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ABSTRACT

The development of Radar Polarimetry and Radar
Interferometry is advancing rapidly. Whereas with
radar polarimetry the textural fine-structure, target
orientation, symmetries and material constituents can
be recovered with considerable improvement above that
of standard 'amplitude-only' radar; with radar
interferometry the spatial (in depth) structure can be
explored. In ‘ Polarimetric Interferometric Synthetic
Aperture Radar (POL-IN-SAR) Imaging’ it is possible
to recover such co-registered textural and spatial
information from POL-IN-SAR digital image data sets
simultaneously, including the extraction of Digital
Elevation Maps (DEM) from either Polarimetric
(scattering matrix) or Interferometric (dual antenna)
SAR systems. Simultaneous Polarimetric-plus-
Interferometric SAR offers the additional benefit of
obtaining co-registered textural-plus-spatial three-
dimensional POL-IN-DEM information, which when
applied to Repeat-Pass Image-Overlay Interferometry
provides differential background validation, stress
assessment and environmental stress-change
information with high accuracies. Then, by either
designing ¢ Multiple Dual-Polarization Antenna POL-
IN-SAR’ systems or by applying advanced POL-IN-
SAR image compression techniques will result in
‘POL-arimetric TOMO-graphic’ (Multi-
Interferometric) SAR’ or ‘POL-TOMO-SAR Imaging’.
This is of direct relevance to wide-area, dynamic battle-
space surveillance and local-to-global environmental
background validation, stress assessment and stress-
change monitoring of the terrestrial and planetary
covers.

1. INTRODUCTION

Both Optical [026, 047, 088, 068, 134] and Radar [007-016]
Imaging have matured considerably, and the benefits of
using one imaging modality over the other are
discussed frequently [047, 116, 102, 103, 073, 035]. For
example, ‘Hyper-spectral Optical (FIR-VIS-FUYV)
Radiometric Imaging’ [044, 047,072, 080] is considered to
become the exclusive remote sensing system of the 21st
century, and thought to be superior to ‘Ultra-wide-band
Microwave (HF-UHF-SHF-EHF) SAR Imaging’ [020,
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021,073]. Even, it was argued that UWB-SAR Imaging is
superfluous and could be scrapped altogether because
of the exorbitant costs in developing this abstract rather
‘invisible’ Remote Sensing technology? [012]. In either
case, the inherent electromagnetic vector wave
interaction processes are subjected to Maxwell’s
equations; and constrained by the carrier frequency and
bandwidth, the amplitude, phase and polarization [070,
001, 165, 028, 074, 110, 112, 107, 144, 011, 101, 054]; the
dispersive and polarization-dependent material
constituents of the propagation medium as well as of
the illuminated scattering surface, its geometry and
structure, and its voluminous vegetative over-burden as
well as its composite geological under-burden.
However, in order to identify parameters describing
voluminous scattering scenarios beyond the skin depth
of the vegetation canopy, the entire amenable air/space-
borne frequency regime from MF (100 KHz) to FUV
(10 PHz) needs to be implemented [041, 026, 057-067] in
remote sensing. This implies that we require both radar
and optical imaging together with full scattering matrix
acquisition capabilities - in order to recover fully the
intricate scattering mechanisms [028-033, 052, 057-066, 145-
149, 045, 133] and bio-mass assessment tasks - as will be
discussed in the following; and maybe assessed by
visiting the web-sites collected in chapter 15,
specifically [w-01 to w-12].

2. EWB-HYPER-SPECTRAL
(SPECTROMETRIC) OPTICAL IMAGING
(URLS: u-01 to u-10)

Thus, whereas ‘hyper-spectral optical radiometry’ will
provide high resolution characterization of scattering
surface parameters - subject to the skin depth - with
appreciable penetration only for a rather limited number
of transparent media [002, 025, 057-066, 080, 116, 153]; it
lacks manageable coherent phase information and
strongly depends on the heterogeneous and dispersive
propagation medium such as non-transparent
meteorological scatter, smoke and other atmospheric
pollution. So, it [044, 047, 068, 067, 116, 130-132, 153]
provides very useful direct ‘hyper-spectral’ indicators
of the vegetative cover and of surface chemical
pollutants. However, ‘hyper-spectrally extended
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optical (FIR-VIS-FUV) sensing’ does not increase the
received radiance, but it just divides the overall
observation band in order to collect specific
wavelength-dependent spectroscopic information in
each of the “hyperfine sub-bands” [047, 057-066, 067,
133]. Whereas, hitherto in most of the hyper-spectral
optical remote sensing techniques polarization effects
were in general totally neglected, it needs to be strongly
emphasized that ‘Hyper-spectral Optical Radiometry’,
and especially ‘LIDAR/LADAR’, is subjected to the
‘4rago Sphere’ axioms of light scattering [154, 155, 016,
102, 103] in dependence of relative sensor versus
scatterer versus source (sun) position. This seems to
have been either forgotten or been disregarded
altogether [012, 013, 016, 134]. This ‘Arago Sphere’
dependence [154, 155] also applies throughout the optical
(FUV-VIS-FIR) down to the millimeter wavelength
region within which atmospheric particle scattering is
effective [052,073]. Complete polarimetric sensor and
transceiver technology must be incorporated into future
designs [026, 047]. Therefore, any non-polarimetric
‘Scalar (amplitude only) Hyper-spectral Radiometric
Imagery’ must be interpreted with great caution; and,
some of the highly overrated attributes for the exclusive
use of EO hyper-spectral information are at their best
rather misplaced [016, 057-066] unless full polarimetric
sensor design is being rapidly developed also for the
extended optical spectral regime. This implies the
instantaneous acquisition - not the consecutive time-
consuming ellipsometric measurements - of the Stokes
parameters for the instantaneous reconstruction of the
‘Stokes Reflection’ or the ‘Kennaugh Back-scattering
matrix [011, 150, 166, 140, 157].

