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Abstract. Improvements in Monte Carlo techniques for comarises as to how this productive code should be upgraded. In
puting synthetic spectra of supernovae (SNe) are described aedking to answer this question, the prime consideration has
tested using a simplified model for the atmosphere of a Typeen not to compromise the code’s role as a diagnostic tool
la SN. In the first innovation, a procedure is implemented thedpable of being used interactively to make a rapid coarse anal-
replaces the previously-assumed line formation by resonatysés of the spectrum of a newly-discovered SN, thus allowing a
scattering with a branching model using Sobolev escape prohaantitative astrophysical interpretation to replace the qualita-
bilities, and the resulting improvement is demonstrated by cotive comparisons that traditionally suffice for an initial discovery
parison with exact calculations for Eeln a second innovation, paper. The code must therefore remain robust and fast. Accord-
greatly accelerated convergence is achieved in the computatfimgly, no attempt is made here to duplicate the level of physical
of emergent spectra by replacing the crude procedure of binnsaphistication incorporated, for example, in the code developed
escaping Monte Carlo quanta with one based on the formal inbg-Eastman & Pintd (1993).
gral for emergent intensity. This is made possible by extracting A major simplifying assumption fundamental to the archi-
line- and continuum source functions from a Monte Carlo sintecture of the previous code as well as to its predecessor stellar
ulation. Because of accelerated convergence, the required sized code (Abbott & Lucy 1985) is that of line formation by
of the Monte Carlo simulations is reduced by a factoB00, coherent scattering in the matter frame. In addition to lend-
thus greatly speeding up the calculation of model spectra dand itself naturally to a Monte Carlo treatment because of its
thereby allowing interactive diagnostic analyses of the specéfimination of photon splitting, this assumption has the further
of newly-discovered SNe. merit of automatically generating a radiation field that is rig-
orously divergence-free, thus incorporating this (almost exact)
Key words: radiative transfer — methods: numerical — starsonstraint even though the radiative equilibrium temperature
atmospheres — stars: supernovae: general distribution is not solved for.

In addition to these incidental benefits, treating every bound-
bound transition as if it were a resonance line is more accurate
than one might intuitively expect. When the constraint of statis-
tical equilibriumis added to the constraints imposed by selection
In two previous papers (Luc¢y 1987a, Paper I; Mazzali & Lucyules, the emissivity in a non-resonance line is often obliged not
1993, Paper Il), a Monte Carlo code for synthesizing the earky- differ greatly from the rate of absorption in that line (Chugai
time spectra of SNe has been described. Originally written in fig80; Abbott & Lucy[1985), thus restricting the fluorescent
days following the explosion of SN 1987A and only modifiediegradation of dilute radiation fields.
slightly since, this code has become a standard diagnostic toolNevertheless, improving the treatment of line formation
for analysing SNe spectra. Examples of SNe analyzed with tBisould clearly be of high priority in updating the code. Ac-
code are the following: SN 1987A (LuCy 1987b; Fosbury et atordingly, in the first of two innovations, a technique will be de-
1987; Mazzali et al. 1992); SN 1990N (Mazzali et al. 1993); Shtribed that allows branching to occur after absorption by non-
1991T (Mazzali et al. 1995); SN 1991bg (Mazzali et al. 1997)esonance transitions; and this is achieved with negligible im-
SN 1993J (Zhang et al. 1995); and SN 1994D (Patatlet al| 1996act on the complexity, speed or robustness of the Monte Carlo

However, in the intervening decade, techniques of spectsalde. Moreover, the derived radiation field remains divergence-
synthesis have advanced significantly, and the available coffge.
puter power has increased remarkably. The question thereforeThe second aspect of the previous code that has been re-
Send offprint requests to: L.B. Lucy _examined is the calculation of the emergent spectrym. Follow-
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perial College of Science, Technology and Medicine, Prince ConsBfVided by that code is derived from the photon packets that
Road, London SW7 2BZ escape to infinity by binning them according to their rest fre-

1. Introduction
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quencies, with the result that Poisson noise is very evident uvhere the dilution factor is simply set equal to its value in the
less one follows a huge number of packets. Interestingly, an aptically-thin limit, i.e.
most noise-free emergent spectrum can be obtained even from a

modest-sized Monte Carlo experiment by using the formal inte- 1 R\?
gral for the emergent intensity. This approach is made possiM/e: 9 L=q/1- <)
by first computing the source function implied by the Monte

Carlo code’s treatment of line formation. By reducing comggwever. for metastable levels. we $&t — 1. since the de-

puter time, this second innovation greatly enhances the COd&'ﬁ)ulation of these levels by upward transitions is atst’.
usefulness as an interactive diagnostic tool. The adopted ionization formula is

These two innovations are described and illustrated below
in the context of computing SNe spectra. But they are equally;

()
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relevant for stellar-wind codes and possibly also for other asy Ujy h3
trophysical problems. 7\ /2
(e) —x/kTr (6)
R
2. Physical model where
In this section, the assumptions that determine the structure of CHW(l=0) 7)

the supernova’s envelope are stated. Here it should be empma-

sized that this aspect has been deliberately kept simple sia@@l ¢ is the fraction of recombinations going directly to the

this model serves only as a test-bed for the developmentgpbund state.

