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Abstract. A theoretical model interpreting propagating distureoronal wave generated by the coronal mass ejection or a flare
bances of EUV emission intensity, recently observed in cororaid occupying a significant part of the solar disk. This wave has
loops, is constructed in terms of slow magnetoacoustic wavbsen called a coronal Moreton wave or EIT wave. This wave is
The model is one-dimensional and incorporates effects of n@repagating transversely to coronal structures, and is therefore
linearity, dissipation due to finite viscosity and thermal condumost likely a fast magnetoacoustic wave. The coronal Moreton
tion, and gravitational stratification of plasma in the loop. It hasaves can interact with various coronal structures, generating
been found that, for the observationally detected parametersetondary oscillations and waves in these structures, such as
the waves, the main factors influencing the wave evolution dimk oscillations of coronal loops, detected with TRACE (As-
dissipation and stratification. The upwardly propagating wavekwanden et al. 1999a, Nakariakov et al. 1999).
of observed periods (5—20 min) are found to decay significantly Analyzing temporal and spatial variation of the emission
in the vicinity of the loop apex, explaining the rarity of observantensity with SOHO/EIT, DeForest & Gurman (1998) have
tional detection of downwardly propagating waves. The modeétected and investigated propagating disturbances of intensity
provides a theoretical basis for development of MHD seismamission at the 17A line, in polar plumes. These waves are
ogy of the coronal loops. observed at the distance of 1.01-R2 out of the limb. The
quasi-periodic (with periods of about 10—15 min) groups of 3—-10
Key words: Magnetohydrodynamics (MHD) — waves — Sunperiods, with the roughly balanced duty cycle are propagating
activity — Sun: corona — Sun: oscillations — Sun: UV radiatiomutwardly with the speeds of about 75-150 km/s. The amplitude
of the intensity perturbations is about 2% of the background.
The ratio of the wave amplitude (in intensity) to the background
value grows with height (Ofman et al. 1999). These propagating
1. Introduction disturbances are probably connected with the periodic density

Magnetohydrodynamic waves are believed to play a very irﬂuctuations (periods: 9 min), detected in Corpnal h(_)les_ at
portant role in the solar corona. In particular, the waves haveto Py Ofman et al. (1997, 1998, 2000) using white light
been theoretically discussed for a couple of decades as a fH&nel of the SOHO/UVCS.

sible source for heating of the coronal plasma and acceleration 12King into account these observational findings, the prop-
of the solar wind. However, the main difficulty with testingagat'ng compressive disturbances have been confidently inter-

of the theories has been connected with the lack of obser%@ted as slow magnetoacoustic waves (Ofman, Nakariakov &

tional knowledge on the coronal wave activity. Before SOH8€f0rst 1999; ,

and TRACE, apart from the confident registration of oscillatioff§1derstood thatthe main factors affecting the wave evolution are
in prominences (Oliver 1999), main information on coronal Oga) gravitational stratification, leading to amplification of the rel-
cillations came from the radio band (e.g. see Aschwanden 1g§¥€ amplitude of the wave, (b) dissipation, extracting the wave
for a review) and there had only been a few observational fergy '_n thg high Wave. num.ber domain O_f the spectrum, gnd
ports of waves or oscillations of coronal structures: in coronf) nonlinearity, generating higher harmonics and responsible
green line (Koutchmy et al. 1983), EUV (e.g. Chapman et Jor the wave steepenmg and consequent enhance_d _d|SS|p§1tlon.
1972, Antonucci et al. 1984) and soft X-rays (Harrison 19g7{\N évolutionary equation of the Burgers type, combining action
Only with SOHO/EIT and TRACE imaging telescopes thaf all of these three mechanisms, has been derived. Also, full
direct detailed observation and investigation of coronal wavi¥¢iD nonlinear numerical simulations of the slow wave dynam-

have become possible. Indeed, for the last few years, sevi§have been undertaken. A perfect agreement of the numerical

types of coronal waves have been discovered. In particudd analytical results, and a good qualitative agreement of the