And, “all-weather, day and night” sensing and
imaging is a capability which only ‘radar’ can provide
[134, 101, 070, 054] and not “Hyper-spectral FIR-VIS-
FUV Radiometric Imagery” [067, 068, 080]; hence, full
attention is paid in the following to ‘EWB (HF-VHF-
UHF-SHF-EHF) POL-IN/TOMO-SAR’ sensing and
imaging [016, 033, 108, 114, 151, 117-120].

3. HF - EHF RADAR AND SAR POLARIMETRY
AND INTERFEROMETRY (URLs: v-01 to v-18)

With increasing wavelength from the EHF (sub-
millimeter) via UHF (¢cm/m) to HF (deca-meter)
regimes, the radar imaging process becomes less
dependent on the meteorological propagation
parameters but more so on parametric target
orientation/fine structure/resonance effects [054, 070, 169,
001, 074, 028, 089, 090, 107, 146]; and it possesses increasing
polarization dependent penetration capabilities into
semi-transparent volumetric under-burden with
associated decreasing image resolution [052, 057-066].
With the recent advances made in modern radar
electronics device and systems technology, not only the
design of ‘Scalar (amplitude only) Multi-Polarization
Synthetic Aperture Radar (SAR)’ 151,169, 055] but of
more sophisticated coherent and fully polarimetric

(scattering matrix) POL-SAR [016] as well as fully
coherent Interferometric (dual coherent sensor pair) IN-
SAR (or IF-SAR) systems have become feasible [004,
093,094]. In fact, it is safe to state that ‘Non-
polarimetric and Non-interferometric SAR Imaging’
is on its way out, and that the IN-SAR Systems are
also becoming fully polarimetric POL-IN-SAR
Imaging Systems|107-109, 114, 115].

3.1 Classical Amplitude-Only Radar and SAR, and
“Scalar” IN-SAR Imaging

In classical radar, i.e. “amplitude-only radar” [134],
mainly the energy of the returned pulse is utilized; and
in basic imaging radar, it is the Doppler phase
information in addition. Interferometric SAR (IN-
SAR) exploits fully the phase and Doppler information
[113, 004], but not the polarization information of the
electromagnetic vector wave - scatterer interrogation
process [007, 008, 031, 016, 099]; and especially the
coherent phase difference of at least two complex-
valued SAR images acquired from two different flight-
pass/orbit positions and/or at different times are utilized
[114, 115]. Provided that coherent two-dimensional
complex-valued phase-unwrapping can fully be
achieved [004, 094], the IN-SAR information, derived
from such interferometric complex image data sets [071,
107, 114], can be used to measure several geophysical
quantities such as topography, tectonic surface
deformation, bulging and subsidence (earthquakes,
volcanoes, geo-thermal fields and artesian irrigation,
ice fields), glacial flows, snow avalanches and mud
flows, ocean currents, vegetative growth patterns and
environmental stress assessment, etc. [052]. Thus, the
amplitude and coherent phase information that
electromagnetic wave interrogation can recover, is fully
utilized in IN-SAR imaging, but not its intrinsic
polarization information [004, 093, 094].

3.2 Optical Ellipsometry versus Radar Polarimetry
and Polarimetric (Scattering Matrix) SAR Imaging
Polarimetry deals with the full vector nature of
polarized (vector) electromagnetic waves throughout
the frequency spectrum from Ultra-Low-Frequencies
(ULF) to above the Far-Ultra-Violet (FUV) [012, 013,
016]. Where there are abrupt, or gradual changes in the
index of refraction (or permittivity, magnetic
permeability, and conductivity), the polarization state
of a narrow-band (single-frequency) wave is
transformed, and the electromagnetic “vector wave” is
re-polarized. When the wave passes through a medium
of changing index of refraction, or when it strikes an
object such as a radar target and/or a scattering surface
and it is reflected; then, characteristic information about
the reflectivity, shape and orientation of the reflecting
body can be obtained by implementing ‘polarization
control ' [070, 054, 016, 150, 101]. The complex direction
of the electric field vector, in general describing an
ellipse, in a plane transverse to propagation, plays an
essential role in the interaction of electromagnetic
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‘vector’ waves with material bodies, and the
propagation medium [001, 169, 074-079, 036-039].
Whereas, this polarization transformation behavior,
expressed in terms of the “polarization ellipse” is
named “Ellipsometry” in Optical Sensing and Imaging
[026, 028, 047, 091, 136], it is denoted as “Polarimetry” in
Radar, Lidar/Ladar and SAR Sensing and Imaging [070,
054, 001, 101-103] - using the ancient Greek meaning of
“measuring orientation and object shape”. Thus,
ellipsometry and polarimetry are concerned with the
control of the coherent polarization properties of the
optical and radio waves, respectively [070, 136]. With
the advent of optical and radar polarization phase
control devices, ellipsometry advanced rapidly during
the Forties (Mueller and Land [136]) with the
associated development of mathematical ellipsometry,
i.e., the introduction of ‘the 2 x 2 coherent Jones
forward scattering (propagation) and the associated 4
x 4 average power density Mueller (Stokes)
propagation matrices’; and polarimetry developed
independently in the late Forties with the introduction
of dual polarized antenna technology (Sinclair,
Kennaugh, et al. [070, 101, 016]), and the sub-sequent
formulation of ‘the 2 x 2 coherent Sinclair radar back-
scattering matrix and the associated 4 x 4 Kennaugh
radar back-scattering power density matrix’, as
summarized in detail in Boerner et. al. [016]. Since
then, ellipsometry and polarimertry have enjoyed steep
advances; and, a mathematically coherent polarization
matrix formalism is in the process of being introduced -
- of which the lexicographic covariance matrix
presentations [029, 030, 089-093, 105, 106] play an equally
important role in ellipsometry as well as polarimetry
[026, 047,088). Based on Kennaugh’s original
pioneering work [070], Huynen [054] developed a
“Phenomenological Approach to Radar Polarimetry”,
which had a subtle impact on the steady advancement
of polarimetry [117-120] as well as ellipsometry by
developing the “orthogonal (group theoretic) target
scattering matrix decomposition” [054,029, 070,078, 112]
and characteristic optimal polarization state concepts,
which lead to the formulation of the ‘Huynen
Polarization Fork’ in ‘Radar Polarimetry’ [054, 157,001,
036-039, 161-163]. Here, we emphasize that for treating
the general bistatic (asymmetric) scattering matrix
cases, a more general formulation of fundamental
Ellipsometry and Polarimetry in terms of a spinoral
group-theoretic approach is strictly required [005, 096,
036-039].

