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Abstract. Improvements in Monte Carlo techniques for com-
puting synthetic spectra of supernovae (SNe) are described and
tested using a simplified model for the atmosphere of a Type
Ia SN. In the first innovation, a procedure is implemented that
replaces the previously-assumed line formation by resonance
scattering with a branching model using Sobolev escape proba-
bilities, and the resulting improvement is demonstrated by com-
parison with exact calculations for Feii. In a second innovation,
greatly accelerated convergence is achieved in the computation
of emergent spectra by replacing the crude procedure of binning
escaping Monte Carlo quanta with one based on the formal inte-
gral for emergent intensity. This is made possible by extracting
line- and continuum source functions from a Monte Carlo sim-
ulation. Because of accelerated convergence, the required size
of the Monte Carlo simulations is reduced by a factor∼ 300,
thus greatly speeding up the calculation of model spectra and
thereby allowing interactive diagnostic analyses of the spectra
of newly-discovered SNe.
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1. Introduction

In two previous papers (Lucy 1987a, Paper I; Mazzali & Lucy
1993, Paper II), a Monte Carlo code for synthesizing the early-
time spectra of SNe has been described. Originally written in the
days following the explosion of SN 1987A and only modified
slightly since, this code has become a standard diagnostic tool
for analysing SNe spectra. Examples of SNe analyzed with this
code are the following: SN 1987A (Lucy 1987b; Fosbury et al.
1987; Mazzali et al. 1992); SN 1990N (Mazzali et al. 1993); SN
1991T (Mazzali et al. 1995); SN 1991bg (Mazzali et al. 1997);
SN 1993J (Zhang et al. 1995); and SN 1994D (Patat et al. 1996).

However, in the intervening decade, techniques of spectral
synthesis have advanced significantly, and the available com-
puter power has increased remarkably. The question therefore
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arises as to how this productive code should be upgraded. In
seeking to answer this question, the prime consideration has
been not to compromise the code’s role as a diagnostic tool
capable of being used interactively to make a rapid coarse anal-
ysis of the spectrum of a newly-discovered SN, thus allowing a
quantitative astrophysical interpretation to replace the qualita-
tive comparisons that traditionally suffice for an initial discovery
paper. The code must therefore remain robust and fast. Accord-
ingly, no attempt is made here to duplicate the level of physical
sophistication incorporated, for example, in the code developed
by Eastman & Pinto (1993).

A major simplifying assumption fundamental to the archi-
tecture of the previous code as well as to its predecessor stellar
wind code (Abbott & Lucy 1985) is that of line formation by
coherent scattering in the matter frame. In addition to lend-
ing itself naturally to a Monte Carlo treatment because of its
elimination of photon splitting, this assumption has the further
merit of automatically generating a radiation field that is rig-
orously divergence-free, thus incorporating this (almost exact)
constraint even though the radiative equilibrium temperature
distribution is not solved for.

In addition to these incidental benefits, treating every bound-
bound transition as if it were a resonance line is more accurate
than one might intuitively expect. When the constraint of statis-
tical equilibrium is added to the constraints imposed by selection
rules, the emissivity in a non-resonance line is often obliged not
to differ greatly from the rate of absorption in that line (Chugai
1980; Abbott & Lucy 1985), thus restricting the fluorescent
degradation of dilute radiation fields.

Nevertheless, improving the treatment of line formation
should clearly be of high priority in updating the code. Ac-
cordingly, in the first of two innovations, a technique will be de-
scribed that allows branching to occur after absorption by non-
resonance transitions; and this is achieved with negligible im-
pact on the complexity, speed or robustness of the Monte Carlo
code. Moreover, the derived radiation field remains divergence-
free.

The second aspect of the previous code that has been re-
examined is the calculation of the emergent spectrum. Follow-
ing standard Monte Carlo procedure, the synthetic spectrum
provided by that code is derived from the photon packets that
escape to infinity by binning them according to their rest fre-
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quencies, with the result that Poisson noise is very evident un-
less one follows a huge number of packets. Interestingly, an al-
most noise-free emergent spectrum can be obtained even from a
modest-sized Monte Carlo experiment by using the formal inte-
gral for the emergent intensity. This approach is made possible
by first computing the source function implied by the Monte
Carlo code’s treatment of line formation. By reducing com-
puter time, this second innovation greatly enhances the code’s
usefulness as an interactive diagnostic tool.

These two innovations are described and illustrated below
in the context of computing SNe spectra. But they are equally
relevant for stellar-wind codes and possibly also for other as-
trophysical problems.

2. Physical model

In this section, the assumptions that determine the structure of
the supernova’s envelope are stated. Here it should be empha-
sized that this aspect has been deliberately kept simple since
this model serves only as a test-bed for the development of
technique. In a companion paper, Mazzali (1999) will add the
refinements described in Paper II and discuss the implications
of the fully updated code for diagnostic studies of SNe spectra.

