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Abstract. A theoretical model interpreting propagating distur-
bances of EUV emission intensity, recently observed in coronal
loops, is constructed in terms of slow magnetoacoustic waves.
The model is one-dimensional and incorporates effects of non-
linearity, dissipation due to finite viscosity and thermal conduc-
tion, and gravitational stratification of plasma in the loop. It has
been found that, for the observationally detected parameters of
the waves, the main factors influencing the wave evolution are
dissipation and stratification. The upwardly propagating waves
of observed periods (5–20 min) are found to decay significantly
in the vicinity of the loop apex, explaining the rarity of observa-
tional detection of downwardly propagating waves. The model
provides a theoretical basis for development of MHD seismol-
ogy of the coronal loops.
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1. Introduction

Magnetohydrodynamic waves are believed to play a very im-
portant role in the solar corona. In particular, the waves have
been theoretically discussed for a couple of decades as a pos-
sible source for heating of the coronal plasma and acceleration
of the solar wind. However, the main difficulty with testing
of the theories has been connected with the lack of observa-
tional knowledge on the coronal wave activity. Before SOHO
and TRACE, apart from the confident registration of oscillations
in prominences (Oliver 1999), main information on coronal os-
cillations came from the radio band (e.g. see Aschwanden 1987
for a review) and there had only been a few observational re-
ports of waves or oscillations of coronal structures: in coronal
green line (Koutchmy et al. 1983), EUV (e.g. Chapman et al.
1972, Antonucci et al. 1984) and soft X-rays (Harrison 1987).

Only with SOHO/EIT and TRACE imaging telescopes, the
direct detailed observation and investigation of coronal waves
have become possible. Indeed, for the last few years, several
types of coronal waves have been discovered. In particular,
Thompson et al. (1999) have detected and investigated a global
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coronal wave generated by the coronal mass ejection or a flare
and occupying a significant part of the solar disk. This wave has
been called a coronal Moreton wave or EIT wave. This wave is
propagating transversely to coronal structures, and is therefore
most likely a fast magnetoacoustic wave. The coronal Moreton
waves can interact with various coronal structures, generating
secondary oscillations and waves in these structures, such as
kink oscillations of coronal loops, detected with TRACE (As-
chwanden et al. 1999a, Nakariakov et al. 1999).

Analyzing temporal and spatial variation of the emission
intensity with SOHO/EIT, DeForest & Gurman (1998) have
detected and investigated propagating disturbances of intensity
emission at the 171̊A line, in polar plumes. These waves are
observed at the distance of 1.01–1.2R� out of the limb. The
quasi-periodic (with periods of about 10–15 min) groups of 3–10
periods, with the roughly balanced duty cycle are propagating
outwardly with the speeds of about 75–150 km/s. The amplitude
of the intensity perturbations is about 2% of the background.
The ratio of the wave amplitude (in intensity) to the background
value grows with height (Ofman et al. 1999). These propagating
disturbances are probably connected with the periodic density
fluctuations (periods≈ 9 min), detected in coronal holes at
1.9R� by Ofman et al. (1997, 1998, 2000) using white light
channel of the SOHO/UVCS.

Taking into account these observational findings, the prop-
agating compressive disturbances have been confidently inter-
preted as slow magnetoacoustic waves (Ofman, Nakariakov &
Deforst 1999; Ofman, Nakariakov & Sehgal 2000). It has been
understood that the main factors affecting the wave evolution are
(a) gravitational stratification, leading to amplification of the rel-
ative amplitude of the wave, (b) dissipation, extracting the wave
energy in the high wave number domain of the spectrum, and
(c) nonlinearity, generating higher harmonics and responsible
for the wave steepening and consequent enhanced dissipation.
An evolutionary equation of the Burgers type, combining action
of all of these three mechanisms, has been derived. Also, full
MHD nonlinear numerical simulations of the slow wave dynam-
ics have been undertaken. A perfect agreement of the numerical
and analytical results, and a good qualitative agreement of the
theoretical studies and observational finding have been found.