In ellipsometry, the Jones and Mueller matrix
decompositions rely on a product decomposition of
relevant optical measurement/transformation quantities
such as di-attenuation, retardance, depolarization, bi-
refringence, etc., [026, 032, 047, 123] measured in a ‘chain
matrix arrangement, i.e., multiplicatively placing one
optical decomposition device after the other’. In
polarimetry, the Sinclair, the Kennaugh, as well as the
covariance matrix decompositions [011, 028-032, 144, 089,
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111] are based on a group-theoretic series expansion in
terms of the principal orthogonal radar calibration
targets such as the sphere or flat plate, the linear dipole
and/or circular helical scatterers, the dihedral and tri-
hedral corner reflectors - - observed in a linearly
superimposed aggregate measurement arrangement
[074-079]; leading to various canonical target feature
mapping [076-079, 029, 030, 082-086] and sorting as well as
scatter-characteristic decomposition theories [110, 112,
089-092]. In addition, polarization-dependent speckle
and noise reduction play an important role in both
ellipsometry and polarimetry [076-079, 082-086, 138-143].
The implementation of all of these novel methods will
fail unless one is given fully calibrated scattering
matrix information which applies to each element of the
Jones and Sinclair matrices; and the realistic
requirements on the calibration of the polarimetric radar
data takes at the order of about 0.1 dB in amplitude and
1 in phase must be accepted [138-143, 016].

Very remarkable improvements above classical “non-
polarimetric” radar target detection, recognition and
discrimination, and identification were made especially
with the introduction of the covariance matrix
optimization procedures of Tragl [144], Novak et al.
[105, 106] Liineburg [089, 083], Cloude [028], and of
Cloude and Pottier [029, 030, 110-112]. Special attention
must be placed on the Cloude-Pottier Polarimetric
Entropy (H) [030, 111], Anisotropy (A), Feature-Angle
(o) parametric decomposition because it allows for
unsupervised target feature interpretation [111, 086].
Using the various fully polarimetric (scattering matrix)
target feature synthesis [110-112, 143, 074-079, 055, 167, 161],
polarization contrast optimization, [011, 101-103, 163] and
polarimetric entropy/anisotropy classifiers, very
considerable progress was made in interpreting and
analyzing POL-SAR image features. This includes the
reconstruction of ‘Digital Elevation Maps (DEMs)’
directly from ‘POL-SAR Covariance-Matrix Image
Data Takes’ [124-127, 112, 016] next to the familiar
method of DEM reconstruction from IN-SAR Image
data takes. In all of these techniques well calibrated
scattering matrix data takes are becoming an essential
pre-requisite without which little can be achieved. In
most cases the ‘multi-look SAR Image data take
formatting’ suffices also for completely polarized SAR
image algorithm implementation. However, in the sub-
aperture polarimetric studies, in ‘ Polarimetric SAR
Image Data Take Calibration’, and in ‘POL-IN-SAR
Imaging’, the ‘SLC (Single Look Complex) SAR Image
Data Take Formatting’ becomes an absolute ‘MUST’
[016]. Of course, for SLC-formatted Image data, in
particular, speckle filtering must be applied always.
Implementation of the ‘Lee Filter’ for speckle reduction
in polarimetric SAR image reconstruction, and of the
Wishart distribution for improving image feature
characterization have further contributed toward
enhancing the interpretation and display of high quality
SAR Imagery [081-086, 087], again requiring fully
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calibrated SLC formaited POL-IN-SAR Image data
takes. This distinguishes the limited use of a ‘Multi-
Amplitude-Polarization SAR’ from a ‘Fully

Polarimetric, Well-calibrated Scattering-Matrix-SAR’.

Using poorly or badly calibrated POL/IN-SAR
Image data takes is also not sufficient and strongly
detracts from recognizing the truly superior
performance of ‘fully polarimetric POL-IN-SAR
Imaging [138-143, 107-109].

The fully polarimetric (scattering matrix) POL-SAR
and its UWB-POL-SAR Imaging applications [003, 017-
019, 043, 045, 053, 075-079, 082-086, 087, 095, 098, 100, 135, 128,
168, 170-172] are described in the proceedings of various
recent ‘Polarimetric Radar Workshops’ [009-012, 026,
102, 103, 117-120, w-01 to w-12]; and, especially in Chapter
5 on "Polarimetry in Radar Remote Sensing: Basic
and Applied Concepts" [016] of Volume 2 , ‘Principles
and Applications of Imaging Radar’ [052] in the Third
Edition of the Manual of Remote Sensing [116].

3.3 SAR Polarimetry Versus SAR Interferometry
Whereas with ‘Radar Polarimetry’ textural fine-
structure, target orientation, symmetries, and material
constituents can be recovered with considerable
improvement above that of standard ‘Amplitude-Only
Radar’ [134, 150, 151]; with standard (scalar) ‘Radar
Interferometry’ the spatial (range/in depth) structure
may be resolved, from which ‘Digital Elevation Maps’
can be reconstructed [004, 093, 094]. However, neither
method is complete in that POL-SAR by itself does not
provide spatial information; and IN-SAR or military
(non-polarimetric) air-borne imaging radar cannot
provide textural fine-structure information [057-066, 145-
149]. Although, IN-SAR enables the recovery of
'Digital Elevation Maps (DEMs)’; without polarimetry
[094], it will be difficult to discern - in all cases - the
source orientation/location of the scattering
mechanisms [031, 107, 109, 124-127]. Without the full
implementation of POL-IN/TOMO-SAR imagery [114,
115], it will be difficult or close to impossible to discern
the tree-top canopy from that of the thicket under-
burden or of the layered soil and sub-surface under-
burden [145-149]. Many more additional studies of the
kind executed by Treuhaft, Cloude, et al., as reported in
[145-149], are required to establish fully the capabilities
of one method as compared to the other, and to their
integral POL-IN-SAR implementations. So, speaking
strictly in terms of Maxwell’s equations, ‘amplitude-
only SAR’ and “Scalar IN-SAR’ can only apply to the
either the TM (magnetic field parallel to surface) or TE
(electric field parallel to surface) incidence on a
perfectly conducting two-dimensional surface, by also
neglecting the inherent TE-TM hybrid shadowing and
front-porching (fore-shortening or overlaying) effects
[016]. In order to satisfy the correct implementation of
Maxwell’s equations fully {007-010], it is necessary - in
all cases - to incorporate fully coherent polarimetric
(scattering matrix) POL-SAR [o16, 070, 117, 120] and
especially ‘ Polarimetric-Interferometric Synthetic

Aperture Radar (POL-IN-SAR) " imaging methods [031,
107-109, 114, 115, 099].