As in Papers I and II, a Schuster-Schwarzschild model is
adopted for the line-forming region of a SN’s envelope. Thus, at
the lower boundaryr = R, a black-body continuum is emitted,
i.e.

I+
ν (R) = Bν(Tb) (1)

where Tb, the boundary temperature, is to be determined.
Bound-bound transitions in the regionr > R then impose a
line spectrum on this featureless continuum.

In this investigation, the regionr > R is assumed to be
isothermal both with respect to the characteristic temperature
TR of the ionizing continuum and to the local electron temper-
atureTe. Specifically, we set

Te = TR = 0.8Tb (2)

The density at radiusr > R and elapsed timet is obtained from
the assumption of homologous expansion and the specification
of a reference model. Accordingly, we have

ρ(v, t) =

(

t1
t

)3

ρ1(v) (3)

wherev = r/t is the constant velocity of the mass shell which
is at radiusr at timet, andρ1(v) is the density-velocity profile
at t = t1. Here we use a single power-law approximation (ρ ∝
v−7) to the density plot given by Branch, Doggett & Thielemann
(1985) for the Type Ia model W7 att1 = 16 days.

The treatment of excitation is that of Abbott & Lucy (1985).
Thus, for normal levels,
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where the dilution factor is simply set equal to its value in the
optically-thin limit, i.e.
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However, for metastable levels, we setW = 1, since the de-
population of these levels by upward transitions is also∝ W .

The adopted ionization formula is

NJ+1

NJ
Ne = ηW

2UJ+1

UJ

(2πmekTR)3/2

h3

×

(

Te

TR

)1/2

e−χ/kTR (6)

where

η = ζ + W (1 − ζ) (7)

and ζ is the fraction of recombinations going directly to the
ground state.

The correction factorη modifies Str̈omgren’s (1939) treat-
ment of nebular ionization to allow for ionization from excited
states in circumstances where dilution is not extreme. Specifi-
cally, Eq. (6) is derived under the assumption that the ionizing
continuum is dilute Wien, that photoionization coefficients are
∝ ν−2, and that excited states have populations depleted by the
factorW from Boltzmann atT = TR. This formula was devel-
oped in the context of a collaboration with D.C. Abbott and was
described and used in Paper I and also by Abbott in his work
on SN 1987A (Schmutz et al. 1990). Further elaborations in the
treatment of ionization described in Paper II are not included
here.

The partition functionsUJ needed for Eq. (6) are computed
using the above excitation model – i.e., LTE partition functions
are not assumed.

The chemical elements included in this model and their mass
fractions are: C (0.01), O (0.01), Ne (0.01), Mg (0.01), Si (0.45),
S (0.35), Ar (0.04), Ca (0.03), Fe (0.07), Co (0.01), and Ni (0.01).
These crudely represent the abundances in model W7 of Nomoto
et al. (1984) at or near the photosphere at maximum light. In this
test-bed model, the abundances are assumed uniform through-
out the atmosphere. However, in fitting observed spectra or in
calculating spectra for explosion models, abundance stratifica-
tion must be allowed for. This is of course a straightforward
generalization of this code.

The basic parameters of this model aret, the elapsed time
since explosion, the photospheric radiusR (or, equivalently, the
photospheric velocityvph = R/t), the bolometric luminosity
Lbol, the reference density functionρ1(v), and the chemical
composition.

A useful option introduced into this code is to dropLbol

as parameter and instead useL(λ1, λ2), the luminosity in the
wavelength interval(λ1, λ2). This is obviously more convenient
when analysing an observed spectrum.
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3. Line lists

In Papers I and II, atomic transitions and theirgf -values were
from Abbott (1982) and Kurucz & Peytremann (1975). In this
work, these data have been replaced by the data on a CD-ROM
distributed by Kurucz & Bell (1995). This data is manipulated
as described below. In particular, in contrast to the previous
stellar wind and supernova codes, the present code’s improved
treatment of line formation is greatly facilitated by creatingtwo
line lists containing identical data but differently ordered.

The first step in using the Kurucz-Bell data is to infer their
atomic model for each ion. Thus, a file (I) is constructed in
which, for each ion, the energy levelsEi featuring in the tran-
sition array and theirJ-values are tabulated. A second file (II)
can then be constructed in which, for each ion, its transitions’
log gf values are tabulated, with the transitions being identified
only by u andl, the indices in file I of the upper and lower en-
ergy levels. These two files provide compact storage of the data
and allow rapid construction of working line lists for specific
models.

Because of the difference in the excitation formula (Sect. 2)
between normal and metastable levels, it is useful to identify
metastable levels in these files. This is done by replacingEi by
−Ei in file I andl by −l in file II.

From these basic files, a list of transitions relevant for a
particular model is created as follows:

1) All lines of an element are excluded if it is absent from the
adopted mixture.
2) All lines of an element’s(J + 1)-th ion are excluded if
χJ,J+1 > χL, an appropriate limiting potential.
3) Of the surviving transitions, a further culling eliminates all
those with Sobolev optical depths everywhere< τL, an appro-
priately small cut-off value.