Thompson et al. (1999) have detected and investigated a gl gpretical studies and observational finding have been found.
Investigating dynamics of on-disc coronal active regions,
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SOHO/EIT, have detected compressive disturbances propagat- l g
ing along coronal loops. This discovery has been confirmed

by Berghmans et al. (1999) and De Moortel et al. (2000) with po( z)
TRACE. The results turned out to be very similar to the polar R

plume waves discussed above. Here, there is a brief summary y

of the observational findings:

1. Perturbations of the intensity (plasma density), propagating  f oot poi nt f oot poi nt
upwardly along long coronal loops have been detected at the
EIT 195A (Berghmans & Clette 1999) and TRACE 1&1 yd U
(Berghmans etal. 1999, De Moortel et al. 2000) bandpasses. .~
2. The projections of the propagation speeds are about 65" A}

165kms?! (Berghmans & Clette 1999), or 70 + | | z

16kms~! (De Moortel et al. 2000). . -
3. Amplitude is~ 2—4% in intensity & 1-2% in density) in (I) |

both 171A and 1954 bandpasses. a(z), p(2) R,

4. The periods are about 180-420s (De Moortel et al. 2000). _ _
The periods are well below the acoustic cut-off periO(lJ:'g' 1. The sketch of the model considered. A coronal loop is con-
which is about 87 min sidered as a straight magnetic field line with density and gravitational
5. The disturbances often show an exponential decay with fife eleration varying along the axis of the cylinder.
decay time of the order of 1.5—-2 min (Robbrecht et al. 1999).

According to reports of both these groups, in most cases, off attention to strictly longitudinal, with respect to the magnetic

upwardly (from loop footpoints to loop apexes) propagatinf Id, perturbations. Inthe follpvv_lng,we neglect 2D effects su_ch
sthe loop curvature and twisting, and transversal structuring.

disturbances have been detected. A multi-wavelength anal | ider the | iaht cvlind
of the propagating disturbances observed simultaneously Vﬁﬂn_sequent y, we can consider the loop as a straight cylinder,
EIT and TRACE has recently been undertaken by Robbrechf:tgf“clned between two plz_ines repr_eseptmg the footpoints. The
al. (2000) and has strengthen the previous findings. geon;]etryl of the problem IS S:OWB n F|g.h1. ller th :

The obvious similarity of compressive propagating distur- The p agmaB IS supposed to be muc smatler than unity.
bances observed in coronal loops and in polar plumes, sugg e consider purely parallelly propagat_lng waves, th?re are
that, as well as in the plume case, the perturbations of the Ioé\ﬂg magnetohy('drody'nﬁrr]lcx\llgxe mozjgs in tgelmodel, ity
areslow magnetoacoustic waves. To supportthisinterpretation,WaVeS pr_opagatln%wn the d splse 4, and slow magne- ith
itis necessary to develop a theoretical model for slow magnetéc’o\"’—lcouStIC waves degenerated o the pure acoustic waves, wit

coustic waves propagating along long loops, similar to the tH8€ Sound speed,. The Alfvén waves have to be excluded

ory of slow waves in plumes developed by Ofman, Nakariaké(?m the consideration, because (a) their speed in the corona

& Deforest (1999) and Ofman, Nakariakov & Sehgal 2000). Tlﬁ" much higher than the observed speed of the running distur-

difference in the geometry of the magnetic structures supporti Inces and (b)hthe waves are almost mconkw)pr_esmblf) and a(;eonot
the waves, (in the plume case, it is a radially divergent magnefic. © to create the emission intensity perturbations observed. On

flux tube, which cannot be used to model a loop), requires other hand, the slow magnetoacoustic waves are the pri-
creation of theory for slow waves in coronal loops. This thénary candidates for the Interpretation, b_ecapse th_ey do .pe.rturb
ory has to incorporate effects of the gravitational s;tratificatiof'h,eOI pLas_ma deg_sny,bcreatr:ng Lhe eméssmn Intensity varlgltlons
nonlinearity, dissipation and loop curvature. The theory hasqpd their speed is about the observed propagation speed.