4. POLARIMETRIC SAR INTERFEROMETRY

In POL-IN-SAR imaging, it is then possible to
associate textural/orientational finestructure directly
and simultaneously with spatial information; and to
extract the interrelation via the application of novel
‘Polarimetric-Interferometric Phase Optimization’
procedures [031,107-109]. This novel optimization
procedure requires the acquisition of highly accurate,
well calibrated, fully polarimetric (scattering matrix),
SLC-formatted POL-IN-SAR image data sets. In
addition, several different complementing DEM
extraction methods can be developed which make
possible the precise determination of the source-
location of the pertinent scattering centers. Thus, in
addition to the standard interferometric “scalar” DEM
[004, 093, 094] - derived from IN-SAR, it is possible to
generate two DEMs [124-127] directly from the 3x3
covariance matrices of the two separate fully
polarimetric sensor data sets as well as various
additional ones from the 6x6 POL-IN-SAR correlation
matrix optimization procedure [018, 019] for the
reciprocal 3x3 symmetric scattering matrix cases. Even
better so, from multi-band POL-IN-SAR imaging
systems, one can extract directly and simultaneously
‘Polarimetric + Interferometric SAR Information’ by
implementing the Cloude-Papathanassiou ‘POL-IN-
SAR Optimization’ procedure developed for a fully
polarimetric twin-SAR-interferometer [031, 056, 071, 109].
This provides the additional benefit of obtaining ‘co-
registered textural/orientational + spatial three-
dimensional POL-IN-DEM information’. Applying
this POL-IN-SAR mode of operation to ‘REPEAT-
PASS Image Overlay Interferometry’ makes possible
the ‘Differential Environmental Background
Validation, Stress Assessment and Stress-Change
Monitoring’ with hitherto unknown accuracy and
repeatability [031, 016, 109, 113, 114]. The full verification
and testing of these highly promising imaging
technologies requires first of all that well-calibrated,
fully polarimetric EWB-POL-IN/TOMO-SAR Imaging
data takes become available; and its development has
only just begun [109, 114, 115]. There exists a wide range
of hitherto unforeseen surveillance and environmental
monitoring applications, which require extensive
additional analytical investigations next to the
acquisition of the well calibrated and ground-truth
validated EWB-POL-D-IN-SAR Image data takes [107,
122, 018, 019].

For example, more in-depth analyses are required to
assess whether non-polarimetric IN-SAR alone could in
some, but may not in all cases, separate ground
scattering mechanisms from those of volumetric
scattering layers [145-149, 057-066] by utilizing
simultaneously the ‘canopy-gap scaling method’, first
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introduced in Optical Hyper-spectral Mapping [002, 025,
080, 104, 130-132). Indeed, ‘POL-SAR Interferometry’
opened a huge treasure chest of novel modeling
methods for an unforeseen large number of hitherto un-
approachable problems of environmental stress-change
measurement and interpretation. [028-033, 110-112, 107,
108, 114, 115]

5. EWB (HYPER-BAND) POL-IN-SAR IMAGING

Depending on the dispersive material and structural
propetties of the scattering surface, the vegetative over-
burden and/or geological under-burden, a careful choice
of the appropriate frequency bands - matched to each
specific environmental scenario - must be made [016,
057-066). This is strictly required in order to recover -
next to material bio-mass parameters - canopy versus
sub-canopy versus ground-surface versus sub-surface
DEM + STRUCTURE information. With increasing
complexity of the environmental multi-layered
scattering scenario, the implementation of increasing
numbers of scenario-matched frequency bands - in the
limit - contiguous EWB (HYPER-BAND and ULTRA-
WIDE-BAND) POL-IN-SAR becomes all the more
necessary and essential [021]. For example, in order to
assess - as accurately as ever possible - the bio-mass of
specific types of forested regions - - such as boreal
tundra shrubbery, versus boreal taiga, versus
temperate-zone rain-forests, versus sparsely vegetated
savannahs, versus dense sub-tropical to equatorial
Jjungle-forests - - requires in each case [057-066] a
different choice of multiple-to-wide-band POL-IN-SAR
imaging platforms, not necessarily operated at one and
the same band and altitude, for optimal performance
within the HF/VHF {(10)100 MHz} to EHF {100 GHz}
regime [016]. For most semi-dense to dense forests of
the temperate zones, the EWB VHF/UHF/SHF (600 -
5000 MHz) regime may be optimal [054-066].

Whereas, for a dense virgin equatorial rain forest with
huge trees of highly conductive hard-wood, the UWB
(100 - 1000 MHz) regime is required, etc. [066]. Thus,
the current choice of frequency bands for bio-mass
determination is indeed very poor and insufficient in
that the L/S/C/X-Bands all lie well above the upper
saturation curve; and, the nominal P-Band (420 MHz)
well below the lower saturation curve of the bio-mass
hysteresis - - for most types of forested regions within
the temperate climatic zones [150, 151]. Similarly, in
order to recover the three-dimensional sub-surface
image information of dry to wet soils including its soil
moisture properties, the optimal EWB HF/VHF-regime
[152] lies below the nominal P-Band (420 MHz) to well
below 10 MHz. Thus, adaptive EWB-POL-IN-SAR
modes of operation become a stringent requirement for
three-dimensional environmental background
validation, stress assessment, and stress-change
monitoring. In addition, next to the UHF/SHF (300
MHz - 30 GHz) regime, the EHF (30 - 300 GHz)
spectral regime becomes important for the detection of
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man-made structures - - such as telephone and electric
power-lines - - embedded in forests, shrubbery,
thickets, grasslands; and - in addition - for vegetative
canopy plus rugged terrain as well as for atmospheric
scatter analyses [104, 105].