Having thus excluded all inconsequential transitions, those
that survive are organized into two line lists as follows:

I) Line list A: lines ordered according to frequency withνk+1 ≤
νk.
II) Line list B: lines grouped according to ion and then, for each
ion, according to the indexu of the transitions’ upper levels.

Because of the expansion of the SN’s envelope, the co-
moving frequency of a photon in free flight decreases with time.
Line list A serves therefore as usual to identify efficiently the
next transition with which a photon (or photon packet) might
interact. On the other hand, after a packet has been absorbed by
the transitionl → u, the possible radiative decays are the set of
permitted transitionsu → i (< u) with the same upper level.
But these transitions are contiguous in line list B, and so an ap-
propriate random selection of the re-emitted packet’s frequency
can be simply and efficiently made.

4. Monte Carlo procedures

In Papers I and II, rather complete details are given of how the
Monte Carlo calculation proceeds in the presence of electron-
and resonance-line scattering. This section is therefore restricted

to the changes required by the improved treatment of line forma-
tion and to the development of a Monte Carlo estimator required
when calculating the emergent spectrum from the formal inte-
gral.

4.1. Branching

As in the previous codes, the basic quanta in this Monte Carlo
calculation are packets of identical photons, so thatε(ν) = nhν
is the energy of a packet containingn photons. In a single Monte
Carlo experiment,N packets of energyε(ν) = ε0 are launched
across the lower boundaryr = R and their complicated trajec-
tories through the expanding envelope followed as before. But
now, when a packet is absorbed by the transitionl → u, we no
longer insist that this energy is re-emitted by the same transition
u → l. Instead, we consider all permitted decays from levelu
and randomly assign the absorbed energy toone of these decay
channels in accordance with their relative effective emissivities.
This is accomplished as follows:

By construction, the permitted decays from levelu form a
contiguous subset in line list B. If the transitionu → i is thekth
member of this subset and4πjk denotes its effective emissivity
– i.e. after correcting for photon trapping – then the fraction of
the energy emitted by levelu that escapes via thekth branch is

qk = jk/
∑

jm (8)

Accordingly, in deciding to which of the transitionsu → i
the absorbed energy should be allocated, we first generatez, a
random number from (0, 1), and then compute the sequence of
partial sums

Sk =
k

∑

1

qm (9)

k = 1, 2, . . . until the conditionSk ≥ z is satisfied. The transition
k that first fulfils this inequality is the transition which carries
off the absorbed energy and which therefore defines the rest
frequency of the photons in the emitted packet. If during the
Monte Carlo experiment many excitations to levelu occur, then
the ensemble of packets assigned randomly to decay channels
u → i in this way will clearly constitute an accurate realisation
of the emission from levelu.

By avoiding photon splitting, this treatment of branching
leads to relatively simple and compact code. The prior compu-
tation of line list B also contributes considerably to simplicity
and efficiency.

4.2. Line absorption rate

In the procedures described in Papers I and II, a line absorption
l → u results in a packet’s entire energyε being absorbed.
Accordingly, the obvious estimate for the rate per unit volume at
which energy is removed from the radiation field by excitations
l → u is

Ėlu =
ε0
∆t

1

V

∑ ε

ε0
(10)
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where the summation extendsonly over the packets that are
actually absorbed by the transitionl → u in volume element
V . In particular, therefore, packets that are redshifted across
co-moving frequencyνul without suffering absorption make no
contribution.

Interestingly, an estimator of higher statistical accuracy can
be readily constructed. A photon redshifted into resonance with
the line atνul has probability1−e−τlu of being absorbed, where
τlu is the Sobolev optical depth. Applying this probability to
packets as they come into resonance, we derive the modified
estimator

Ėlu =
ε0
∆t

1

V
(1 − e−τlu)

∑ ε

ε0
(11)

where now the summation extends overall packets inV whose
co-moving frequencies= νul at some time during the Monte
Carlo experiment.

For a line withτlu << 1, it may well happen that no packet
is absorbed inV by the transitionl → u. Eq. (10) then gives
Ėlu = 0 in V , an outcome that is a typical consequence of
the limited dynamical range of Monte Carlo simulations. In
contrast, in this same circumstance, Eq. (11) correctly returns
a non-zero value, provided only that at least one packet came
into resonance withνul in V during the simulation. Given the
typical velocity widths of the spherical shells that constitute
the discrete volume elements of the SN envelope, this latter,
weaker condition is satisfied (except in far UV) ifN

>
∼ 103, a

condition fulfilled by a wide margin in routine simulations with
the previous code.

4.3. Scaling

At the conclusion of a Monte Carlo simulation, a fraction of the
N incident packets are found to have escaped to infinity, and
these yield the following estimate of the SN’s luminosity,

Lbol =
ε0
∆t

∑

∞

ε

ε0
(12)

But since we choose to regardLbol as an input parameter, this
estimator in fact serves to fix the scaling constantε0/∆t, and
this then allows all other estimators to be converted to physical
units.