technique. In a companion paper, Mazzali (1999) will add the The correction facton modifies Stomgren’s[(1939) treat-

refinements described in Paper Il and discuss the implicatigignt of nebular ionization to allow for ionization from excited

of the fully updated code for diagnostic studies of SNe spectiates in circumstances where dilution is not extreme. Specifi-
As in Papers | and I, a Schuster-Schwarzschild modeldally, Eq. (6) is derived under the assumption that the ionizing

adopted for the line-forming region of a SN's envelope. Thus, @ntinuum is dilute Wien, that photoionization coefficients are

the lower boundary = R, a black-body continuum is emitted, 2, and that excited states have populations depleted by the

ie. factorW from Boltzmann afl’ = T’z. This formula was devel-
N oped in the context of a collaboration with D.C. Abbott and was
I (R) = Bu(Ty) (1) described and used in Paper | and also by Abbott in his work

. . 0on SN 1987A (Schmutz et al. 1990). Further elaborations in the
where T;, the boundary temperature, is to be determinefleaiment of ionization described in Paper Il are not included
Bound-bound transitions in the regien> R then impose a here.
line spe(_:trl_Jm on thls_ featureless_ contlnuu_m. The patrtition functioné/; needed for Eq. (6) are computed
_Inthis investigation, the region > £ is assumed t0 be | sinq the ahove excitation model — i.e., LTE partition functions
isothermal both with respect to the characteristic temperatyie, ot assumed.

T’ of the ionizing continuum and to the local electron temper- 1 chemical elements included in this model and their mass
atureT,.. Specifically, we set fractions are: C (0.01), O (0.01), Ne (0.01), Mg (0.01), Si (0.45),

T — 0w — 08T, @) S(0.35),Ar(0.04),Ca(0.03), Fe (0.07),Co(0.01), and Ni (0.01).
e T RTINS These crudely represent the abundancesin model W7 of Nomoto
The density at radius > R and elapsed timeis obtained from etal. (1984) at or near the photosphere at maximum light. In this
the assumption of homologous expansion and the specificaﬁSﬁt'bed model, the abundance_s are assumed uniform through-
of a reference model. Accordingly, we have out the atmosphere. However, in fitting observed spectra or in
’ calculating spectra for explosion models, abundance stratifica-
10\ tion must be allowed for. This is of course a straightforward
p(v,t) = (t) p1(v) (3) generalization of this code.
The basic parameters of this model &réhe elapsed time
wherev = r/t is the constant velocity of the mass shell whicfince explosion, the photospheric radRigor, equivalently, the
is at radius- at timet, andp, (v) is the density-velocity profile Photospheric velocity,,, = R/t), the bolometric luminosity
att = ¢,. Here we use a single power-law approximatipnx( Lpor, the_ _reference density functign (v), and the chemical
v~7)to the density plot given by Branch, Doggett & ThielemanfOmposition. _ _ _
(1985) for the Type la model W7 &t = 16 days. A useful option introduced into this code is to drdp,,
The treatment of excitation is that of Abbott & Ludy (1985)S Parameter and instead Usg\;, A;), the luminosity in the
Thus, for normal levels, wavelengthinterval\, A2). This is obviously more convenient
when analysing an observed spectrum.
R _ W&e_éz/kTR (4)
ni N
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3. Linelists to the changes required by the improved treatment of line forma-
tion and to the development of a Monte Carlo estimator required

In Papers | and Il, atomic transitions and thgfi-values were . .
from Abbott (1982) and Kurucz & Peytremarin (1975). In thiw%?n calculating the emergent spectrum from the formal inte

work, these data have been replaced by the data on a CD-ROM™
distributed by Kurucz & Bell[(1995). This data is manipulated

as described below. In particular, in contrast to the previodsl. Branching
stellar wind and supernova codes, the present code’s imprO\A%d
treatment of line formation is greatly facilitated by creating
line lists containing identical data but differently ordered.

in the previous codes, the basic quanta in this Monte Carlo
calculation are packets of identical photons, so&ha} = nhv

) . . : . js the energy of a packet containinghotons. In a single Monte

t The flrs(tjsﬁp in usg]g theTKhurucz-?lell (IjaFa IS to |tnferttr(;e_ arlo experiment)N packets of energy(v) = ¢, are launched

atomic modet for €ach ton. 1hus, a f'e () IS constructed 1,55 the lower boundary= R and their complicated trajec-
which, for each ion, the energy levels featuring in the tran-

. : : tories through the expanding envelope followed as before. But
sition array and theig-values are tabulated. A second file (Il g P g b

. . . . ” w, when a packet is absorbed by the transitiem «, we no
can then be constructed in which, for each ion, its transmoqgQ P y Y

| | tabulated. with the t " beina identifi dngerinsistthatthis energy is re-emitted by the same transition
0g g f values are tabulated, i € transitions being identined - Instead, we consider all permitted decays from level

only by » andl, the indices in file | of the upper and lower en- | ian th @of th
ergy levels. These two files provide compact storage of the dand randomly assign the absorbed ener ese decay

. ; Lo e éF?annels in accordance with their relative effective emissivities.
and allow rapid construction of working line lists for speC|f|<;|.his is accomplished as follows:
models. :

B fthe diff inth itation f la (Sect By construction, the permitted decays from leugbrm a
ecause ot the ditierence in the excitation formu a(_ec : gmtiguous subsetin line list B. If the transitian— 7 is thekth
between normal and metastable levels, it is useful to ident

. ) . ember of this subset add j;, denotes its effective emissivity
metqstgble levels in the;e .flles. This is done by replaCingy  _ i.e. after correcting for photon trapping — then the fraction of
—E; infile landl by —[ in file II.