Therefore, every possible effort must be made to
expand and to extend but not to give up the existing,
highly insufficient availability of free scientific ‘remote
sensing spectral windows’, which must absolutely be
spread with ‘deca-logarithmic periodicity’ throughout
the pertinent frequency bands of about 1 MHz to 300
GHz.

6. ALLOCATION OF ADDITIONAL SAR
IMAGING FREQUENCY BANDS

In order to secure the required frequency windows
within the ELF (HF/VHF) to (UHF-SHF) EHF regime
for environmental remote sensing, we must place our
requests - at once - to the ‘World Radio Frequency
Conference (WRC'03, Sept./Oct., Geneva,
Switzerland)’ via the pertinent National Research
Councils (NRC), Committees on Radio Frequencies
(CoRF) in a unified, concerted effort [034]. The
pertinent frequency bands between HF to EHF are
already over-crowded; but with the rapidly accelerating
conversion to digital communications and worldwide
digital video transfer, etc.; we had better wake up. The
”Remote Sensing Community” must relentlessly request
that the rights to operate in periodically spaced “deca-
logarithmic (octave) windows”, extending from below
the HF to beyond the EHF bands, be granted.

This indeed represents a very serious, major problem
for all of military surveillance and environmental
stress-change monitoring [008-013, 057-066, 128]. It is
indeed one of the most pressing issues that could reach
catastrophic proportions within the near future unless
we act immediately. The commercial ‘Mobile Radio
Communications, Telephone and Video Transmission’
industry has already initiated a fierce battle for
acquiring various frequency bands hitherto allocated
exclusively for military radar, and for radar sensing and
imaging [016]. It is ‘densely over-packing’ the
“commercially appropriated frequency windows” plus
‘encroaching into neighboring scientific bands’.

We must follow the successful example of the
‘International Radio Astronomic Research Community’
[034], who had to address a similar problem a few
decades ago - - in the early Fifties - - in order to ensure
that far-distant Radio-Stars could be detected without
interference by radio communications clutter - - for
then a still relatively “sparsely occupied’ VHF, UHF,
SHF frequency region. Now, with the imminent threat
of the ever accelerating “Digital Communications
Frequency Band Cluttering , Mobile Communications
Pollution, and ‘www’ Propagation Space
Contamination”, we - - ‘the International Remote
Sensing Research Community’ - - are called to duty;
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and, we must take the helm - once held by the ‘Radio
Astronomic Research Community’ - in forcing a
visionary solution on behalf of future generations to
ensure that environmental background validation, stress
assessment and stress-change monitoring of the
terrestrial and planetary covers - - under the relentless
onslaught of an un-abating population explosion and
with it the quest for higher standards of living and
quality of life - - can be carried out also in the future.

7. POLARIMETRIC SAR TOMOGRAPHY

Because the ‘twin-antenna-interferometer POL-D-IN-
SAR optimization method ‘[041,031, 107, 108, 145-149] at
narrow band operation allows formally the delineation
only of three spatially - in vertical extent - separated
scattering surfaces, characterized by polarimetrically
unique scattering mechanisms [107, 108, 145-149], it is of
high priority to accelerate the development of not only
twin-antenna-interferometers but of multi-antenna-
interferometers - all being completely coherent POL-
IN-SAR IMAGING systems. Furthermore, by stacking
the Polarimeters on top of one another (cross-range)
and in series next to each other (along-track and cross-
track) results in a Polarimetric Tomographic SAR
Imaging system with Moving Target Imaging (MTIm),
so that a ‘POL-TOMO-SAR’ imaging system can be
synthesized [097, 019, 114, 115] which might also be used
for ocean current environmental monitoring and
assessment. In addition, using extra-wide-band multiple
Repeat-Pass Over-flight operations, at precisely stacked
differential altitudes and/or vertically displaced flight-
lines, will result - - in the limit - - into a Polarimetric
Holographic SAR imaging system, a ‘POL-HOLO-
SAR’ imaging system. This will allow the separation
not only of layered but also of isolated closed (*“point™)
scattering structures, occluded under heterogeneous
clutter canopies; and embedded in inhomogeneous
layered under-burden. This represents a good example
on what we cannot achieve merely by implementing
‘EO-Hyper-spectral Imagery [145-149].

The extension from ‘narrow-band to wide-band POL-
IN-SAR to POL-TOMO-SAR to POL-HOLO-SAR
imaging systems is feasible, and will then enable the
realization of true ‘Wide-band Vector-Electromagnetic
Inverse Scattering’ [009-011, 016, 033, 128, 135, 087], i.e.,
the full recovery of three-dimensional bodies embedded
in heterogeneous, multi-layered scattering scenarios
[087,135, 128). This implies that fully polarimetric
multi-baseline interferometry and tomography may
obviate the need for introducing constraining
assumptions on the models used for estimating
polarimetric scattering parameters [145-149]. Full
polarimetric multi-baseline, multi-sensor interferometry
(POL-IN/TOMO-SAR) - which can now be synthesized
by air-borne multi-altitudinal polarimetric
interferometry [114, 115] - will result in improved
accuracy. It will allow the treatment of more

complicated realistic inverse scattering models than the
fundamental “stripped-down” analytic models, which
must currently be implemented for non-polarimetric
and also for most of POL-SAR twin-interferometric
sensing and imaging [016]. The development of these
modes of high resolution, fine-structure stress-change
imaging and 3-D DEM mapping techniques are of
direct and immediate relevance to wide-area, dynamic
battle-space surveillance as well as to local-to-global
environmental background measurement and
validation, stress assessment, and stress-change
monitoring of the terrestrial covers [012, 013]. The price
to be paid is Aigh in that the POL-IN-SAR systems
must satisfy stringent performance standards (40 dB
channel isolation, high side-lobe suppression of about
35 dB) with calibration sensitivity of 0.1 dB in
amplitude and 1* in polarimetric phase. They must
become extra-wide-band, covering the HF to EHF
frequency regime, and they must be fully coherent

‘ Polarimetric (coherent scattering matrix) SAR Multi-
Interferometers’, which in the limit approach the
tomo/holo-graphic imaging capabilities [004, 009, 010,
031, 107, 108, 114, 115]. Yet, in retrospect, the exorbitant
costs are justifiable because of the immense gains
made. Similar to the early negative predictions of the
MRI technology, the cost per Imaging Platform will
steadily decrease - opening up never anticipated
additional fields of applications.