In Sect. 2, the option of takingL(λ1, λ2) as luminosity pa-
rameter was mentioned. In this case, the summation in Eq. (12)
is restricted to escaping packets in(λ1, λ2) and thenε0/∆t fixed
as before.

With ε0/∆t thus determined, the value ofTb is updated from
the equation

L+(R) = N
ε0
∆t

= 4πR2σT 4
b (13)

which derives from Eq. (1). Note that, for this simple model,
iterations are required only to determineTb since it in turn
determinesTR andTe and therefore also the stratification of
excitation and ionization.

4.4. Relativistic terms

In Paper II, it was shown how easily relativistic terms (except for
time delay) can be incorporated into a Monte Carlo treatment
of radiative transfer. However, an essential element of this in-
vestigation is the application of Sobolev theory to Monte Carlo
simulations, and the formulation of Sobolev theory used (Lucy
1971) neglects all terms ofO(v/c) except for the Doppler effect.
Accordingly, for consistency, this same level of approximation
is used here also in the Monte Carlo Calculations.

Note that the neglect of relativistic terms only introduces
errors of<∼ 10%, substantially less than the likely uncertainties
in the density profile, in the stratification of abundances, and in
the ionization balance.

5. Emergent spectrum

In this section, a procedure for calculating the emergent spec-
trum is developed that is greatly superior to the crude estimate
provided by the frequency distribution of escaping packets. This
procedure uses the formal integral for the emergent intensity
but with line and continuum source functions derived from the
Monte Carlo experiment.

5.1. Basic idea

Without recourse to Monte Carlo techniques, noise-free SNe
spectra can be computed by incorporating Sobolev theory into
a formal integral calculation of the luminosity densityLν (e.g.
Lucy 1991). However, this requires that the source functions
be known or, equivalently, the level populations. Accordingly,
in the context of a NLTE treatment of level populations, the
formal integral approach is indeed preferable to a Monte Carlo
simulation. However, in the context of approximate treatments
of level populations and line formation, the relevance of the
formal integral is not at all evident. Nevertheless, the prospect
of thereby eliminating or reducing sampling errors makes this
approach worth exploring.

One obvious possibility would be to eliminate the Monte
Carlo calculation entirely and simply compute the emergent
spectrum from the formal integral with source functions eval-
uated using our approximate formulae (Sect. 2) for the level
populations. However, the resulting emergent spectrum would
differ systematically from the corresponding Monte Carlo spec-
trum. Moreover, apart from sampling errors, the Monte Carlo
spectrum will in general be closer to the truth than the formal
integral spectrum calculated in this way.

To justify this latter remark, suppose that, for some ion, our
approximate formulae seriously overpopulate a normal levelu.
In the above hypothetical formal integral calculation, this error
directly translates into enhanced emissivities for all linesu → l,
with corresponding spurious emission bumps in the emergent
spectrum. On the other hand, in the Monte Carlo simulation,
emission in the transitionsu → l only arises following absorp-
tions that excite levelu, and these occur at a rate governed by
the typically much more reliably estimated populations of the
ground state and other low-lying (especially metastable) levels.
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With the origin of this expected superiority of the Monte
Carlo spectrum thus understood, it is now of interest to con-
struct a formal integral procedure that incorporates this highly
desirable insensitivity to the population of upper levels. To do
this, the line source functions implicit in the Monte Carlo simu-
lation must be extracted. This in turn can be done by noting that,
in effect, the Monte Carlo simulation derives line emissivities
for transitionsu → l by applying approximate branching ratios
qul to the rate at which transitionsl → u absorb energy.

5.2. Line source function

Expressed in terms of level population and Einstein coefficients,
the general expression for the line source function is

Sul =
Aulnu

Blunl − Bulnu
(14)

and this is the form useful in a formal integral calculation after
a NLTE determination of the level populations.

Because a NLTE calculation is not carried out, it is useful
first to express the line source function in terms of the line’s
effective emissivity, which, in the Sobolev approximation, is

4πjul = Aulnuhνulβul (15)

where

β =
1

τ
(1 − e−τ ) (16)

is the escape probability and

τlu = hνul(Blunl − Bulnu)
λult

4π
(17)

is the Sobolev optical depth. Note thatτ is given here in the
form appropriate for velocity lawv = r/t and that Einstein
B-coefficients have been preferred to the oscillator strength and
statistical weights.

From Eqs. (14)–(17), it immediately follows that

4πjul =
4π

λult
(1 − e−τlu)Sul (18)

a formula valid for line formation in a SN envelope treated in
the Sobolev approximation.

Eq. (18) now allows the line source function to be computed
from data accumulated during the Monte Carlo simulation. The
steps are as follows:

1) From the values oḟElu given by Eq. (11), we immediately
have an estimate of the total rate per unit volume at which energy
is absorbed in exciting levelu,

Ėu =
∑

i<u

Ėiu (19)

Moreover, from the discussion in Sect. 4.2, we expect this esti-
mate to be superior to that obtained simply by tallying absorbed
packets.