explain the observed facts of the evolution of the compressive We consider a slow wave propagating strictly along the mag-

waves in loops. In particular, the theory has to provide us wi tic field, m_thez-dlrectmn. The plasma motions are described
W, the equations

an answer to why only the upwardly propagating waves are seen
in most cases. op 0
The paper is organized as follows: the model analyzed apgi + 92 (pV) =0, 1)
governing equations applied are discussed in Sect. 2, an evolu-
tionary equationis derived in Sect. 3and analyzedin Sect. 4. Th¢ 0V av dp 4 0%V
summary of results obtained and comparison of the theoreti€ad| o¢ + Vaz) T 92 Top= 352 (2)
results with observational findings is presented in Conclusions.
d d 0 oT

2.Th i i @ =0V <K32>’ ®

. The model and gover ning equations P

As a first step, we consider a semi-circular loop of constawherep is the plasma density; is the longitudinal speeg,is
cross-section with the curvature radiitg. The loop is filled the plasma pressuré,is plasma temperature,is the adiabatic
with a magnetized isothermal plasma. In our model, we restrintlex, x| is thermal conductivity along the magnetic fieid is
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the compressive viscosity coefficieptis the projection of the , o Val 4 0*V 13
gravitational acceleration on theaxis, 2 a7 oz + 31792 (13)
GMg Ry . 2\~ z _ Op 2[(}9 p>8p Op
= 1+ =~ sin — - 4) Na=-V_—+Ci||——— )57 +V
g Ré ( + R sin RL) Ccos R 4) 3 92 o o) Bt o
with G is the gravitational constank;, is the loop radius and o*rT
Rg and M, are solar radius and mass, respectively. In[Eqg. (3) +r- 1)“\\ﬁ' (14)

we neglect radiative losses and heating terms. Connectién of , . . . .
with p andp can be obtained from the ideal gas law Eq.[B3) provides us with the linear expression for perturbations
’ of the temperature:

T=2 ®)
Rp = (p - pOp) : (15)

whereR is the gas constant. Rpo Po

The magnetic field guides the waves, but is not explicitin Eq. (3) and consequent Eqs.(11) and (14), we took into ac-
presented in the governing equations. This is because we comunt that the background temperature assumed to be constant
sider strictly longitudinal waves only. The waves do not pertughd, therefore, the thermal conductivity(cc TO5/2) isindepen-
the field and their speed is independent of the field strengéfant of the coordinate. Additional terms, connected with the
Consequently, the magnetic field is absent from the governiggdification of«/| by perturbations of the temperature, are of

equations of our model. _higher orders as the thermal conductivity itself is assumed to be
The stationary densiy, and pressurgy are connected with small. Consequently, the modification of the thermal conduction
each other by relations by the temperature perturbations is negligible.
dpo ) Egs.[9)-(I1) can be combined into the wave equation
—. = —4po,
= PV 610 (A,
which follows from Eq.[(lL) and the state equation ot2  pg 022 po vpo Oz \ dz
po=(C2/) po. ) fpg% (V)
0

We restrict our attention to consideration of the isothermal loops 1 [ON, 9
with the stationary temperatufg = const, givingC; = const. =1 "2 (CZN1+ N3) — 9N1] : (16)
The density profile along the loop, following frofd (4)] (6) and po
@ is According to [8),

_ T NS dpo — 1 17
po(2) = po(0) exp ( 2 /0 g(z") dz > (8) P gro 17)

_ 79(0) Ry sin(z/Rp) whereH = C2?(~g)~' is the local density scale height, and

= po(0)exp | ——=3 : :

CZ 1+ (Rp/Ro)sin(z/Ry) )
d®po _po (1 1dg (18)
dz2  H\H gdz/’