L : . the energy emitted by levelthat escapes via thgh branch is
From these basic files, a list of transitions relevant for a
particular model is created as follows: Qe = Jr/ E Jm (8)

1) All lines of an element are excluded
adopted mixture.

2) All lines of an element's.J + 1)-th ion are excluded if
XJ,J+1 > XL, an appropriate limiting potential.

3) Of the surviving transitions, a further culling eliminates a
those with Sobolev optical depths everywherer, an appro-

k
priately small cut-off value. Sk = Z Im 9)
1

ititis absent from thchordingly, in deciding to which of the transitions — ¢

the absorbed energy should be allocated, we first generate
random number from (0, 1), and then compute the sequence of
Hartial sums

Having thus excluded all inconsequential transitions, those
that survive are organized into two line lists as follows: k=1,2,... untilthe conditios; > zis satisfied. The transition

o liet A- i ; . k that first fulfils this inequality is the transition which carries
I) Line list A: lines ordered according to frequency with, ; < . .
) g a y ' = off the absorbed energy and which therefore defines the rest

Vg. . . .
I1) Line list B: lines grouped according to ion and then, for eacfﬁequency of the photons in the emitted packet. If during the

ion, according to the index of the transitions’ upper levels. Monte Carlo experiment many excitations to leweiccur, then
the ensemble of packets assigned randomly to decay channels

Because of the expansion of the SN's envelope, the Gp-, ; in this way will clearly constitute an accurate realisation
moving frequency of a photon in free flight decreases with timgs the emission from levat.

Line list A serves therefore as usual to identify efficiently the By avoiding photon splitting, this treatment of branching

next transition with which a photon (or photon packet) mighgads to relatively simple and compact code. The prior compu-

interact. On the other hand, after a packet has been absorbeghiyny of line list B also contributes considerably to simplicity
the transitionl — u, the possible radiative decays are the set gfyq efficiency.

permitted transitions — 4 (< w) with the same upper level.
But these transitions are contiguous in line list B, and so an r?g- ] )
propriate random selection of the re-emitted packet's frequerftg- Line absorption rate

can be simply and efficiently made. In the procedures described in Papers | and Il, a line absorption
I — w results in a packet’s entire energybeing absorbed.
Accordingly, the obvious estimate for the rate per unit volume at
which energy is removed from the radiation field by excitations
In Papers | and Il, rather complete details are given of how the+ u is

Monte Carlo calculation proceeds in the presence of electron- e 1 €

and resonance-line scattering. This sectionis therefore restrictéd = ALV Z P (10)

4. Monte Carlo procedures
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where the summation extendsly over the packets that are4.4. Relativistic terms

actually absorbed by the transition— u in volume element In Paper Il, itwas shown how easily relativistic terms (except for
V. In particular, therefore, packets that are redshifted acrgss pertl, y P

co-moving frequency,,; without suffering absorption make no ime d_elgy) can be incorporated into a M_onte Carlo treatment
contribution. of radiative transfer. However, an essential element of this in-

Interestingly, an estimator of higher statistical accuracy Cé/ﬁstlgatlon is the application of Sobolev theory to Monte Carlo

be readily constructed. A photon redshifted into resonance wit ulations, and the formulation of Sobolev theory used (Lucy
the line at,,, has probabilityl — e~ of being absorbed, wherelg?l) neglects all terms 6f(v/c) except for the Doppler effect.

71 is the Sobolev optical depth. Applying this probability té%cordlngly, for consistency, this same level of approximation

: . it Hsed here also in the Monte Carlo Calculations.
packets as they come into resonance, we derive the modifie . .
Note that the neglect of relativistic terms only introduces

timator . . _
estimato errors of< 10%, substantially less than the likely uncertainties
e 1 - € in the density profile, in the stratification of abundances, and in
B =Ry —e )2 € (1) the ionization balance.

where now the summation extends oalfirpacker i/ whose ¢ Emergent spectrum

co-moving frequencies- v,; at some time during the Monte

Carlo experiment. In this section, a procedure for calculating the emergent spec-
For a line withr,, << 1, it may well happen that no packettrum is developed that is greatly superior to the crude estimate

is absorbed i/ by the transition — u. Eq. (10) then gives provided by the frequency distribution of escaping packets. This

E,, = 0in V, an outcome that is a typical consequence pfocedure uses the formal integral for the emergent intensity

the limited dynamical range of Monte Carlo simulations. lhut with line and continuum source functions derived from the

contrast, in this same circumstance, Eq. (11) correctly retutdonte Carlo experiment.