2) For the adopted model of line formation, the fractionqul of
this absorbed energy escapes via the branchu → l. Accordingly,
the effective line emissivity is estimated to be

4πjul = qulĖu (20)

Note that the Sobolev optical depths and escape probabilities
needed to evaluate these branching probabilities from Eqs. (8)
and (15) are derived using our approximate formulae for exci-
tation and ionization (Sect. 2).

3) Finally, substitution of this value of4πjul into Eq. (18) gives
the desired line source functionSul.

From the discussion in Sect. 4.2 of the superior performance
expected of the estimator forĖlu given in Eq. (11), it follows that
the above steps for extractingSul from a Monte Carlo simulation
should yield data from which a high quality emergent spectrum
can be derived. In particular, thousands of weak lines in a typical
line list, the majority of which neither absorb nor emit a packet
during a simulation, will be assigned non-zero values ofSul by
this procedure.

5.3. Continuum source function

In addition to bound-bound transitions, our model of a SN’s
reversing layer also includes electron scattering. This process
must therefore also be included in the formal integral calcula-
tion, and so the corresponding source function, the mean in-
tensity in the co-moving frame, must be derived. Fortunately,
this quantity is readily evaluated at the many thousands of fre-
quencies in a typical line list by applying Sobolev theory to the
estimates ofĖlu given by Eq. (12).

If Jb
lu denotes the co-moving mean intensity of the incident

radiation in the far blue wing of the transitionl → u, then
the mean intensity of the partially attenuated incident radiation
averaged over the line profile is, in the Sobolev approximation,
βluJb

lu. Accordingly, the rate at which this transition absorbs
energy from the incident radiation field is

Ėlu = (Blunl − Bulnu)βluJb
luhνul (21)

When combined with Eqs. (14) and (15), this implies that

Ėlu =
4π

λul
(1 − e−τlu)Jb

lu (22)

a formula that allowsJb
lu to be derived from the values oḟElu

given by Eq. (12). Note that an implicit assumption here is that
there are no population inversions so that stimulated emissions
can be treated as negative absorptions andτlu remains non-
negative. The excitation formulae of Sect. 2 are consistent with
this assumption.

From the values ofJb
lu so derived, the corresponding quan-

tity in the extreme red wing,Jr
lu, can also be derived with a

further application of Sobolev theory. Applying the analysis in
Lucy (1971) to velocity lawv = r/t, we readily find that

Jr
lu = Jb

lue−τlu + Sul(1 − e−τlu) (23)

Accordingly, withJb
lu andSul already derived fromĖlu, this

equation gives us the further quantityJr
lu. Thus, for each spher-

ical shell of the discretized SN envelope, this analysis gives us
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mean intensities in the blue and red wings of every line in the
line list, with non-zero values whenever at least one packet came
into resonance with the line during the simulation. In Sect. 5.5,
these discrete values ofJν are used to approximate the electron
scattering source function.

5.4. Monte Carlo estimator for Jb
lu

From Eqs. (12) and (22), we immediately derive

Jb
lu =

λult

4π

ε0
∆t

1

V

∑ ε

ε0
(24)

as a Monte Carlo estimator for the mean intensity in a line’s
extreme blue wing, where, as for Eq. (12), the summation is
over packets that resonate with the line during the simulation.

In the original version of this investigation, this formula was
derived from an energy density argument (cf. Lucy 1999) and
was the starting point for the source function calculations de-
veloped in this Section. Here preference has been given to the
Ėlu estimator as starting point because the origin of superior
performance is then clearer. Nevertheless, it is worth emphasiz-
ing that this estimator forJb

lu provides the radiative coefficients
for a NLTE treatment of excitation carried out in the context
of a Monte Carlo simulation. Moreover, in accordance with the
discussion of Sect. 4.2, these coefficients are non-zero provided
only that at least one packet comes into resonance during the
simulation: it is not actually necessary that any excitationsl → u
occur.

5.5. Formal integral

If Iν(p)denotes the limiting specific intensity at rest frequencyν
of a beam that intersects the SN envelope with impact parameter
p, then

Lν = 8π2

∫ ∞

0

Iν(p)pdp (25)

is the luminosity density in the rest frame.
To calculateIν(p), we must evaluate (i) the increments in

intensity due to line formation at the points where the beam
resonates with lines and (ii) the increments due to electron scat-
tering along the segments between consecutive resonances. If
νk denotes the line frequencies in line list A, then the line for-
mation increment at the point of resonance withνk is given by
Sobolev theory as

Ir
k = Ib

ke−τk + Sk(1 − e−τk) (26)

where the superscriptsr andb denote the far red and blue wings
as before, andSk is derived as described in Sect. 5.2.