3. The evolutionary equation for slow waves

. . Using expressions (117) arld (18), 16) can be re-written as
For the following analysis we assume that the effects of non-I gexp lon§ (17) arid {18), HQ.I(16) W

linearity and dissipation are both weak. Weakly nonlinear aritfV/ 5 0%V oV dg

weakly dissipative perturbations of the stationary state are dgrz ~ = 9,2 ' 979, + a4z
scribed by the equations 1 TON 9
op 0 — [62 — 5 (C3N1+ Ns) — gNl] : (19)
2t T3, (V) =N, 9 rol z
v 9 Wave equation[(119) describes two slow magnetoacoustic
0— + ap +gp=No, (10) waves propagating in opposite directions. If the nonlinear and
o = 0z dissipative terms on the right handside [0f](19) and the “inho-
dp ,0p  C%(y—1)dpg mogeneous”, two last terms on the left handside are all zero,
o —Ciq ——————V=N>Ns, (11)  the waves pro ting in th ite directi d led
ot s Dt ~ dz propagating e opposite directions are decouple

with each other. We restrict our attention to one of the waves,
wherep, p and V' are perturbations of pressure, density anfhich propagates in the positive direction:ofin the absence
velocity. Nonlinear and dissipative terms are gathered on tbethe nonlinearity, dissipation and inhomogeneity, the wave
right handsides of the equations, propagates with a constant amplitude and shape in the running
9 frame of reference. The inhomogeneity, dissipation and non-

Ny=-o V), (12) linearity affect the wave parameters leading to evolution of the
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wave. We assume that effects of inhomogeneity, dissipation and Taking that, according t@ (20/f andp, are functions of the
nonlinearity are weak. These assumptions are expressed by'#h@v” coordinateZ and integrating EqL{22) with respectgp

non-equalities, we obtain the evolutionary equation for the density perturbations
A A o ov 1 y+1._ 0V
<1, =x1 1 77 " 5o V-
R SO BESY Cope S o7 2H' T 2c, ot
al p L [dno | k(v —1)?%] 8V
1, and— <« 1 20) - —_ =0. 27
Coapor Shand, <b 20 —5 13 R | o 27)

where) is the wavelengthll = C2(vg)~! is the density scale Eq.[27) is Fhe modified Burgers equation, which t'al'<es into ac-

height andp is the density perturbation. The last inequality cafount nonlinearity, viscosity and thermal conductivity, stratifi-

also be represented &/C, < 1. Inequalities[[2D) are sup- ¢&tion and structuring of the plasma. _

posed to be fulfilled at any time and in any point of the domain !tiS convenient to use the normalized variabies- R 2,

considered. & =Rpl,H=RxH'V =CsV'andpy = po(0)p;. In the
The fourth term on the lefthand side BF{19) reaches a mdi@rmalized variables, Eq. (27) is re-written as

imal value near the footpoints = 0, 7Ry, and decreases to 91/’ 1, y+1_,0V 7 92V’

zero near the loop apex. We observe that the ratio of the fouijly, — 577 9 o8& 2pp 067 0, (28)

term to the third term is abow/ R;, and, according to the first

inequality from [20), the fourth term can be neglected with rgghere

spect to the third term. _ 1 4n | my(y —1)° (29)
Under assumption$ (P0), the wave evolution is slow (wit7l71_ p0(0)CsRe | 3 Ry ’

respect to the wave period), which allows us to apply the methgqhe normalized dissipation coefficient,

of slowly varying amplitude. We change the independent vari- B o,

ables H = H(0) [1+Rg bln(?/RL)] ’ (30)

E=2—Cyt, Z=ez, 1) cos(Z/Rz)