a non-zero value, provided only that at least one packet came

intq resonance wi_tID/ul in V during th_e simulation. Given the 5.1. Basicidea

typical velocity widths of the spherical shells that constitute

the discrete volume elements of the SN envelope, this lattéfithout recourse to Monte Carlo techniques, noise-free SNe

weaker condition is satisfied (except in far UV)NF & 103, a SPectra can be computed by incorporating Sobolev theory into

condition fulfilled by a wide margin in routine simulations with@ formal integral calculation of the luminosity density (e.g.
the previous code. Lucy [1991). However, this requires that the source functions

be known or, equivalently, the level populations. Accordingly,
] in the context of a NLTE treatment of level populations, the
4.3. Scaling formal integral approach is indeed preferable to a Monte Carlo

At the conclusion of a Monte Carlo simulation, a fraction of théimulation. However, in the context of approximate treatments
N incident packets are found to have escaped to infinity, aAfi!€vel populations and line formation, the relevance of the
these yield the following estimate of the SN's luminosity, ~ formal integral is not at all evident. Nevertheless, the prospect
of thereby eliminating or reducing sampling errors makes this
Loy = 270 Z £ (12) approach wc_:rth explor.in.g. -
t < ¢o One obvious possibility would be to eliminate the Monte
Carlo calculation entirely and simply compute the emergent
But since we choose to regafd,,; as an input parameter, thisspectrum from the formal integral with source functions eval-
estimator in fact serves to fix the scaling constantAt, and yated using our approximate formulae (Sect. 2) for the level
this then allows all other estimators to be converted to phySiQﬁ]pubﬂons. However, the resulting emergent spectrum would
units. differ systematically from the corresponding Monte Carlo spec-
In Sect. 2, the option of taking (A1, \2) as luminosity pa- trum. Moreover, apart from sampling errors, the Monte Carlo
rameter was mentioned. In this case, the summation in Eq. ((8kctrum will in general be closer to the truth than the formal
is restricted to escaping packetgin, \2) andthery, /At fixed integral spectrum calculated in this way.

as before. To justify this latter remark, suppose that, for some ion, our
With €y / At thus determined, the value'tf is updated from approximate formulae seriously overpopulate a hormal level
the equation In the above hypothetical formal integral calculation, this error
c directly translates into enhanced emissivities for all limes [,
L*Y(R) = NE =47 R*cT}) (13) with corresponding spurious emission bumps in the emergent

spectrum. On the other hand, in the Monte Carlo simulation,
which derives from Eq. (1). Note that, for this simple modegmission in the transitions — [ only arises following absorp-

iterations are required only to determifig since it in turn tions that excite levek, and these occur at a rate governed by
determinesi’z and T, and therefore also the stratification othe typically much more reliably estimated populations of the
excitation and ionization. ground state and other low-lying (especially metastable) levels.
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With the origin of this expected superiority of the Mont&) For the adopted model of line formation, the fractigp of
Carlo spectrum thus understood, it is now of interest to cotiis absorbed energy escapes viathe branehi. Accordingly,
struct a formal integral procedure that incorporates this highlye effective line emissivity is estimated to be
desirable insensitivity to the population of upper levels. To d£ e jut = GuiFu (20)
this, the line source functions implicit in the Monte Carlo simu-
lation must be extracted. This in turn can be done by noting thBiote that the Sobolev optical depths and escape probabilities
in effect, the Monte Carlo simulation derives line emissivitiede€ded to evaluate these branching probabilities from Egs. (8)
for transitionsu — [ by applying approximate branching ratio®nd (15) are derived using our approximate formulae for exci-
.1 10 the rate at which transitioris— v absorb energy. tation and ionization (Sect. 2).

3) Finally, substitution of this value dfrj,,; into Eq. (18) gives
the desired line source functid),;.
From the discussionin Sect. 4.2 of the superior performance

Expressed in terms of level population and Einstein coefficienexpected of the estimator fék,, givenin Eq. (11), it follows that

5.2. Line source function

the general expression for the line source function is the above steps for extractisg; from a Monte Carlo simulation
should yield data from which a high quality emergent spectrum
Sy = _ Aune (14) canbe derived. In particular, thousands of weak lines in a typical
Biung — Buin, line list, the majority of which neither absorb nor emit a packet

guring a simulation, will be assigned non-zero valueSofby

and this is the form useful in a formal integral calculation aftet™
this procedure.

a NLTE determination of the level populations.
Because a NLTE calculation is not carried out, it is useful
first to express the line source function in terms of the line%3. Continuum source function

effective emissivity, which, in the Sobolev approximation, is . .
In addition to bound-bound transitions, our model of a SN’s

AT jr = Awinig v Bui (15) reversing layer also includes electron scattering. This process
must therefore also be included in the formal integral calcula-
where tion, and so the corresponding source function, the mean in-
tensity in the co-moving frame, must be derived. Fortunately,
6= (1 —e M) (16) this quantity is readily evaluated at the many thousands of fre-
guencies in a typical line list by applying Sobolev theory to the
is the escape probability and estimates of;,, given by Eq. (12).
If J?, denotes the co-moving mean intensity of the incident