Now, in the absence of continuum processes, we would have
Ib
k+1

= Ir
k as in Lucy (1991), and so we could proceed recur-

sively through the line list to calculate the limiting intensity. But
here electron scattering is included, and we estimate its contri-
bution over the segment between thek and(k+1)th resonances
as

Ib
k+1 = Ir

k + ∆τe(Jk,k+1 − Ir
k) (27)

where∆τe(<< 1) is the electron scattering optical depth along
that segment, andJk,k+1 denotes the average co-moving mean
intensity along the same segment. For this latter quantity, we
adopt the approximation

Jk,k+1 =
1

2
(Jr

k + Jb
k+1) (28)

with the quantities on the right-hand-side calculated as de-
scribed in Sect. 5.3.

The initial conditions required for the recursive application
of Eqs. (26) and (27) are:Ib

1 if p > R andIb
m = Bν(Tb) if

p < R, wherem denotes the first transition in line list A for
which the point of resonance is above but not occulted by the
lower boundaryr = R.

6. Numerical results

In this section, the validity of the innovations developed in Sects.
4 and 5 are investigated. In addition, some implications of the
revised treatment of line formation are illustrated.

6.1. Line formation

In order to construct a test of the revised treatment of line forma-
tion, we first consider the NLTE populations of an ion’s discrete
levels in the low density limit. With no contribution to line emis-
sivity from collisional excitation and no energy exchange with
the radiation field due to photoionizations or recombinations,
the solution of the equation of statistical equilibrium is such
that the ion is in thermal equilibrium with the radiation field.
Specifically, in the stated circumstances, statistical equilibrium
implies that
∑

u

∑

l<u

4πjul =
∑

u

∑

l<u

Ėlu (29)

where4πjul andĖlu are given by Eqs. (15) and (21).
We can now interpret the treatments of line formation as

schemes to impose this condition of ionic thermal equilibrium
when computing the radiation field even though the NLTE pop-
ulations are not solved for. Thus, with the previous code’s as-
sumption of resonance scattering, the line emissivity is

4πjul = Ėlu (30)

and so Eq. (29) is enforced by taking each transition to be in
thermal equilibrium with the radiation field. On the other hand,
with the inclusion of branching in the revised code, the line
emissivity is (Sect. 5.2)

4πjul = qul

∑

i<u

Ėiu (31)

which, when summed overl, gives
∑

l<u

4πjul =
∑

l<u

Ėlu (32)

Accordingly, in this case, Eq. (29) is enforced by means of
this thermal equilibrium condition on excitations to and de-
excitation from each levelu.



L.B. Lucy: Monte Carlo techniques 217

-13.5 -13 -12.5

-13.5

-13

-12.5

Log Emissivity (exact)

Emissivity Test for Fe II

Branching

SN Type Ia

r = R

t = 13 days

Fig. 1. Effective line emissivities predicted by branching model plotted
against exact values for Feii lines formed at r = R for the Type Ia SN
test case. The units of emissivity are erg s−1 cm−3.

This interpretation of line formation models suggests that
they be tested by solving the NLTE discrete-level problem for
some ion in the low density limit and then comparing the ap-
proximate emissivities predicted by Eqs. (30) and (31) with the
exact values given by Eq. (15).

This test has been carried out on a 394-level atomic model
of Feii at various radii in our Ia model att = 13 days with
vph = 11000 km s−1. The mean intensityJnu incident at the
blue wings of the Feii transition is taken to beWBν(Tb) with
Tb = 12500K. But even withJν known, this NLTE problem
is non-linear because the escape probabilitiesβ depend on the
unknown level populations. Fortunately, simple repeated back
substitutions yield an accurate solution in∼ 5–10 iterations.

In Fig. 1, the emissivities predicted by the branching model
at the photosphere(r = R) are plotted against the exact values
for lines within a factor∼ 30 of the strongest line. Gratifyingly,
we see that numerous lines indeed havejapprox ' jexact, and
these form a dense ridge in this plot. Nevertheless, there is a
sprinkling of outliers with errors up to 0.4 dex. Overall, for the
entire list of 12,302 permitted lines, the emissivity-weighted
absolute error is 5.5%.

For comparison, Fig. 2 repeats the above but with the previ-
ous code’s assumption of resonance scattering. The number of
outliers is noticeably increased, as are their errors. The corre-
sponding weighted error is 9.1%.

Since effective line formation continues far out in a SN’s
atmosphere, the calculation of Fig. 1 has been repeated atr =
2R. The result as shown in Fig. 3 is a sharp improvement in
the precision of the approximate emissivities, as is in fact to be
expected for a model that is asymptotically exact asW → 0.
The weighted error in this case is 1.5%.
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Fig. 2. Same as Fig. 1 but for line formation by resonance scattering.
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Fig. 3. Same as Fig. 1 but at r = 2R.

This test of the branching model for this important ion con-
firms the expected improvement over the resonance-scattering
model and indicates that a satisfactory level of accuracy has
been achieved. Nevertheless, this test also confirms the earlier
remark (Sect. 1) that treating all permitted transitions as reso-
nance scatterers is more accurate than one might intuitively ex-
pect. Accordingly, although this improvement is certainly wel-
come, diagnostic analyses made with the previous code should
not be regarded as discredited.
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Fig. 4. Monte Carlo and Formal Integral spectra in the optical – near IR
for the Type Ia SN test case from a simulation with N = 40,000 packets.
The dominant contributors to the absorption troughs are indicated.