_ _ _whereH (0) = C?[yg(0)Rs]~!, and
wheree is a small parameter of order of the inhomogeneity,

dissipation and nonlinearity. Note, that the three factors of evg- = exp { Ry Si_H(Z/RL) _ } (31)
lution are not necessary to be of the same order, but each of H(0)1+ Ry sin(Z/Ryr)
them isat least of order ofe less than the first two terms on theandRL — Ri/Ro

lefthand side of EQ[{19) (the “wave” terms). Solutions of E - :
X . ) g[(28) allows us to determine behaviour of
In the running frame of referende{21), HTJ(19) is re-writtegyy, o physical values, using expressidng (26). The relative per-

as turbations of density, pressure and temperature show the same
92V 1 9 behaviour ag/, but with the different coefficients of propor-
0Z0¢  2HOE tionality.
P Vi »p \%4 T \%4
1 ONy 0 , — ==, — =75, and — = (y—-1)=. (32)
— ——— |Os—= + — (CZN; + N: M|, 22 Cs Cs T Cs
2C%po o€ + o€ (CZNy + N3) + gNy (22) po Po 0
with 4. Slow wave evolution
po OV2 In the case of linear waves and a dissipation-less medium, the
Ny = O, o’ (23)  third and fourth terms in Ed.(28) are neglected, and the equation

is easily integrated:

N, =42 @4 vz = V(o) exp | L SInZ/Ra) (33)
3 08 - *PI2H(0) 1+ Ry sin(2//Ry)
vV Cs(y — 1)k 82V The solution is shown as the solid curve in [Eig. 2. The amplitude
N3 =—Cs(y = DpoV 57 + ( il . (25) o i

grows until the wave reaches the loop apex and then decays. The
) ) amplitude is represented by a symmetric functionzéfwith
Perturbations of other physical values, expressed thrdigh respect to the apet’ = 7Ry, /2.

0 Cy(y—1) When the dissipation is not zero, but the wave is still linear,
p= EV, p=CspoV, T = TV’ (26)  a solution of Eq.[(28) can be found for a harmonic wat/ex

_ o _cos k&' (wherek is the wave number):
were used in the derivation of Eds.122)4(25). Note that only lin-

ear expressions were applied, because we restrict our attenfiop,,) _ v7(g) exp /Z ( | > dz| . (3a)
to quadratically nonlinear processes. 2H'(z)  2py(x) '

0§ YR 0€?




V.M. Nakariakov et al.: Slow magnetoacoustic waves in coronal loops 1155

oY
o o
e
N
o

- .

Normalized Amplitude
&

Normalized Amplitud

o ©
o o

‘m“‘;fﬁ—m.k,up;uu‘HHHHHHH ] O‘O:‘HHHH‘HHHH\HH\‘\HTT*H»H-HH‘4‘,HH

0 100 200 300 400 500 0 100 200 300 400 500
Distance along the loop (Mm) Distance along the loop (Mm)

Fig. 2. Evolution of amplitude of slow magnetoacoustic waves prog-ig. 4. Evolution of amplitude of slow magnetoacoustic waves with the
agating along a coronal loop of the radius 140 Mm. The amplitudeirstial amplitudeV'(0) = 0.02C; for three wave periods: 900 s (the
measured in units of the initial amplitudé(0) = 10~°C, and the solid curves), 600 s (the dotted curves) and 300 s (the dashed curves).
wave period is 600 s. The solid curve corresponds to the normaliZBue upper curve of each kind corresponds to the normalized dissipation
dissipation coefficientj = 1072, the dotted curve tg = 10~%, the coefficientij = 4 x 10~%, and the lower curve t§ = 1 x 1073, The
dashed curve t§ = 102 and the dash-dotted line fo= 10~2. Sim- amplitude of each wave is measured in units of the initial amplitude.
ilar behaviour is shown by relative perturbations of density, pressu®ther parameters are as in Figs. 2 ahd 3.

and temperature.