8. LARGE DENSITY DATA BASES AND
ULTRA-HIGH SPEED DIGITAL PROCESSING

Since the advent of digital SAR technology in the late
seventies, digital image processing, storage and high-
density memory device technology has advanced
phenomenally; and there exists every reason to be
confident that this accelerated advancement will
continue [129, 132]. Only two decades ago, the
realization of fully polarimetric radar and especially
POL-SAR imaging was set in doubt; mainly because of
the exorbitantly large digital memory data space
required, the insufficient high speed digital processing
capacities available in the late seventies and early
eighties. However, we have advanced dramatically
with the introduction of optical memory devices and
high-speed parallel processing technology, now
reaching at - 10 Tera-Bytes - another temporary
threshold level that cannot easily be overcome without
the advent of entirely new device technologies. Such a
timely turn of events has occurred in that ‘Acousto-
Optic Analog Processor (AOAP)’ technology has
experienced a similar dramatic advancement like digital
‘UWB-POL-IN-SAR Repeat-Pass’ technology. This
makes possible an entirely novel approach to both
‘Wide-band Range-Doppler Imaging (WRDI)' plus
‘UWB-POL-IN-SAR Image Acquisition, High-Speed
Processing’ with the potential for considerable image
data compression. This new hybrid acousto-optic
analog-digital conversion, electro-optic digital data
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compression, and exceedingly light-weight, electronic-
processor size-reduction technology should strongly
contribute to overcoming the problem. Real-time air-
borne as well as space-borne implementation of Repeat-
Pass UWB-POL-D-IN-SAR environmental stress
change monitoring can then be realized within the
foreseeable future [046] by accommodating the entire
set of extra-wide-band sensors with processors on one
and the same air-borne or space-borne platform. . A
processor currently under development, the ESSEX
High Performance Optoelectronic (HPO) Processor
(also known as ImSyn), demonstrates this potential.
The ImSyn HPOP captures the best advantages of
digital and optical processing technologies to provide
data handling and processing performance which, when
completed, promises to eclipse digital-only
performance for imaging applications while also having
significant size, weight, and power advantages [173].

The advantage of returning to acousto-optical device
technology is that the first function to be performed in
the “vector signal acquisition and processing chain of
events” in radar as well as in SAR - - amplitude-only or
polarimetric - - is to correlate the returned signal with
the transmitted signal which in the case of fully
polarimetric SAR are complex and vector in nature. In

“ Modern Optics’ [022, 023, 048] this has become a
straightforward functional task to be performed with the
aid of a ‘Fourier Lens’; whereas in the ‘Digital World’
[129, 132] - - as is currently still being applied without
exception - - one needs to A/D-convert the return signal
first. This approach is sufficient as long as one is
dealing with a LFM waveform, but there are severe
problems with the conversion of all data points that
need to be processed especially in the case of fully
polarimetric-interferometric UWB SAR systems. For
digital processing this equates to memory, storage and
speed of the devices. Optical processing takes
advantage of analog processing in that the signal is
converted from electrical to a laser medium (vertical
cavity matrix laser) , and it is then processed ‘almost
instantaneously’ through acousto-optic Bragg cell and
Fourier Optical (FO) processors which at the current
state of the art already can handle huge image data
blocks as encountered in UWB-POL-IN-SAR image
acquisition, processing and storage. We are thus
dealing with a ‘ Hybrid FO-DIG Processor’ which
performs the correlation functional process in the
optical domain; the signal/image analysis,
identification, classification - - that follows next - - in
the digital domain; and the SAR or POL-IN-SAR
processing again in another set of hybrid acousto-
optical/digital processor chains. There would be two
major ‘ Hybrid Fourier-Optical-Digital Processor
Chains’ required - - one for the signal
acquisition/detection/identification and a second set for
the SAR processing. Although, not yet fully realized,
this novel hybrid vector-signal/tensor-image processing
concept would, in the end, reduce the exorbitant
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processing workload by taking advantage of the true
merits of both acousto-optical and digital processing
modalities, as for example discussed in [046, 173]. Thus,
the symbiotic fusion of Modern Optics with advanced
Digital Image Processing will pave the path to follow
[047, 129), bringing a realistic solution for the full
implementation of UWB-POL-D-IN/TOMO-SAR
Repeat-Pass imaging in sight.