By rigorously reradiating absorbed energy, our treatment of
line formation implicitly assumes negligible creation or destruc-
tion of photons by electron collisions. This can be checked for
Feii by comparing the emissivities computed for Ne = 0 with
those for Ne corresponding to all species being singly ionized.
The resulting weighted errors of the Ne = 0 emissivities are
2.6% at r = R and0.01% at r = 2R. The neglect of collisions is
therefore justified at maximum light.

It should perhaps be emphasized that, in an actual simula-
tion, the emissivities will be less accurate than shown here due
to errors in the level populations. What these tests indicate is
the contribution of the line formation approximation to the error
budget.

6.2. Emergent spectrum

To illustrate and investigate the computation of SNe spec-
tra by applying the formal integral approach to Monte Carlo
simulations as described in Sect. 5, the following parameters
are selected:t = 13 days, log L/L� = 9.44, and vph =
11, 000 km s−1. Iterations for the boundary temperature then
give Tb ' 12500 K. Accordingly, this quantity is now also
regarded as known, and all simulations reported here use this
value. By thus fixingTb, the only quantities varying from sim-
ulation to simulation are the seed for the random number gen-
erator andN , the number of packets.

As a first step, the optical – near IR spectra given by the two
computational procedures for this test case are plotted together
in Fig. 4. In this simulation,N = 40, 000 and the constant ve-
locity width of the spectral bins is 386 km s−1. For the Monte
Carlo (MC) spectrum, these choices result in such large sam-

4 5 6 7
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Log(No. of pkts)

Emergent Spectra

Accuracy Tests

Type Ia SN

t = 13 days

Fig. 5. Lλ-weighted percentage errors of Monte Carlo (open circles)
and Formal Integral (filled circles) as a function of simulation size N.
Least-squares fits of Eq. (34) are also plotted.

pling errors that the predicted spectrum is close to useless for
analysing an observed spectrum. On the other hand, from the
same simulation, the formal integral (FI) spectrum shows little
evidence of sampling errors and would seem eminently suit-
able for comparison with real spectra. Moreover, to the eye, the
FI spectrum is not inconsistent with our expectation for the MC
spectrum from a much larger simulation. This strongly suggests
that, in computing the FI spectrum, we have in effect greatly ac-
celerated the convergence of the Monte Carlo procedure.

To investigate this accelerated convergence quantitatively,
a sequence of simulations for this test case has been carried
out with N increasing from104 to 107. From this sequence,
the FI spectrum forN = 107 is taken to be ‘exact’ – i.e., to
be identical withL∞

λ , the MC spectrum in the limitN → ∞.
With this assumption, we can estimate theLλ-weighted absolute
errors

δ =
∑

| Lλ − L∞

λ | /
∑

L∞

λ (33)

of the other spectra in the sequence.
In Fig. 5, the percentage errors given by this formula are

plotted againstN for both the MC and FI spectra. From this
plot, we see that the ‘errors’ of the MC spectra decrease asN
increases, consistent with our assumption that the FI spectrum
for N = 107 does not differ markedly from the MC spectrum
in the limit N → ∞.

With this point thus experimentally confirmed, the data in
Fig. 5 now allows us to assess the degree of accelerated conver-
gence achieved. To this end, the plotted logarithmic errors have
been fitted by least squares to the functional form

δ = δ0(
104

N
)1/2 (34)
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The resulting scaling constants areδ0 = 2.87% for the FI spectra
andδ0 = 51.3% for the MC spectra. These fits are plotted in
Fig. 5 and seen to represent the data well.

From these values ofδo or directly from Fig. 5, we see that,
for the chosen binning, the typical error of a point on the MC
spectrum is a factor∼ 18 larger than for the FI spectrum. More
importantly, to achieve some specified precision, the MC spec-
trum requires a simulation with a factor∼ 320 increase inN
compared to that for the FI spectrum. This huge acceleration
of convergence obviously translates rather directly into reduced
computer time per spectrum; and this allows the spectra from
numerous models to be used in the analysis of a single observed
spectrum.

In the above convergence test, the noisy MC spectra were
not smoothed. The question therefore arises of whether the
huge convergence gain survives if the sampling fluctuations are
smoothed. Accordingly, the test has been repeated with the MC
spectra smoothed by the method of fourth differences (Lanc-
zos 1956). The result is thatδo for the MC spectra decreases
to 37.9% and the convergence gain factor drops to∼ 170. Evi-
dently, the FI spectra provide a genuinely huge gain in compu-
tational efficiency.

