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Abstract. The work of J. A. Wheeler in the mid 1960’s showed
that for smooth equations of state no stable stellar configurations
with central densities above that corresponding to the limiting
mass of ‘neutron stars’ (in the generic sense including hybrids)
were stable. Accordingly, there has been no reason to expect that
a stable degenerate family of stars with higher density than the
known white dwarfs and neutron stars might exist. Nevertheless,
we have found a class of equations of state that describe a first
order phase transition and are insufficiently smooth to obey the
conditional theorem of Wheeler. We identify the attributes that
give rise to a third family of stable dense stars, discuss how such
a higher density family of stars could be formed in nature, and
how the promising new exploration of oscillations in the X-ray
brightness of accreting neutron stars might provide a means of
identifying them.
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1. Background

There are two known classes of compact stars, white dwarfs,
which were discovered in 1910 and neutron stars in 1967. Dis-
tinct classes (or families) of compact degenerate stars origi-
nate in properties of gravity; the distinction is made rigorous
by the ‘turning point’ theorem of Wheeler and collaborators
(see Harrison et al. 1965). The theorem concerns solutions of
the stellar structure equations, whether Newtonian or Relativis-
tic: there is a change in stability of one radial mode of normal
vibration whenever the mass reaches a maximum or minimum
as a function of central density. The theorem is a property of
gravity and does not depend on the equation of state; of course
the location of the turning points does. The theorem assures
that distinct families of stars, such as white dwarfs and neutron
stars, are separated in central density by a region in which there
are no stable configurations. Does General Relativity admit the
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possibility of a third distinct family of degenerate stars at higher
density than neutron stars?

There have been two reasons to doubt that a third family
is allowed: One is physical and the other mathematical. The
physical reason is the absence of an analogous mechanism to
the one that ushers in the two known families. White dwarfs
are stabilized by degenerate electron pressure which fails at
such density that electron capture reduces their effectiveness.
Stability is reestablished at densities about five orders of mag-
nitude higher when the baryon Fermi pressure (and ultimately
the short-range nuclear repulsive interaction) supports neutron
stars. When neutron stars loose stability at their maximum mass,
there is no evident mechanism for stabilizing a denser family.
If quark deconfinement occurs, the Fermi pressure of baryons
is replaced—not supplemented—by the pressure of their quark
constituents. Indeed a phase transition will generally reduce the
pressure at a given energy density.

The mathematical reason for doubting a third family is based
on a theorem of Wheeler et al. (see Harrison et al. 1965): They
proved analytically for polytropic equations of state, that general
relativistic stars have an infinity of maxima and minima of the
mass as a function of central density and therefore an infinity of
sequences for which the mass has positive slope. Positive slope
is sometimes thought to be a sufficient condition for stability. It is
not. All configurations with densities greater than the first mass
limit for neutron stars were shown to be unstable to acoustical
radial vibrations, and end either by exploding or imploding to a
black hole.

Some non-analytic models have been tested for stabil-
ity also. These include the ‘Harrison–Wheeler” equation of
state (Harrison et al. 1965), and more recently new fami-
lies associated with higher quark flavors (Kettner et al. 1995,
Prisznyak, Lukacs and Levai 1994). However, in each case,
configurations above the ‘neutron stars’ were proven to be unsta-
ble. On the basis of this pioneering work, a conditional theorem
can be inferred: For any sufficiently smooth equation of state,
neutron stars are the last stable class of compact stars. Con-
figurations of higher density oscillate in mass as a function of
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Fig. 1. Two out of many examples of stellar sequences for which
Neutron stars and a higher density stable family of ‘non-identical twins’
exist. Stability is proven in connection with the discussion of Fig. 5 and
is indicated by solid lines.

density and acquire an additional unstable mode of vibration at
each maximum and minimum.

2. Cause of stability

Nevertheless, we show that the equations of stellar structure do
admit stable solutions above neutron stars in density and we
discuss the attributes required of the equation of state. The ex-
amples we have of a third family occur for the deconfinement
phase transition given certain plausible combinations of param-
eters defining the nuclear and quark deconfined equations of
state. Two of many examples of stellar sequences with a ‘neu-
tron star’ branch and another stable higher density branch are
shown in Fig. 1. The ‘neutron star’ sequence is terminated by
the softening in the equation of state in the mixed phase when a
substantial core of mixed phase is attained. A new sequence at
higher density is stabilized by replacement of the mixed phase
by a pure quark phase core. The stars near and at the termination
of the “neutron star” branch and those of the third family are
both hybrids in the sense that they have quark matter in the core,
whether it be in mixed or pure phase, surrounded by confined
nuclear matter. In this case there are stars of the same mass but
radically different quark content and also of size.