Investigating dynamics of on-disc coronal active regions,
Berghmans & Clette (1999) and Robbrecht et al. (1999), using
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SOHO/EIT, have detected compressive disturbances propagat-
ing along coronal loops. This discovery has been confirmed
by Berghmans et al. (1999) and De Moortel et al. (2000) with
TRACE. The results turned out to be very similar to the polar
plume waves discussed above. Here, there is a brief summary
of the observational findings:

1. Perturbations of the intensity (plasma density), propagating
upwardly along long coronal loops have been detected at the
EIT 195Å (Berghmans & Clette 1999) and TRACE 171Å
(Berghmans et al. 1999, De Moortel et al. 2000) bandpasses.

2. The projections of the propagation speeds are about 65–
165 km s−1 (Berghmans & Clette 1999), or> 70 ±

16 km s−1 (De Moortel et al. 2000).
3. Amplitude is≈ 2–4% in intensity (≈ 1–2% in density) in

both 171Å and 195Å bandpasses.
4. The periods are about 180–420 s (De Moortel et al. 2000).

The periods are well below the acoustic cut-off period,
which is about 87 min.

5. The disturbances often show an exponential decay with the
decay time of the order of 1.5–2 min (Robbrecht et al. 1999).

According to reports of both these groups, in most cases, only
upwardly (from loop footpoints to loop apexes) propagating
disturbances have been detected. A multi-wavelength analysis
of the propagating disturbances observed simultaneously with
EIT and TRACE has recently been undertaken by Robbrecht et
al. (2000) and has strengthen the previous findings.

The obvious similarity of compressive propagating distur-
bances observed in coronal loops and in polar plumes, suggests
that, as well as in the plume case, the perturbations of the loops
areslow magnetoacoustic waves. To support this interpretation,
it is necessary to develop a theoretical model for slow magnetoa-
coustic waves propagating along long loops, similar to the the-
ory of slow waves in plumes developed by Ofman, Nakariakov
& Deforest (1999) and Ofman, Nakariakov & Sehgal 2000). The
difference in the geometry of the magnetic structures supporting
the waves, (in the plume case, it is a radially divergent magnetic
flux tube, which cannot be used to model a loop), requires a
creation of theory for slow waves in coronal loops. This the-
ory has to incorporate effects of the gravitational stratification,
nonlinearity, dissipation and loop curvature. The theory has to
explain the observed facts of the evolution of the compressive
waves in loops. In particular, the theory has to provide us with
an answer to why only the upwardly propagating waves are seen
in most cases.

The paper is organized as follows: the model analyzed and
governing equations applied are discussed in Sect. 2, an evolu-
tionary equation is derived in Sect. 3 and analyzed in Sect. 4. The
summary of results obtained and comparison of the theoretical
results with observational findings is presented in Conclusions.

2. The model and governing equations

As a first step, we consider a semi-circular loop of constant
cross-section with the curvature radiusRL. The loop is filled
with a magnetized isothermal plasma. In our model, we restrict
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Fig. 1. The sketch of the model considered. A coronal loop is con-
sidered as a straight magnetic field line with density and gravitational
acceleration varying along the axis of the cylinder.

our attention to strictly longitudinal, with respect to the magnetic
field, perturbations. In the following, we neglect 2D effects such
as the loop curvature and twisting, and transversal structuring.
Consequently, we can consider the loop as a straight cylinder,
confined between two planes representing the footpoints. The
geometry of the problem is shown in Fig. 1.

The plasmaβ is supposed to be much smaller than unity.
As we consider purely parallelly propagating waves, there are
two magnetohydrodynamic wave modes in the model, Alfvén
waves propagating with the Alfvén speedCA, and slow magne-
toacoustic waves degenerated to the pure acoustic waves, with
the sound speedCs. The Alfvén waves have to be excluded
from the consideration, because (a) their speed in the corona
is much higher than the observed speed of the running distur-
bances and (b) the waves are almost incompressible and are not
able to create the emission intensity perturbations observed. On
the other hand, the slow magnetoacoustic waves are the pri-
mary candidates for the interpretation, because they do perturb
the plasma density, creating the emission intensity variations
and their speed is about the observed propagation speed.