Autt (17) radiation in the far blue wing of the transitidn— u, then

m the mean intensity of the partially attenuated incident radiation
is the Sobolev optical depth. Note thats given here in the averaged over the line profile is, in the Sobolev approximation,
form appropriate for velocity law = r/t and that Einstein G.J;,. Accordingly, the rate at which this transition absorbs
B-coefficients have been preferred to the oscillator strength @ftergy from the incident radiation field is

statistical weights. N _ By = (Brani — Bung) BiuJb, hva (21)
From Egs. (14)—(17), it immediately follows that ) L
When combined with Egs. (14) and (15), this implies that

Tiu = hV’ul(Blunl - Bulnu)

. m —r
AT jor = (1—e )y (18) g, ;“T (1—e )P, (22)

4

)\ult ul

a formula valid for line formation in a SN envelope treated ia formula that allows’?, to be derived from the values @,

the Sobolev approximation. given by Eq. (12). Note that an implicit assumption here is that
Eq. (18) now allows the line source function to be computeHere are no population inversions so that stimulated emissions

from data accumulated during the Monte Carlo simulation. Tlean be treated as negative absorptions gpdemains non-

steps are as follows: negative. The excitation formulae of Sect. 2 are consistent with

1) From the values of;, given by Eq. (11), we immediately this assumption.

b . .
have an estimate of the total rate per unit volume atwhich energy From the values ofy;, so derived, the corresponding quan-
is absorbed in exciting level, tity in the extreme red WInngu, can also be derived with a

further application of Sobolev theory. Applying the analysis in
B, = Z Eiu (19) Lucy (1971) to velocity law = r/t, we readily find that

i<u Jl, = Jhe T 4 Sy (1 — e ) (23)
Moreover, from the discussion in Sect. 4.2, we expect this estiecordingly, with J?, and S,,; already derived frond,,,, this

mate to be superior to that obtained simply by tallying absorbeduation gives us the further quantity . Thus, for each spher-
packets. ical shell of the discretized SN envelope, this analysis gives us
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mean intensities in the blue and red wings of every line in thehereAr,. (<< 1) is the electron scattering optical depth along
line list, with non-zero values whenever at least one packet cathat segment, and;, ;1 denotes the average co-moving mean
into resonance with the line during the simulation. In Sect. 5.btensity along the same segment. For this latter quantity, we
these discrete values gf are used to approximate the electroadopt the approximation

scattering source function. 1 ,
k1 = §(J1: + Jiy1) (28)

5.4. Monte Carlo estimator for .J7, with the quantities on the right-hand-side calculated as de-
scribed in Sect. 5.3.
The initial conditions required for the recursive application
b Aut €0 1 Z € (24) ©Of Egs.(26) and (27) ard? if p > RandIb, = B,(Tp) if
€0 p < R, wherem denotes the first transition in line list A for

From Egs. (12) and (22), we immediately derive

PN
as a Monte Carlo estimator for the mean intensity in a linehich the point of resonance is above but not occulted by the
extreme blue wing, where, as for Eq. (12), the summation!@ver boundary- = R.
over packets that resonate with the line during the simulation.

In the original version of this investigation, this formulawas. Numerical results

derived from an energy density argument (cf. Lucy 1999) ar|1dth. tion. the validity of the i tions developedin Sect
was the starting point for the source function calculations de- IS section, the valldity oTIhe Innovations gevelopedin Sects.
nd 5 are investigated. In addition, some implications of the

veloped in this Section. Here preference has been given to the d treat t of line f i illustrated
E, estimator as starting point because the origin of superf&y'se reatment ot fine formation are fliustrated.

performance is then clearer. Nevertheless, it is worth emphasiz-

ing that this estimator fa#, provides the radiative coefficients6.1. Line formation
for a NLTE treatment of excitation carried out in the conte>it . .
of a Monte Carlo simulation. Moreover, in accordance with t A ordertp constrgctatest ofthe rewseq treatment. of,llne_forma-
discussion of Sect. 4.2, these coefficients are non-zero provijega’ we first consider the NLTE populations of an ion’s discrete
only that at least one packet comes into resonance during

simulation: itis notactually necessary that any excitatiorsu

%\éels in the low density limit. With no contribution to line emis-
sivity from collisional excitation and no energy exchange with

the radiation field due to photoionizations or recombinations,

oced the solution of the equation of statistical equilibrium is such
' that the ion is in thermal equilibrium with the radiation field.
5.5. Formal integral Specifically, in the stated circumstances, statistical equilibrium
If I,,(p) denotes the limiting specific intensity at restfrequezmcy"npIIeS that
of a beam that intersects the SN envelope with impact parame?g Z A jor = Z Z Ep (29)
D, then u I<u U I<u
L, = 82 /OC I (p)pdp (25) wheredrj,; andE}, are given by Egs. (15) and (21).
0 We can now interpret the treatments of line formation as
is the luminosity density in the rest frame. schemes to impose this condition of ionic thermal equilibrium