The equation of state for the sequence with maximum neu-
tron star mass∼ 1.42M�, is shown in Fig. 2. The form is
general for first order phase transitions of whatever origin
in any substance with two or more independent components
(Glendenning 1992). (For neutron stars the two independent
components are electric and baryonic charge.) The three parts
of the equation of state that are separated by a discontinuity in
slope correspond to the pure confined or nuclear matter phase,

Fig. 2. Equation of state from the low density normal nuclear matter
through the mixed phase and into the pure quark matter phase at high
density (The normal density of nuclear matter is140 MeV/fm3.)

the mixed coexistence phase of nuclear and quark matter, and
the pure deconfined quark matter phase.

Features of the stellar sequence shown in Fig. 1 can be iden-
tified with features in the equation of state shown in Fig. 2. One
can see that near the end of the mixed phasedp/dε becomes
small; therefore also the adiabatic index,Γ = d ln p/d ln ρ =
(p + ε)/p · dp/dε (wherep, ε, andρ denote pressure, energy
density and baryon density). In this upper region of the mixed
phase, the pressure is too weak a function of energy density to
sustain stability: The canonical neutron star family terminates.
The weakening of the adiabatic index referred to is character-
istic of equilibrium between two phases. The adiabatic index
is larger in the pure phases, and the increase in the pure quark
phase restores stability over a small range of central densities.
We prove stability for our examples below. However, while the
behavior of the adiabatic index described above is a quite general
attribute for phase transitions in multicomponent substances, a
stable third family is not. Stability is an integral property that
depends, more or less, on the configuration of the bulk of the star
and therefore on the equation of state over a broad density range.
Consequently, the appearance of a third family will depend on
the density region in which the critical behavior occurs.

3. Neutron star twin

We discuss now the ingredients of the equation of state. Be-
cause empirical data for the equation of state does not exist
above saturation density, we wish to base our extrapolation to
higher density in a causal manner that is related to known satu-
ration properties of nuclear matter. We employ the so-called rel-
ativistically covariant mean-field-model, introduced originally
in the mid 1950’s (Johnson and E. Teller 1955, Duerr 1956)
and (Walecka 1974). The model was later extended to bet-
ter describe nuclear properties (Boguta and Bodmer 1977),
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Fig. 3. Particle populations of a lower-density twin.

and to incorporate higher mass baryons as may ex-
ist in dense matter (Garpman, Glendenning, & Karant 1979,
Glendenning 1985, 1997). The coupling constants can be re-
lated algebraically to five symmetric nuclear matter properties
(Glendenning 1997): saturation density (0.153 fm−3), binding
(16.3 MeV) and symmetry energy coefficient (32.5 MeV) which
are accurately known and the compression modulus and effec-
tive nucleon mass at saturation, which are less well known.
In Fig. 1, we have illustrated two examples of a third family
for which we have proven stability. The particular parameters
areK = 290 MeV andm?/m = 0.57 and 0.66. Quark mat-
ter is described by the MIT bag model. The bag constant is
B1/4 = 180 MeV and the quark model equation of state is given
by Farhi & Jaffe (1984) withαs = 0. We found many such ex-
amples of third families. There is at least one region of param-
eters for which stability exists for a third family that is spanned
in one direction byK = 290 MeV andm?/m = 0.55 to 0.68
and in the other bym?/m = 0.62 andK = 250 to 350 MeV
and beyond.

We refer to stars of the denser sequence in Fig. 1 as non-
identical twins of neutron stars because for both families it is
the Fermi pressure of particles carrying baryon number that
supports the star against gravity in addition to repulsion at short
distance between any nucleons that may be present. In some
cases, the denser family has a larger limiting mass than the
‘neutron’ star family. In the present examples, both families
contain deconfined quark matter, but in the first, only in the
mixed phases. The particle populations are shown in Figs. 3
and 4 for a selected common mass. Both contain a region in
which confined and deconfined matter coexist. The lower-mass
twin has an 8 km radius core of mixed phase. The inner 4 km of
the higher-mass star is in the pure quark phase. However, it is
not the particular content of the star that creates the additional
family, but rather a particular way in which the adiabatic index
changes with density.

Fig. 4. Particle populations in a higher-density twin of the same mass
as that in Fig. 3.