We consider a slow wave propagating strictly along the mag-
netic field, in thez-direction. The plasma motions are described
by the equations
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ρ

(

∂V

∂t
+ V

∂V

∂z

)

+
∂p

∂z
+ gρ =

4

3
η0

∂2V

∂z2
, (2)

dp

dt
−

γp

ρ

dρ

dt
= (γ − 1)

∂

∂z

(

κ||
∂T

∂z

)

, (3)

whereρ is the plasma density,V is the longitudinal speed,p is
the plasma pressure,T is plasma temperature,γ is the adiabatic
index,κ|| is thermal conductivity along the magnetic field,η0 is



V.M. Nakariakov et al.: Slow magnetoacoustic waves in coronal loops 1153

the compressive viscosity coefficient,g is the projection of the
gravitational acceleration on thez-axis,

g =
GM�

R2
�

(

1 +
RL

R�
sin

z

RL

)−2

cos
z

RL
, (4)

with G is the gravitational constant,RL is the loop radius and
R� andM� are solar radius and mass, respectively. In Eq. (3)
we neglect radiative losses and heating terms. Connection ofT
with ρ andp can be obtained from the ideal gas law,

T =
p

Rρ
, (5)

whereR is the gas constant.
The magnetic field guides the waves, but is not explicitly

presented in the governing equations. This is because we con-
sider strictly longitudinal waves only. The waves do not perturb
the field and their speed is independent of the field strength.
Consequently, the magnetic field is absent from the governing
equations of our model.

The stationary densityρ0 and pressurep0 are connected with
each other by relations

dp0

dz
= −gρ0, (6)

which follows from Eq. (1) and the state equation

p0 =
(

C2

s /γ
)

ρ0. (7)

We restrict our attention to consideration of the isothermal loops
with the stationary temperatureT0 = const, givingCs = const.
The density profile along the loop, following from (4), (6) and
(7) is

ρ0(z) = ρ0(0) exp

(

−
γ
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s

∫ z
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(8)

= ρ0(0) exp

(

−
γg(0)

C2
s

RL sin(z/RL)

1 + (RL/R�) sin(z/RL)

)

.

3. The evolutionary equation for slow waves

For the following analysis we assume that the effects of non-
linearity and dissipation are both weak. Weakly nonlinear and
weakly dissipative perturbations of the stationary state are de-
scribed by the equations

∂ρ
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wherep, ρ and V are perturbations of pressure, density and
velocity. Nonlinear and dissipative terms are gathered on the
right handsides of the equations,
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(ρV ) , (12)
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Eq. (5) provides us with the linear expression for perturbations
of the temperature:

T =
1

Rρ0

(
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p0

ρ0

ρ

)

. (15)

In Eq. (3) and consequent Eqs. (11) and (14), we took into ac-
count that the background temperature assumed to be constant
and, therefore, the thermal conductivityκ||(∝ T

5/2

0
) is indepen-

dent of the coordinatez. Additional terms, connected with the
modification ofκ|| by perturbations of the temperature, are of
higher orders as the thermal conductivity itself is assumed to be
small. Consequently, the modification of the thermal conduction
by the temperature perturbations is negligible.

Eqs. (9)–(11) can be combined into the wave equation
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According to (8),
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Using expressions (17) and (18), Eq. (16) can be re-written as
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Wave equation (19) describes two slow magnetoacoustic
waves propagating in opposite directions. If the nonlinear and
dissipative terms on the right handside of (19) and the “inho-
mogeneous”, two last terms on the left handside are all zero,
the waves propagating in the opposite directions are decoupled
with each other. We restrict our attention to one of the waves,
which propagates in the positive direction ofz. In the absence
of the nonlinearity, dissipation and inhomogeneity, the wave
propagates with a constant amplitude and shape in the running
frame of reference. The inhomogeneity, dissipation and non-
linearity affect the wave parameters leading to evolution of the
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wave. We assume that effects of inhomogeneity, dissipation and
nonlinearity are weak. These assumptions are expressed by the
non-equalities,

λ

RL
� 1,

λ

H
� 1,

η0

Csλρ0

� 1,

κ||

Csλρ0R
� 1, and

ρ

ρ0

� 1, (20)

whereλ is the wavelength,H = C2

s (γg)−1 is the density scale
height andρ is the density perturbation. The last inequality can
also be represented asV/Cs � 1. Inequalities (20) are sup-
posed to be fulfilled at any time and in any point of the domain
considered.