9. PRESERVATION OF DIGITAL SAR IMAGE
INFORMATION (URLS: t-01 to t-03)

One of the major shortcomings of the “Digital
Communications Age” is that it does not provide the
means of long-term information storage and
preservation, in spite of its enormous benefits for
immediate and global direct information exchanges at
all levels [024]. Of course, the instantaneous
dissemination and interactive flow of huge data files
presents indeed an enormous benefit to trade,
commerce, transportation, global banking and also to
accelerating the advancement of science and technology
in all fields of human endeavor. However, we are
accumulating meta (mega of mega) data banks at a
mind-boggling pace, we find no time nor resources for
screening the amassing information, but even worse
than that, we do not seem to possess the high-density
storage and information media guaranteeing long-
lasting information preservation. For example, the
transition from the ‘HARD-COPY BOOK LIBRARY’ to
the ‘FLOATING DIGITAL LIBRARY - - THE TERRA
DIGITALIS’ [021] cannot yet and must not yet be
realized in that we are indeed still missing two major
essential components for realizing this dream. For one
important basic requirement may not be able to be
fulfilled for a long time to come, namely that of
developing and manufacturing permanent high-density
digital information storage devices. The magnetic tape
drives and discs possess a rather limited life-span of
only a few years, and need to be replaced at exorbitant
costs periodically every five, and definitely by at least
every ten years. Its current replacement by EO-CD
ceramic/glass compact discs are also not fulfilling the
once sought solution of replacing the magnetic disk
drives, in that those not only seem to be, but truly are
vulnerable to cosmic ray and neutrino bombardment;
against which there does not exist a foreseeable cure.
This places additional constraints on the SAR Image
data refreshment tasks, which have not yet been fully
recognized. Furthermore, the extremely rapid pace of
digital computer operating systems advancements make
the newest operating systems obsolete as soon as those
appear on the market, requiring perpetual time-
consuming updating, too often every year, at exorbitant
costs, with older versions becoming unsupported in
some cases. At the same time, the computer
programming languages are being upgraded even at a
higher pace so that within only a short period of time of
a few years major blocks of valuable information may
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be lost for ever unless con-current information
screening and transfer to the latest computer software
package has been maintained. But, who possesses the
time and resources to do so? Transfer of most
invaluable information onto acid-free paper storage has
become exceedingly difficult and expensive in case
laser-writing techniques are to be implemented. In
retrospect, we must ask ourselves whether we might be
creating an insurmountable ‘Digital Tower of Babel’,
and at the end very little is gained in extracting useful
knowledge, and a lot of most valuable information may
be lost for posterity in perpetuity [024].

All of these digital information storage and preservation
problems are compounded in the case of ‘EWB-POL-
D-IN-SAR and EO-Hyper-spectral Remote Sensing’,
because of the rapidly accumulating Exa-Byte, DLTs,
and other current mass storage media, once thought to
be the answer for years to come. Well, the years have
come and we need to develop most rapidly highly
improved super-high-density information preservation
and not only storage media as well as supra-high-speed
digital image processing operating-systems which are
independent of the past, current and future computer
operating and software systems. The ongoing
development from UNLX to JAVA must be accelerated
with JAVA still required to becoming much more
universal and much, much faster. Furthermore, the
electronic-chip manufacturing industry must adopt a
much more universal far-reaching and visionary
approach of accelerating the development of long-
lasting digital information storage media so that we
may be able to preserve vital ‘EWB-POL-D-IN-SAR
and EQ-Hyper-spectral Information’ on the ‘Local and
Global Terra Digitalis Meta (mega of mega)
Information Bases’ in perpetuity for posterity. Thus,
before we really have become aware of the severity of
the serious calamity so created, we have created a
historical void - ‘the Digital Tower of Babel’ - of most
valuable knowledge preservation, which commenced -
during the Eighties - with the advent of the digital age,
and valuable information may be lost irretrievably for
ever.

10. JOINT RF & OPTICAL REPEAT-PASS SAR
OPERATIONS

Furthermore, whereas most ‘Hyper-spectral Optical
Radiometers ' and “Microwave Multi-band
Radioaltimeters” operate in a down-look Nadir mode,
and the ‘UWB-POL-IN/TOMO-SAR Imaging Sensors’
in left/right-side-looking operation, inducing shadowing
and ‘front-porching (fore-shortening or overlay)’, the
simultaneous implementation and operation of three
imaging platforms - - flying side-by-side, and being
fully equipped with Microwave Multi-band
(polarimetric) Radioaltimeters and Hyper-spectral
Optical plus UWB-POL-IN/TOMO-SAR systems - - is
strictly required. For example, for the environmental
stress-change monitoring within the Baikal Lake Basin,

Siberia [069, 017019, 042, 156] or of the multitude of
pertinent Pacific Rim (PACRIM) regions, monitored by
the SIR-C/X-SAR Mission-2 as well as the PACRIM-
AIRSAR-1/2 measurement campaigns [017, 018], such
simultaneous triple platform imaging modes of
operation may be ideal. By implementing Differential
GPS, the three platforms must be flown side-by-side
with perfectly overlapping foot prints, and by executing
contiguously spaced, parallel repeat-pass flight
operations so that the complete wide-band microwave
radioaltimeters plus hyper-spectral optical down-look
image information can properly be overlaid on top of
the strip images produced by the two left/right side-
looking UWB-POL-IN/TOMO-SAR platforms. In
addition, it is most desirable and necessary for testing
newly to be developed ‘EWB-POL-D (RP) -IN-SAR
mage Processing Algorithms’ to execute with highest
possible precision, ‘Square-Loop - parallel (0 ),
orthogonal (90 ), anti-parallel (180 ), and cross-
orthogonal (270 ) Flight-Line Repeat-Pass Operations’
over carefully selected, most diverse geo-environmental
calibration test and ground-truth validation sites. The
execution of such demanding flight operations has - in
principle - been realized, is no longer a distant dream,
and can be implemented now and immediately thanks
to the accelerated advancement of Differential High
Precision GPS electronic real-time navigation [099, 097,
122, 114, 115]. In addition, due to the rapidly developing
“Terra Digitalis” - - which is to preserve detailed
environmental mapping information even of the most
distant, hidden, corners of our terrestrial and also
planetary covers for posterity - - we should be able to
collect a long-lasting complete geo-environmental data
base which can be updated continuously.