To calculatel, (p), we must evaluate (i) the increments ivhen computing the radiation field even though the NLTE pop-
intensity due to line formation at the points where the beawgtions are not solved for. Thus, with the previous code’s as-
resonates with lines and (ii) the increments due to electron sc@Mption of resonance scattering, the line emissivity is
tering along the segments between consecutive resonance@ﬁfﬂ — By, (30)

vy, denotes the line frequencies in line list A, then the line for- ) ) N _
mation increment at the point of resonance withis given by and so Eq.(29) is enforced by taking each transition to be in

Sobolev theory as thermal equilibrium with the radiation field. On the other hand,
. b . with the inclusion of branching in the revised code, the line

I = Le™™ + Sp(1—e™™) (26)  emissivity is (Sect. 5.2)

where the superscriptsandb denote the far red and blue W|ngs47rjul = Qui Z B, (31)

as before, and}, is derived as described in Sect. 5.2.
Now, in the absence of continuum processes, we would have, .

I};H = I asin Lucy (1991), and so we could proceed recuWh'Ch’ when summed ovéy gives

sively through the line list to calculate the limiting intensity. Bu‘g AT jor = Z Ey, (32)

here electron scattering is included, and we estimate its contrr,

bution over the segment between thend(k + 1)th resonances

as

i<u

I<u

Accordingly, in this case, Eq. (29) is enforced by means of
this thermal equilibrium condition on excitations to and de-
I};H =1 + Are(Jkp+1 — 1) (27) excitation from each level.
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Fig. 1. Effective line emissivities predicted by branching model plotteBig. 2. Same as Fig. 1 but for line formation by resonance scattering.
against exact values for Felines formed ar = R for the Type la SN
test case. The units of emissivity are erg sm—3

Emissivity Test for Fe Il

This interpretation of line formation models suggests that I Branching o’
they be tested by solving the NLTE discrete-level problem for - e 8
some ion in the low density limit and then comparing the ap-,, | . S i
proximate emissivities predicted by Egs. (30) and (31) with the
exact values given by Eq. (15).

This test has been carried out on a 394-level atomic mo@l
of Ferr at various radii in our la model dt = 13 days with
vpr, = 11000kms~t. The mean intensity,,,, incident at the
blue wings of the Fa transition is taken to b& B, (T},) with
T, = 12500 K. But even with.J,, known, this NLTE problem
is non-linear because the escape probabilifieepend on the . )
unknown level populations. Fortunately, simple repeated back [ - T AL SN Type la 1
substitutions yield an accurate solutiominb—10 iterations. Lo ’ .

In Fig. 1, the emissivities predicted by the branching model L '
at the photospherg: = R) are plotted against the exact values A t=13 days
for lines within a factor 30 of the strongest line. Gratifyingly, *° | 4~ . ]
we see that numerous lines indeed hayg,or ~ jezact, and ¥
these form a dense ridge in this plot. Nevertheless, there is a Log Emissivity (exact)
sprinkling of outliers with errors up to 0.4 dex. Overall, for the .
entire list of 12,302 permitted lines, the emissivity- We|ghted
absolute error is 5.5%.

For comparison, Fig. 2 repeats the above but with the previ-
ous code’s assumption of resonance scattering. The number ofThis test of the branching model for this important ion con-
outliers is noticeably increased, as are their errors. The coriems the expected improvement over the resonance-scattering
sponding weighted error is 9.1%. model and indicates that a satisfactory level of accuracy has

Since effective line formation continues far out in a SN'’been achieved. Nevertheless, this test also confirms the earlier
atmosphere, the calculation of Fig. 1 has been repeated=at remark (Sect. 1) that treating all permitted transitions as reso-
2R. The result as shown in Fig. 3 is a sharp improvement mance scatterers is more accurate than one might intuitively ex-
the precision of the approximate emissivities, as is in fact to pect. Accordingly, although this improvement is certainly wel-
expected for a model that is asymptotically exactids— 0. come, diagnostic analyses made with the previous code should
The weighted error in this case is 1.5%. not be regarded as discredited.

Log Emissivity (
KR
N
I
<
1

g.3. Same as Fig. 1 buta=2R.
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Fig. 4. Monte Carlo and Formal Integral spectra in the optical —near IRg. 5. Lx-weighted percentage errors of Monte Carlo (open circles)
for the Type la SN test case from a simulation with N = 40,000 packe&)d Formal Integral (filled circles) as a function of simulation size N.
The dominant contributors to the absorption troughs are indicated. Least-squares fits of Eq. (34) are also plotted.

ourtreatment%qng errors that the predicted spectrum is close to useless for

By rigorously reradiating absorbed energy, .
line formation implicitly assumes negligible creation ordestruél-naIySIng an observed spectrum. On the other hand, from the

tion of photons by electron collisions. This can be checked fap e simulation, the formal integral (FI) spectrum _shows Iittl_e
Ferr by comparing the emissivities computed for Ne = 0 Witﬁwdence of sampling errors and would seem eminently suit-

those for Ne corresponding to all species being singly ioniz .Ie for comparison with real speptra. Moreover,. tothe eye, the
The resulting weighted errors of the Ne = 0 emissivities a spectrum is not inconsistent with our expectation for the MC