The fourth term on the lefthand side of (19) reaches a max-
imal value near the footpointsz = 0, πRL, and decreases to
zero near the loop apex. We observe that the ratio of the fourth
term to the third term is aboutλ/RL and, according to the first
inequality from (20), the fourth term can be neglected with re-
spect to the third term.

Under assumptions (20), the wave evolution is slow (with
respect to the wave period), which allows us to apply the method
of slowly varying amplitude. We change the independent vari-
ables

ξ = z − Cst, Z = εz, (21)

whereε is a small parameter of order of the inhomogeneity,
dissipation and nonlinearity. Note, that the three factors of evo-
lution are not necessary to be of the same order, but each of
them isat least of order ofε less than the first two terms on the
lefthand side of Eq. (19) (the “wave” terms).

In the running frame of reference (21), Eq. (19) is re-written
as
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Perturbations of other physical values, expressed throughV ,

ρ =
ρ0

Cs
V, p = Csρ0V, T =

Cs(γ − 1)

γR
V, (26)

were used in the derivation of Eqs. (22)–(25). Note that only lin-
ear expressions were applied, because we restrict our attention
to quadratically nonlinear processes.

Taking that, according to (20),H andρ0 are functions of the
“slow” coordinateZ and integrating Eq. (22) with respect toξ,
we obtain the evolutionary equation for the density perturbations
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Eq. (27) is the modified Burgers equation, which takes into ac-
count nonlinearity, viscosity and thermal conductivity, stratifi-
cation and structuring of the plasma.

It is convenient to use the normalized variablesZ = R�Z ′,
ξ = R�ξ′, H = R�H ′, V = CsV

′ andρ0 = ρ0(0)ρ′
0
. In the

normalized variables, Eq. (27) is re-written as
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is the normalized dissipation coefficient,
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(31)

andR̄L = RL/R�.
Solutions of Eq. (28) allows us to determine behaviour of

other physical values, using expressions (26). The relative per-
turbations of density, pressure and temperature show the same
behaviour asV , but with the different coefficients of propor-
tionality.

ρ

ρ0

=
V

Cs
,

p
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= γ
V

Cs
, and

T

T0

= (γ − 1)
V

Cs
. (32)

4. Slow wave evolution

In the case of linear waves and a dissipation-less medium, the
third and fourth terms in Eq. (28) are neglected, and the equation
is easily integrated:

V ′(Z ′) = V ′(0) exp

[

R̄L

2H ′(0)

sin(Z ′/R̄L)

1 + R̄L sin(Z ′/R̄L)

]

. (33)

The solution is shown as the solid curve in Fig. 2. The amplitude
grows until the wave reaches the loop apex and then decays. The
amplitude is represented by a symmetric function ofZ ′ with
respect to the apexZ ′ = πR̄L/2.

When the dissipation is not zero, but the wave is still linear,
a solution of Eq. (28) can be found for a harmonic waveV ′ ∝

cos kξ′ (wherek is the wave number):

V ′(Z ′) = V ′(0) exp

[

∫ Z′

0

(

1

2H ′(x)
−

k2η̄

2ρ′
0
(x)

)

dx

]

. (34)
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Fig. 2. Evolution of amplitude of slow magnetoacoustic waves prop-
agating along a coronal loop of the radius 140 Mm. The amplitude is
measured in units of the initial amplitudeV (0) = 10−9Cs and the
wave period is 600 s. The solid curve corresponds to the normalized
dissipation coefficient̄η = 10−9, the dotted curve tōη = 10−4, the
dashed curve tōη = 10−3 and the dash-dotted line tōη = 10−2. Sim-
ilar behaviour is shown by relative perturbations of density, pressure
and temperature.

Fig. 3. Evolution of amplitude of slow magnetoacoustic waves with the
period 600 s, propagating along a coronal loop of the radius 140 Mm.
The normalized dissipation coefficient is̄η = 3 × 10−4. The solid
curve corresponds to the initial amplitudeV (0) = 0.001Cs, the dotted
curve toV (0) = 0.03Cs, the dashed curve toV (0) = 0.08Cs and
the dash-dotted line toV (0) = 0.12Cs. The amplitude of each wave
is measured in units of the initial amplitudes.