4. Stability test

We now demonstrate stability to radial vibrations that would
otherwise bring about collapse or explosion of a star. Stars on
both segments of the stellar sequence shown in Fig. 1 that have
positive slopedM/dρc > 0satisfy the necessary but insufficient
condition for stability. Stability can be tested by an analysis
of the radial modes of oscillation (Chandrasekhar 1964). The
squared frequencyω2 of the fundamental mode is plotted in
Fig. 5. Positive values indicate stability and correspond to the
segments with positive slope in Fig. 1. The analysis shows that
the fundamental (nodelessn = 0) oscillation becomes unstable
at the first maximum, as is usual, but unusually, stability of this
mode is restored at the following minimum, to be lost again at the
next maximum. The usual pattern is that the fundamental mode
becomes unstable at the maximum in the neutron star family
and a higher mode in ordern = 1, 2, 3 · · · becomes unstable
at each higher minimum and maximum. Undoubtedly the usual
pattern resumes at densities higher than our third stable family.
At such high densities that matter is in the pure quark phase,
asymptotic freedom is likely to assure that the equation of state is
smooth like a polytrope. Indeed, that is precisely the asymptotic
behavior of the MIT bag equation of state. From some density
above the point where the equation of state is smooth, we are
assured of the denumerable infinity of turning points and ever
increasing number of unstable normal modes such as was found
by Wheeler and collaborators (Harrison et al. 1965).

Pressure oscillations bring particle populations instanta-
neously out of equilibrium. But it is not necessary to know
the time-scale for equilibration of the transition between quark
matter and nuclear matter and how it compares with typical
periods of oscillations to analyze stability. The turning points
in the stellar sequence between stability and instability occur
only at the zeros ofω2, and because the stellar oscillations are
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Fig. 5. The square of the frequency of the fundamental (n = 0) ra-
dial vibration as a function of central density. Perturbations behave
asexp(iωt) so they are unstable with diverging amplitudeexp(|ω|t)
whenω2 < 0.

infinitely slow at the turning points, their location can be deter-
mined exactly. Thus, independent of the reaction time-scales,
the stability or instability of all members of the stellar sequence
can be determined.

5. Formation and detection

From the above proof of stability we have shown that in prin-
ciple a third family of stable degenerate stars could exist. Each
or some of the stars on the high density branch have a non-
identical twin on the low-density branch, having the same mass
but different composition and radius. Can such twins be dis-
tinguished? One possible avenue is through observations on
the so-called quasi-periodic oscillations in the X-ray brightness
of accreting neutron stars. According to theory, mass and ra-
dius determinations may be possible (Miller and Lamb 1998,
Miller, Lamb and Psaltis 1998a, 1998b). If twins exist, then the
mass-radius curve will exhibit two segments of stable stars in-
stead of one, and observed stars will fall on one or the other
of the two distinct segments. The discovery of only about two
stars on each branch with a radius resolution of a kilometer in
our example would suffice to establish the existence of twin
branches.

How could a high density twin be made in nature? The likely
path to the high density twins is through the initial core collapse
of a star, in which the core implodes through the normal star
to the high density twin. Since no two supernova are likely to
be identical, there being many variables that effect the outcome,
like mass, rotation, symmetry, chemical composition of the pro-
genitor, and the chaotic process of convection, it seems plausible
that either twin could be produced. A second possible formation
mechanism of the high density twin is through accretion onto

a member of the low-density sequence of Fig. 1 followed by a
minor explosion.

The existence of a third stable class of degenerate stars
makes special demands on the equation of state—demands that
cannot be met if dense matter simply evolves in a continuous
way with density. Our particular model is limited in both its
description of nuclear and quark matter so that the examples
we have found are presumably limited in the range of masses
and densities for which a third class may exist. We have no
knowledge from experiment of a single point on the equation
of state above nuclear density. But we do have expectations of
phase transitions; asymptotic freedom of quarks would appear
to elevate one of them to a law of nature. A phase transition can
produce the requisite structure discussed above into the equa-
tion of state so as to restore stability for a finite density range
after stability has been lost by the canonical neutron stars. The
possible existence of a third family of compact stars hinges
on such details that we may never determine in laboratory ex-
periments. Therefore, the actual discovery of members of the
third family would reveal, however imperfectly, a non-smooth
behavior of the equation of state possibly caused by a change
in phase of dense matter—that we may never know by labo-
ratory experimentation. If some of them were X-ray sources,
QPO observations may permit the use of the inverse theorem
of Lindblom (1992) to gain rather particular knowledge of the
equation of state.
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