207

ficient 77 are shown in Fig.J2. Obviously, the dissipative waves
are not represented by symmetric curves along the loop. Waves,
] descending from the loop apex have smaller amplitude than as-
] cending waves.
] In general, when all terms of E@.{28) are significant, it is
] difficult to find out an analytical solution to the equation. How-
] ever, the equation can be easily solved numerically. Dependence
1 of nonlinear dissipative wave amplitudes on the distance along
the loop is shown in Fig]3. Nonlinear generation of higher har-
0 100 200 300 400 500 monic; transfers.the wave energy to'sm'aller scales, yvhich are,
according to subject to stronger dissipation. The nonlinear dis-
sipation increases with the growth of the amplitude. Waves of
Fig. 3. Evolution of amplitude of slow magnetoacoustic waves with thetronger amplitudes are more non-symmetric with respect to the
period 600 s, propagating along a coronal loop of the radius 140 Miaop apex.
The normalized dissipation coefficientifis= 3 x 10~*. The solid According to the theory presented above, the slow wave
curve corresponds to the initial amplitutig0) = 0.001Cs, the dotted  evolution is controlled by the wave parameters: the period and
curve toV(0) = 0.03C;, the dashed curve t&'(0) = 0.08Cs and  the relative amplitude, as well as by parameters of the loop:
the dash-dotted line to(0) = 0.12C;. The amplitude of each wave yhe radjus, the temperature (which prescribes the sound speed
is measured in units of the initial amplitudes. and local scale height) and the dissipation coefficient. For the
propagating disturbances observed in the coronal loops, some of
According to [30) and(31), the initial stage of the wavéhe parameters are determined: the wave periods are 300-900 s,
evolution, in the vicinity of the footpoinZ’ = 0, is described the relative amplitudes are about 2%, the loop radii are about

o

©
&)

Normalized Amplitude
O

o
O

Distance along the loop (Mm)

by the expression 140 Mm, the temperature is 1.6 MK. The most unknown pa-
1 1 rameter is the dissipation coefficient, because both viscosity and
V'(Z") =~ V'(0) [1 + 3 <H’(0) - k:Qn) Z’} ) (35) thermal conduction have not been determined observationally

yet. According to Braginskii's theory, the first viscosity coeffi-
Consequently, the growth rate of the amplitude is determined &ignt for the plasma with the concentratior 102 cm—3 and the

the balance between the stratification and the dissipation. Waiarsperature 1.6 MK ig, = 0.352 g(cms) . This parameter

of shorter wavelengths (larger wavenumbers) grow slower themincides with the parameterused above, which, neglecting
long wavelength waves. Sufficiently short wavelength wavee thermal conductiony(= 1), givesi ~ 4 x 10—, Conse-
with & > 1/,/7H’(0), do not grow but decay with height. De-quently, this is the least possible valueipfin the presence of
pendences of the linear wave amplitude on the distance aldimjte thermal condition this value can be higher. Also, as it has
the loop for different values of the normalized dissipation codeen suggested by Nakariakov et al. (1999) for shear viscosity,
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the actual MHD wave dissipation can be dramatically enhancé@ observations: Fig.11 of Berghmans & Clette (1999) and
(by, e.g. micro-turbulence). Fig. 2 of De Moortel et al. (2000) do not show any signs of the
In Fig. 3, we show dependences of the slow wave amplirave distortion.
tudes upon the distance along the loop for three different wave De Moortel et al. (2000) have deduced that the observed
periods and two different dissipation coefficients. It is seen thatergy of the waves is insufficient for heating of coronal loops.
the theory developed easily explains the observational fact tHewever, the waves can be used as a tool for MHD coronal seis-
descending wave is not registered: its amplitude is much weakaslogy. Indeed, combining the observationally measured prop-
than the amplitude of the ascending wave. Also, the ascendartjes of the waves with theoretical models, we can determine
wave amplitude growth can be efficiently depressed by dissifziditional parameters of the coronal plasma (cf. Nakariakov at
tive processes. al. 1999). For example, accurate measurement of the wave am-
plitude as a function of the vertical coordinate and comparing
this with the theoretical dependences (seelFig. 4), we can esti-
mate the dissipative coefficiept connected with the coronal