According to (30) and (31), the initial stage of the wave
evolution, in the vicinity of the footpointZ ′ = 0, is described
by the expression

V ′(Z ′) ≈ V ′(0)

[

1 +
1

2

(

1

H ′(0)
− k2η̄

)

Z ′

]

. (35)

Consequently, the growth rate of the amplitude is determined by
the balance between the stratification and the dissipation. Waves
of shorter wavelengths (larger wavenumbers) grow slower than
long wavelength waves. Sufficiently short wavelength waves,
with k > 1/

√

η̄H ′(0), do not grow but decay with height. De-
pendences of the linear wave amplitude on the distance along
the loop for different values of the normalized dissipation coef-

Fig. 4. Evolution of amplitude of slow magnetoacoustic waves with the
initial amplitudeV (0) = 0.02Cs for three wave periods: 900 s (the
solid curves), 600 s (the dotted curves) and 300 s (the dashed curves).
The upper curve of each kind corresponds to the normalized dissipation
coefficientη̄ = 4 × 10−4, and the lower curve tōη = 1 × 10−3. The
amplitude of each wave is measured in units of the initial amplitude.
Other parameters are as in Figs. 2 and 3.

ficient η̄ are shown in Fig. 2. Obviously, the dissipative waves
are not represented by symmetric curves along the loop. Waves,
descending from the loop apex have smaller amplitude than as-
cending waves.

In general, when all terms of Eq. (28) are significant, it is
difficult to find out an analytical solution to the equation. How-
ever, the equation can be easily solved numerically. Dependence
of nonlinear dissipative wave amplitudes on the distance along
the loop is shown in Fig. 3. Nonlinear generation of higher har-
monics transfers the wave energy to smaller scales, which are,
according to subject to stronger dissipation. The nonlinear dis-
sipation increases with the growth of the amplitude. Waves of
stronger amplitudes are more non-symmetric with respect to the
loop apex.

According to the theory presented above, the slow wave
evolution is controlled by the wave parameters: the period and
the relative amplitude, as well as by parameters of the loop:
the radius, the temperature (which prescribes the sound speed
and local scale height) and the dissipation coefficient. For the
propagating disturbances observed in the coronal loops, some of
the parameters are determined: the wave periods are 300–900 s,
the relative amplitudes are about 2%, the loop radii are about
140 Mm, the temperature is 1.6 MK. The most unknown pa-
rameter is the dissipation coefficient, because both viscosity and
thermal conduction have not been determined observationally
yet. According to Braginskii’s theory, the first viscosity coeffi-
cient for the plasma with the concentration5×108 cm−3 and the
temperature 1.6 MK isη0 = 0.352 g(cm s)−1. This parameter
coincides with the parameterη used above, which, neglecting
the thermal conduction (γ = 1), givesη̄ ≈ 4 × 10−4. Conse-
quently, this is the least possible value ofη̄. In the presence of
finite thermal condition this value can be higher. Also, as it has
been suggested by Nakariakov et al. (1999) for shear viscosity,
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the actual MHD wave dissipation can be dramatically enhanced
(by, e.g. micro-turbulence).

In Fig. 3, we show dependences of the slow wave ampli-
tudes upon the distance along the loop for three different wave
periods and two different dissipation coefficients. It is seen that
the theory developed easily explains the observational fact the
descending wave is not registered: its amplitude is much weaker
than the amplitude of the ascending wave. Also, the ascending
wave amplitude growth can be efficiently depressed by dissipa-
tive processes.

5. Conclusions

We present here a theoretical model for slow magnetoacous-
tic waves propagating along magnetic field lines in coronal
loops. The model incorporates the effects of dissipation due
to finite viscosity and thermal conduction, gravitational stratifi-
cation and nonlinearity. It is shown that, in the short wave length
limit, the evolution of the waves is described by evolutionary
equation (27). This equation is of Burgers type, but with an
additional “geometrical” term and with coefficients dependent
of the evolutionary coordinate. Investigation of solutions of the
evolutionary equation shows that the propagating compressive
disturbances observed in coronal loops can be confidently in-
terpreted as slow magnetoacoustic waves. This interpretation
meets all observationally detected properties of the propagating
disturbances.