2.6% dr =R and0.01% at r = 2R. The neglect of collisions isSpectrum from a much larger simulation. This strongly suggests
therefore justified at maximum light that, in computing the FI spectrum, we have in effect greatly ac-

It should perhaps be emphasized that, in an actual simu('fg-lerat_ed the_ convergence of the Monte Carlo procedu_re._
tion, the emissivities will be less accurate than shown here due To mvestlgatg this gccelerateql convergence quantltanvel_y,
to errors in the level populations. What these tests indicate®j$€duence of simulations for this test case has been carried

. i ; 1 o :
the contribution of the line formation approximation to the errocLUt with NV increasing from10° to 10”. From this sequence,

the FI spectrum folN = 107 is taken to be ‘exact’ — i.e., to

budget. . i . s S
g be identical withL$°, the MC spectrum in the limilv — oo.
With this assumption, we can estimate theweighted absolute
6.2. Emergent spectrum errors
To illustrate and investigate the computation of SNe speg— Z | Ly — LY | /ZLKO (33)

tra by applying the formal integral approach to Monte Carlo

simulations as described in Sect. 5, the following parameté¥sthe other spectra in the sequence. _

are selectedt = 13 days,log L/Lo = 9.44, andw,, = In Fig. 5, the percentage errors given by this formula are

11,000 kms™. Iterations for the boundary temperature theplotted againstV for both the MC and FI spectra. From this

give T, ~ 12500 K. Accordingly, this quantity is now also plot, we see that the ‘errors’ of the MC spectra decreas¥ as

regarded as known, and all simulations reported here use {Agfeases, consistent with our assumption that the FI spectrum

value. By thus fixingl}, the only quantities varying from sim-for N = 107 does not differ markedly from the MC spectrum

ulation to simulation are the seed for the random number gdpthe limit N’ — oco.

erator and\]’ the number of packets_ With this pOint thus eXperimentaHy Confirmed, the data in
As a first step, the optical — near IR spectra given by the tdd0- 5 now allows us to assess the degree of accelerated conver-

computational procedures for this test case are plotted toget#i@hce achieved. To this end, the plotted logarithmic errors have

in Fig. 4. In this simulationV = 40, 000 and the constant ve- been fitted by least squares to the functional form

locity width of the spectral bins is 386 k. For the Monte 10%

Carlo (MC) spectrum, these choices result in such large sahr= 5O(W)1/2 (34)
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Theresulting scaling constants age= 2.87% for the Fl spectra
anddy = 51.3% for the MC spectra. These fits are plotted in [ Line Formation Test
Fig. 5 and seen to represent the data well. i
From these values @f, or directly from Fig. 5, we see that,
for the chosen binning, the typical error of a point on the MC
spectrum is a factox 18 larger than for the FI spectrum. Morez
importantly, to achieve some specified precision, the MC spe§;—47 i

7]

trum requires a simulation with a facter 320 increase inV =
compared to that for the FI spectrum. This huge acceleratién |
of convergence obviously translates rather directly into reducéd I
computer time per spectrum; and this allows the spectra fragm
numerous models to be used in the analysis of a single obser@ed |
spectrum. e 46 7

In the above convergence test, the noisy MC spectra were |
not smoothed. The question therefore arises of whether the |

huge convergence gain survives if the sampling fluctuations are

branching

res scattering

L Type la SN
smoothed. Accordingly, the test has been repeated with the MC = 13 days
spectra smoothed by the method of fourth differences (Lanc- |
z0s[1956). The result is that for the MC spectra decreases 4s o e _0‘4 E— _0‘2 .

to 37.9% and the convergence gain factor drops tr0. Evi-

dently, the FI spectra provide a genuinely huge gain in compu- _ o
tational efficiency. Fig.6. Formal integral spectra for Type la SN test case with line for-

dHation by branching (bold line) and resonance scattering (thin line).

Log wav (mu)

Itis informative also to apply this same smoothing operati
to the FI spectra. We first note that if an approximate theoreti-
cal spectrum is not subject to sampling errors, then smoothing The cumulative differential effect of branching on the emer-
will in general worsen its fit to the exact spectrum. This is igent spectrum is illustrated in Fig. 6, where spectra for our test
fact what happens with the FI spectra. All the FI spectra in thiase for each mechanism are superposed. The differences in
above sequence are degraded by smoothing, and this becomhe @ptical — near IR are evidently inconsequential. However,