We present here a theoretical model for slow magnetoacoMiscosity and thermal conduction (29).
tic waves propagating along magnetic field lines in coronal The application of the method of MHD coronal seismol-
loops. The model incorporates the effects of dissipation d@gy requires not only precise observations, but also elaborated
to finite viscosity and thermal conduction, gravitational stratiffneory. The theoretical model developed in this study is quite a
cation and nonlinearity. It is shown that, in the short wave lengiimple one and neglects several physical mechanisms which can
limit, the evolution of the waves is described by evolutionarye important for the slow wave evolution. One of these neglected
equation [(2F). This equation is of Burgers type, but with dhechanisms is reflection of the waves from the density gradi-
additional “geometrical” term and with coefficients dependeght. The WKB method used in the derivation of the evolutionary
of the evolutionary coordinate. Investigation of solutions of tHeguation does not allow us to take into account the reflection.
evolutionary equation shows that the propagating compressk@ the waves of longer wavelengths, comparable with the scale
disturbances observed in coronal loops can be confidently igight, can experience the reflection. In principle, this effect
terpreted as slow magnetoacoustic waves. This interpretatit#$ to be taken into account. However, we can probably neglect
meets all observationally detected properties of the propagatihts effect, according to results of Ofman et al. (1999), which
disturbances. show that the reflection of slow magnetoacoustic waves from
The theory confirms that there can be longitudinally proglensity gradients in polar plumes is insignificant and the WKB
agating slow magnetoacoustic waves, perturbing the densitya@proach works very well in the plume case. Anyway, the de-
the p|asma in the |00p_ The Speed of these waves is to be r@ﬂd StUdy of the effect should be done in the future. Another
istered below (taking into account possible projection effectgffect neglected is dispersion of slow magnetoacoustic modes of
the sound speed. The waves of observed periods (5-15 n@fgop, connected with the finite radius of the loop cross-section.
are strongly affected by the gravitational stratification and disor example, it is well known that fast modes of coronal loops
sipation. For the estimated dissipation of the waves (for typicafle strongly dispersive in the long wavelength limit, and their
coronal loop conditions, dimensionless coefficient of dissipahase and group speeds are strongly influenced by the disper-
tion (29) is greater than x 10~4), the typical scenario of the Sion (Roberts et al. 1983, 1984). In contrast, slow modes are
upwardly propagating wave evolution is the following: initiallyvery weakly dispersive and the dispersion becomes important
the relative amplitude of the waves grows with height and rea@hly in the nonlinear regime. The dispersion can slow down the
a maximum somewhere near the loop apex, and then quicRBnlinear generation of higher harmonics and is very important
dissipate. The fact that there are no downwardly propagati@gthe nonlinear stage of the wave evolution (see, e.g. Zhugzhda
waves confirms this interpretation. Indeed, the waves of ok.Nakariakov 1997a,b for slow body sausage modes of coronal
served periods dissipate in the upper parts of the loops anddps). But, as the nonlinearity is found to be insignificant for
the descending stage, their amplitude is below the noise leJ8 amplitude observed, the neglect of this effect also seems to
Waves of longer periods (10—15 min) are less affected by the d¥&: justified. Also, more developed models have to include the
sipation, while the short period waves§ min) are practically 9gradient of the temperature along the loop (see Aschwanden et
evanescent, because the dissipation length becomes complrd999b) and effects of variable loop cross-section.
ble with the wavelength. In addition, the effective dissipation of Thus, we believe that the model developed provides the cor-
the short period waves in the loops can be responsible for figgtqualitative interpretation of running intensity disturbances
absence of the short time periodicities in intensity variations dhcoronal loops as slow magnetoacoustic waves and can be used
an active region, reported by Ireland et al. (1999). as a basis for seismology of the coronal loops.

_According to our findings, .the nonli.ne_arity does not pIaX(:knOWIedgements. VMN is grateful to Bernie Roberts and Leon Of-
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