The theory confirms that there can be longitudinally prop-
agating slow magnetoacoustic waves, perturbing the density of
the plasma in the loop. The speed of these waves is to be reg-
istered below (taking into account possible projection effects)
the sound speed. The waves of observed periods (5–15 min)
are strongly affected by the gravitational stratification and dis-
sipation. For the estimated dissipation of the waves (for typical
coronal loop conditions, dimensionless coefficient of dissipa-
tion (29) is greater than4 × 10−4), the typical scenario of the
upwardly propagating wave evolution is the following: initially,
the relative amplitude of the waves grows with height and reach
a maximum somewhere near the loop apex, and then quickly
dissipate. The fact that there are no downwardly propagating
waves confirms this interpretation. Indeed, the waves of ob-
served periods dissipate in the upper parts of the loops and in
the descending stage, their amplitude is below the noise level.
Waves of longer periods (10–15 min) are less affected by the dis-
sipation, while the short period waves (<5 min) are practically
evanescent, because the dissipation length becomes compara-
ble with the wavelength. In addition, the effective dissipation of
the short period waves in the loops can be responsible for the
absence of the short time periodicities in intensity variations on
an active region, reported by Ireland et al. (1999).

According to our findings, the nonlinearity does not play
an important role in the dynamics and dissipation of the waves.
Indeed, only waves with initial amplitudes higher than 8–10%
can be significantly distorted by the nonlinear generation of
higher harmonics. Waves of lower amplitudes (e.g. of observed
1–2% in density) keep their initial shape. This is supported by

the observations: Fig. 11 of Berghmans & Clette (1999) and
Fig. 2 of De Moortel et al. (2000) do not show any signs of the
wave distortion.

De Moortel et al. (2000) have deduced that the observed
energy of the waves is insufficient for heating of coronal loops.
However, the waves can be used as a tool for MHD coronal seis-
mology. Indeed, combining the observationally measured prop-
erties of the waves with theoretical models, we can determine
additional parameters of the coronal plasma (cf. Nakariakov at
al. 1999). For example, accurate measurement of the wave am-
plitude as a function of the vertical coordinate and comparing
this with the theoretical dependences (see Fig. 4), we can esti-
mate the dissipative coefficient̄η, connected with the coronal
viscosity and thermal conduction (29).

The application of the method of MHD coronal seismol-
ogy requires not only precise observations, but also elaborated
theory. The theoretical model developed in this study is quite a
simple one and neglects several physical mechanisms which can
be important for the slow wave evolution. One of these neglected
mechanisms is reflection of the waves from the density gradi-
ent. The WKB method used in the derivation of the evolutionary
equation does not allow us to take into account the reflection.
So, the waves of longer wavelengths, comparable with the scale
height, can experience the reflection. In principle, this effect
has to be taken into account. However, we can probably neglect
this effect, according to results of Ofman et al. (1999), which
show that the reflection of slow magnetoacoustic waves from
density gradients in polar plumes is insignificant and the WKB
approach works very well in the plume case. Anyway, the de-
tailed study of the effect should be done in the future. Another
effect neglected is dispersion of slow magnetoacoustic modes of
a loop, connected with the finite radius of the loop cross-section.
For example, it is well known that fast modes of coronal loops
are strongly dispersive in the long wavelength limit, and their
phase and group speeds are strongly influenced by the disper-
sion (Roberts et al. 1983, 1984). In contrast, slow modes are
very weakly dispersive and the dispersion becomes important
only in the nonlinear regime. The dispersion can slow down the
nonlinear generation of higher harmonics and is very important
on the nonlinear stage of the wave evolution (see, e.g. Zhugzhda
& Nakariakov 1997a,b for slow body sausage modes of coronal
loops). But, as the nonlinearity is found to be insignificant for
the amplitude observed, the neglect of this effect also seems to
be justified. Also, more developed models have to include the
gradient of the temperature along the loop (see Aschwanden et
al. 1999b) and effects of variable loop cross-section.

Thus, we believe that the model developed provides the cor-
rectqualitative interpretation of running intensity disturbances
in coronal loops as slow magnetoacoustic waves and can be used
as a basis for seismology of the coronal loops.
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