It is informative also to apply this same smoothing operation
to the FI spectra. We first note that if an approximate theoreti-
cal spectrum is not subject to sampling errors, then smoothing
will in general worsen its fit to the exact spectrum. This is in
fact what happens with the FI spectra. All the FI spectra in the
above sequence are degraded by smoothing, and this becomes a
marked effect asN → ∞. For example, forN = 1.3 × 106 an
FI spectrum withδ = 0.28% is degraded to0.73% by smooth-
ing. This experiment confirms the negligible impact of sampling
errors on the FI spectra whenN

>
∼ 104.

Although highly successful, these tests do indicate that some
aspects of the procedures in Sect. 5 warrant improvement. In
Fig. 5, theδ’s for the MC spectra trend above theN−1/2 fit for
largeN , and this is confirmed by two independent sequences
of simulations. This suggests a slight difference∼ 2% between
the MC and FI spectra in the limitN → ∞. Given the other
uncertainties in the computation of SNe spectra, this slight dis-
crepancy is not of immediate concern.

6.3. Implications

An option included in the present code is that of disallowing
branching and thereby reverting to resonance scattering. The
implications of branching can therefore be investigated with all
other aspects fixed.

With identical stratification of ionization and excitation thus
ensured, simulations for these two line formation mechanisms
have the same Sobolev optical depths for all transitions at all
points in the envelope. Accordingly, the absorption components
of P Cygni line profiles are identical if formed against the con-
tinuum emitted by the lower boundary. But even in this case, the
emission components will in general differ since the branching
code does not, for each transition, impose numerical balance
between absorbed and emitted packets.
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Line Formation Test
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Fig. 6. Formal integral spectra for Type Ia SN test case with line for-
mation by branching (bold line) and resonance scattering (thin line).

The cumulative differential effect of branching on the emer-
gent spectrum is illustrated in Fig. 6, where spectra for our test
case for each mechanism are superposed. The differences in
the optical – near IR are evidently inconsequential. However,
at λ

<
∼ 2800A, the fluxes predicted with branching are 0.2–

0.6 dex higher than with resonance scattering. Now, with the
latter mechanism, UV fluxes are low due to severe line block-
ing by thousands of metal lines. But with branching, these low
fluxes are enhanced by the addition of an emission-line spec-
trum due to radiation diverted fromlonger wavelengths. This
reverse fluorescence effect results from the absorption of optical
radiation by an ion in an initial excited state (usually metastable)
followed by decay to a final state of lower energy. The ions re-
sponsible for this effect in order of importance are Feii, Feiii
and Niii.

The inconsequential changes in the optical revealed by Fig. 6
would at first seem to imply that resonance-line scattering was
already of sufficient accuracy for interpreting observed spec-
tra at these wavelengths. However, the enhanced ambient UV
radiation field due to this reverse fluorescence effect changes
the stratification of temperature, ionization and excitation when
the refinements of Paper II are implemented. The resulting
changes in Sobolev optical depths then constitute a feedback
effect that branching has on the diagnostically-important ab-
sorption troughs that dominate optical spectra. The implication
of such changes for diagnostic investigations of observed spec-
tra will be discussed in detail by Mazzali (1999).

7. Conclusions

The purpose of this paper has been to describe and test two
potential improvements to a Monte Carlo spectral synthesis code
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for SNe. To this end, these have been implemented for a simple,
test-bed model for the atmosphere of a Type Ia SN.

The first modification replaces the previous code’s treat-
ment of all transitions as resonance lines with a treatment of
branching based on Sobolev escape probabilities. Interestingly,
this improvement in the mechanism of line formation can be in-
corporated into a Monte Carlo code without introducing photon
splitting, thus avoiding the coding complexity that such splitting
surely entails.

In support of this upgrade, a quantitative test of the intrinsic
precision of the branching model carried out for the crucial
Feii ion demonstrates a satisfactory overall accuracy as well
as a useful gain in accuracy relative to the resonance-scattering
model. Accordingly, the severe redistribution in frequency that
radiation suffers in a Type Ia envelope is undoubtedly more
accurately treated in the updated code.

The second modification replaces the noisy emergent spec-
trum obtained by binning escaping packets with a calculation
based on the formal integral for emergent intensity. To achieve
this, Sobolev theory is used to extract line- and continuum
source functions from a Monte Carlo simulation; and this step al-
lows an intervention with theory that dramatically improves the
accuracy of line source functions. Because of this latter improve-
ment, the resulting emergent spectra suffer little from sampling
errors and demonstrably achieve an accuracy that with simple
binning would require a simulation larger by a factor∼ 320.
This huge gain in computational efficiency greatly enhances the
diagnostic power of the updated code, since in future numerous
theoretical spectra can be generated as one adjusts parameters
and varies the stratification of elements in the attempt to fit an
observed spectrum.

The code described in this paper is the prototype for a new
spectral synthesis code for future use in rapidly carrying out
coarse spectral analyses for newly-discovered SNe. To this end,
this code together with the atomic data files I and II derived
from the Kurucz-Bell (1995) data have been transferred to P.A.
Mazzali for the incorporation of the refinements of Paper II. In
a companion paper (Mazzali 1999), he will describe this further
step as well as discussing the diagnostic implications of the
modifications.
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