marked effect a&/ — oo. For example, folV = 1.3 x 10°an gt ) < 2800A, the fluxes predicted with branching are 0.2—
FI spectrum withy = 0.28% is degraded t0.73% by smooth- 0 6 dex higher than with resonance scattering. Now, with the
ing. This experiment confirms the negligible impact of samplingtter mechanism, UV fluxes are low due to severe line block-
errors on the FI spectra whev 2 104, ing by thousands of metal lines. But with branching, these low
Although highly successful, these tests do indicate that soffiexes are enhanced by the addition of an emission-line spec-
aspects of the procedures in Sect. 5 warrant improvementtriim due to radiation diverted frohonger wavelengths. This
Fig. 5, thed’s for the MC spectra trend above the~!/2 fitfor  reversefluorescence effect results from the absorption of optical
large V, and this is confirmed by two independent sequencesliation by anion in an initial excited state (usually metastable)
of simulations. This suggests a slight differenec@% between followed by decay to a final state of lower energy. The ions re-
the MC and FI spectra in the limiV — oo. Given the other sponsible for this effect in order of importance aref-&ern
uncertainties in the computation of SNe spectra, this slight dexad Nirr.
crepancy is not of immediate concern. The inconsequential changes in the optical revealed by Fig. 6
would at first seem to imply that resonance-line scattering was
already of sufficient accuracy for interpreting observed spec-
tra at these wavelengths. However, the enhanced ambient UV
An option included in the present code is that of disallowingadiation field due to this reverse fluorescence effect changes
branching and thereby reverting to resonance scattering. Tthe stratification of temperature, ionization and excitation when
implications of branching can therefore be investigated with alie refinements of Paper Il are implemented. The resulting
other aspects fixed. changes in Sobolev optical depths then constitute a feedback
With identical stratification of ionization and excitation thugffect that branching has on the diagnostically-important ab-
ensured, simulations for these two line formation mechanisgsrption troughs that dominate optical spectra. The implication
have the same Sobolev optical depths for all transitions at @flsuch changes for diagnostic investigations of observed spec-
points in the envelope. Accordingly, the absorption componenits will be discussed in detail by Mazz&]i (1999).
of P Cygni line profiles are identical if formed against the con-
tinuum emitted by the lower boundary. But even in this case, tlae
emission components will in general differ since the branching
code does not, for each transition, impose numerical balarnid®e purpose of this paper has been to describe and test two
between absorbed and emitted packets. potentialimprovements to a Monte Carlo spectral synthesis code

6.3. Implications

Conclusions
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for SNe. To this end, these have been implemented for a simpleknowledgements. Useful comments from P.A. Mazzali on earlier

test-bed model for the atmosphere of a Type la SN. versions of this code are acknowledged. His work with the previous
The first modification replaces the previous code’s tregiede also provided the motivation for this upgrade. Kurucz transition

ment of all transitions as resonance lines with a treatmentRpbabilities for Fer were kindly provided by M. Lennon. | am

branching based on Sobolev escape probabilities. Interestingl§° indebted to R.N. Hook for maintaining my computer environment.

this improvement in the mechanism of line formation can be in-

corporated into a Monte Carlo code without introducing photon

splitting, thus avoiding the coding complexity that such splittinBeferences

surely entails. o _ AbbottD.C., 1982, ApJ 259, 282
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preci§ion of the branching model carried out for the crucigln.h D., Doggett J.B., Thielemann F.-K., 1985, ApJ 294, 619

Ferr ion demonstrates a satisfactory overall accuracy as WeHugai N.N., 1980, Sov. Astr. Letters 6, 266

as a useful gain in accuracy relative to the resonance-scattegagtman R.G., Pinto P.A., 1993, ApJ 412, 731

model. Accordingly, the severe redistribution in frequency thawsbury R.A.E., Danziger 1.J., Lucy L.B., Gouiffes C., Cristiani S.,
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The second modification replaces the noisy emergent spec-tory Special Report 362
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based on the formal integral for emergent intensity. To achie%”&zgs 3():16 1956, Applied Analysis, Prentice Hall, Englewood Cliffs

this, Soboley theory is used to extr'act Ime— and C(.)ntlnuu|r_ncy L.é., 1971, ApJ 163, 95

source functions fromaMonte Carlo simulation; andthis step @l | 5 "19g7a, In: Danziger 1.J. (ed.) ESO Workshop on SN 1987A,

lows an intervention with theory that dramatically improves the p. 417 (Paper I)

accuracy ofline source functions. Because of this latterimprovgrey | B., 1987b, A&A 182, L31

ment, the resulting emergent spectra suffer little from samplingcy L.B., 1991, ApJ 383, 308

errors and demonstrably achieve an accuracy that with simpley L.B., 1999, A&A, in press

binning would require a simulation larger by a factor320. Mazzali P.A., Lucy L.B., Butler K., 1992, A&A 258, 399

This huge gain in computational efficiency greatly enhances tiMe@zzali P.A., Lucy L.B., 1993, A&A 279, 447 (Paper II)

diagnostic power of the updated code, since in future numerdyi@zzali P.A., Lucy L.B., Danziger |.J., etal., 1993, A&A 269, 423

theoretical spectra can be generated as one adjusts paramM@fgali P.A., Danziger I.J., Turatto M., 1995, A&A 297, 509

and varies the stratification of elements in the attempt to fit }}fZzall P-A., Chugai N., Turatto M., etal., 1997, MNRAS 284, 151

observed spectrum. Mazzali P.A., 1999, in preparation
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The code described in this paper is the prototype for a ngl, £ penetti ., Cappellaro E., et al., 1996, MNRAS 278, 111

spectral synthesis code for future use in rapidly carrying ogtymyt, W., Abbott D.C., Russell R.S., Hamann W.-R., Wessolowski
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this code together with the atomic data files | and Il derivestiomgren B., 1939, ApJ 89, 526
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a companion paper (Mazzali 1999), he will describe this further

step as well as discussing the diagnostic implications of the

modifications.
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