:1231572z 5

b6 � b6 1 0:01640687z 5

a b g

b9 2.751631(13) 3.557098(12)
b10 23.820831(22) 5.872664(22)
b 0

11 1.071738(12) 28.970339(11) 23.949739(11)
b12 7.348793(12) 21.531020(12) 23.793700(11)
b 0

13 9.219293(10) 22.005865(10) 25.561309(21)

b11 � b 02
11

b13 � b 02
13

a b g

b 0
14 2.917412(10) 1.575290(10) 5.751814(21)

b15 3.629118(10) 29.112722(21) 1.042291(10)
b 0

16 4.916389(10) 2.862149(10) 7.844850(21)

b14 � b 0b15
14

b16 � b 0b15
16

b17 � 1:0
b17 � 1:02 0:3880523�z1 1:0�2:862149 for z . 21:0

a b g h

b18 5.496045(11) 21.289968(11) 6.385758(10)
b19 1.832694(10) 25.766608(22) 5.696128(22)
b20 1.211104(12)

b21 2.214088(12) 2.187113(12) 1.170177(11) 22.635340(11)
b22 2.063983(10) 7.363827(21) 2.654323(21) 26.140719(22)
b23 2.003160(10) 9.388871(21) 9.656450(21) 2.362266(21)

b 0
24 1.609901(11) 7.391573(10) 2.277010(11) 8.334227(10)

b25 1.747500(21) 6.271202(22) 22.324229(22) 21.844559(22)
b 0

27 2.752869(10) 2.729201(22) 4.996927(21) 2.496551(21)
b28 3.518506(10) 1.112440(10) 24.556216(21) 22.179426(21)

b24 � b 0b28
24

b26 � 5:02 0:09138012Z20:3671407

b27 � b 02b28
27
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This paper has been typeset from a TEX/LATEX file prepared by the author.

a b g h

b29 1.626062(12) 21.168838(11) 25.498343(10)
b30 3.336833(21) 21.458043(21) 22.011751(22)
b 0

31 7.425137(11) 1.790236(11) 3.033910(11) 1.018259(11)
b32 9.268325(12) 29.739859(11) 27.702152(11) 23.158268(11)
b33 2.474401(10) 3.892972(21)
b 0

34 1.127018(11) 1.622158(10) 21.443664(10) 29.474699(21)

b31 � b 0b33
31

b34 � b 0b33
34

a b g h

b 0
36 1.445216(21) 26.180219(22) 3.093878(22) 1.567090(22)

b 0
37 1.304129(10) 1.395919(21) 4.142455(23) 29.732503(23)

b 0
38 5.114149(21) 21.160850(22)

b36 � b 04
36

b37 � 4:0b 0
37

b38 � b 04
38

a b g h

b39 1.314955(12) 2.009258(11) 25.143082(21) 21.379140(10)
b40 1.823973(11) 23.074559(10) 24.307878(10)
b 0

41 2.327037(10) 2.403445(10) 1.208407(10) 2.087263(21)
b42 1.997378(10) 28.126205(21)
b43 1.079113(21) 1.762409(22) 1.096601(22) 3.058818(23)
b 0

44 2.327409(10) 6.901582(21) 22.158431(21) 21.084117(21)

b40 � max�b40; 1:0�
b41 � b 0b42

41

b44 � b 05
44

a b g h

b46 2.214315(10) 21.975747(10)
b48 5.072525(10) 1.146189(11) 6.961724(10) 1.316965(10)
b49 5.139740(10)

b45 � 1:02 �2:47162r2 5:401682r2 1 3:247361r3�
b45 � 1:0 for r # 0:0

b46 � 21:0b46 log
MHeF

MFGB

� �

b47 � 1:127733r1 0:2344416r2 2 0:3793726r3

a b g h m

b 0
51 1.125124(10) 1.306486(10) 3.622359(10) 2.601976(10) 3.031270(21)

b52 3.349489(21) 4.531269(23) 1.131793(21) 2.300156(21) 7.632745(22)
b 0

53 1.467794(10) 2.798142(10) 9.455580(10) 8.963904(10) 3.339719(10)
b54 4.658512(21) 2.597451(21) 9.048179(21) 7.394505(21) 1.607092(21)
b55 1.0422(10) 1.3156(21) 4.5000(22)
b 0

56 1.110866(10) 9.623856(21) 2.735487(10) 2.445602(10) 8.826352(21)
b 0

57 21.584333(21) 21.728865(21) 24.461431(21) 23.925259(21) 21.276203(21)

b51 � b 0
51 2 0:1343798z5

b53 � b 0
53 1 0:4426929z5

b55 � min�0:991642 743:123Z2:83; b55�
b56 � b 0

56 1 0:1140142z5

b57 � b 0
57 2 0:01308728z5

Note that x(n) for some number x represents x � 10n.
A blank entry in a table implies a zero value.
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