11. DESIGN OF MISSION-ORIENTED MULTI-
SENSOR IMAGING PLATFORMS

However, in order to realize the implementation of such
highly demanding multi-sensor technologies , it will at
the same time be necessary to develop a strategy for the
design and manufacture of air-borne sensor platforms
which are mission-oriented specifically for the joint
‘Extended Radio-Frequency EWB-POL-D-IN/TOMO-
SAR’ plus ‘Extended Optical Hyper-Spectral FIR-VIS-
FUV'’ Repeat-Pass modes of operation. Also,
considering that there exist currently efforts to perfect
Forward-Looking POL-IN-SAR technology, it is
necessary to design platforms with minimal structural
interference obstructions, so that the entire frequency
regime from at least VHF, if not even HF, up to EHF
plus the extended Optical (FIR-VIS-FUV) Regime can
be accommodated. Considering that there was no truly
mission-oriented new ‘Multi-purpose IMAGING
AIRCRAFT PLATFORM’ designed since that of the P-3
Orion sub-marine hunting platforms of the late Fifties,
it is a timely and highly justifiable request to our
forward looking, visionary Planning Offices of DOD,
NASA (HQT.-JPL), DOC (USGS+NOAA), NATO,
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ESA, NASDA, etc., to place top priority on this long
overdue demand of having access to the ‘ideal imaging
platforms’ required to execute both the military wide
area surveillance as well as the environmental
background validation, stress assessment and stress-
change monitoring missions - world-wide [016-019].
Just to make use of existing air-borne platforms of
opportunity; e.g., the B-707 for the non-polarimetric
AWACS, the carrier-based E-2C Hawkeye for the non-
polarimetric APS-145, the P-3 Orion for the NAWC
UWB-POL-IN-SAR [152], the DC-8 for the AIR/TOP-
SAR, etc., is no longer sufficient [099, 128, 134, 135];
because EWB/UWB fully polarimetric POL-SAR
Multi-SAR-Interferometers cannot tolerate any multi-
path scattering obstructions unavoidably encountered
with all of these “polarimetrically clumsy”, venerated
platform designs. Platforms that could utilize such
improvements are among others, also future JSTARS
class platforms, plus Predator (UAYV), and Global
Hawk (UAV) types of aircraft, etc.. Thus, instead of
expending any more dead-end efforts on the elimination
of platform interference effects of existing imaging
platforms for the purpose of developing hyper-fine
image processing algorithms in the high-resolution
imaging and target detection programs; why not
directly and without any further ado aggressively attack
the planning and design of the “Ultimate POL-
IN/TOMO-SAR Platforms”, varying in size according to
application and mission performance, required already
now, and immediately! Specifically, we require to
develop the ideal set of low/medium/high-altitude
versus small/medium/large-sized imaging platforms.

12. NEED FOR SUB-AQUATIC MULTI-SENSOR
(SAS) STRESS-CHANGE MONITORING

In concluding this overview, here we need to pay
attention also to another related, most serious
environmental stress change monitoring problem
dealing with the detection of the rapid destruction of
our sub-aquatic flora and fauna in our rivers, ponds,
lakes, coastal surf-zones and the shallow to deep ocean
environments - - which has assumed absolutely
catastrophic almost irreversible conditions. A solution
may be in sight, and can be achieved by incorporating
multi-sensor high resolution magneto-metric, various
forward/side/bottom-scanning sonars, EO sub-aquatic
polarimetric high-resolution imaging, ‘chemical trace
element sniffing’ [040, 081] as well as Synthetic Aperture
Sonar (SAS) multi-sensor technology [051] into the
‘Sub-aquatic Environmental Stress Change Monitoring’
operations - - over land including lakes, rivers and
ponds; aquifers below land; and in the deep ocean water
environment [040, 049-051]. Because of the close
relations among image digital and analytical processing
techniques for UWB SAR [049,050] and Wide-band SAS,
Polarimetric Magneto-Metric Wide-Area Imaging and
POL-SAR Imaging, more attention needs to be paid by
the “UWB-POL-D-IN/TOMO-SAR” [050] research
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community toward the accelerated co-development of
UWB-IN-SAS technology. In addition, it will become
necessary to combine directly various - if not all - all of
these multi-sensor technologies for the increasingly
more complex problems of environmental stress-change
monitoring in the littoral coastal surf zones, of the
continental wetlands [016, 069], and of the receding
glacial ice fields.

13. CONCLUSIONS

A succinct summary on the current state of
development of Polarimetric and Interferometric
Synthetic Aperture Radar theory, technology and
applications is provided with a view towards the
expected rapid developments of fully integrated
“Polarimetric SAR Interferometry” and its extension to
*POL-IN/TOMO-SAR Repeat-Pass’ environmental
stress-change monitoring. The underlying basic
systems analysis of these POL-IN-SAR to POL-TOM-
SAR algorithms need to be complemented with recent
POL-IN-SAR to POL-TOM-SAR images obtained with
air/space-borne NASA-JPL, NASDA, NAWC-AD and
DLR imaging platforms; and those of high resolution
SAS multi-sensor monitoring platforms using the
NCSC-MUDSS systems. With the choice of associated
examples provided in the pertinent URLs, we will - at
the same time - be able to assess the current ‘State-of-
the-Art in UWB-POL-IN-SAR and UWB-SAS
Technology’; and to identify the current associated
inadequate sensor platform availability, the introduction
of hybrid acousto-optical/digital processing technology
as well as the threat imposed by densely packed
worldwide digital communications and video image
data transfer. Finally, we will conclude that in order to
utilize fully the sensing and imaging capabilities in
optical as well as radar vector-electromagnetic
surveillance and monitoring, in addition to all the
timely and urgent requests made in Sections 6, 8 and
10, 11, 12 ; more emphasis must be placed on the
accelerated development of ‘International
Collaboratories’, such as the ‘ONR-EUR-NICOP-
WIPSS Collaboratory’, for the advancement of
pertinent Vector-Electromagnetic Modeling (Inverse
Scattering), Image Processing and Interpretation tools
for UWB-POL-IN-SAR Image Data Sets, the
associated algorithm hardening, and implementation in
practice. In summary, we require to develop the
“Collaboratorium Terra Digitalis” as proposed in [021],
and for Baikal Lake, Siberia, the “Collaboratorium
Terra Digitalis Baikalum [021], respectively [1-01 to -03].

The ESA-CEOS-MRS’99 SAR-CAL/VAL Workshop [w-
11] provided another valuable modicum of close
international cooperation for the steady accelerated
advancement of EWB-POL-D-IN-SAR principals and
technology - - - and, at the current pace of development
there just cannot be enough of these highly productive
Workshops as well as Collaboratories - - like the
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“CEOS Collaboratory - - as summarized in the ‘Report
on Polarimetric & Interferometric Polarimetry of
Friday, 1999 October 25.
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