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Abstract. A multi-fluid model for a hydrogen-helium mixture
in an ionization-diffusion layer in the (solar) chromosphere is
presented. The purpose of this model is to serve as a background
for fractionation models calculating the abundance variations of
minor species from the photosphere to the solar wind. The em-
phasis will be on the determination of the (mean) flow velocity
in that ionization layer. The equations of continuity and mo-
mentum of every component, neutral and (singly) ionized for
both elements, will be solved together with an energy equation
including heating and radiative losses. Special attention will be
paid to the ionization and the elastic collisions as well as to reso-
nant charge exchange. One of the main results is the connection
of the particle flux through the chromosphere with the ioniza-
tion rate, i.e. with the photon flux in the UV. Furthermore the
abundance variations of helium are discussed with the result,
that the ion-neutral separation processes leading to the fraction-
ation of the minor elements cannot explain the fractionation of
helium as measured in the solar wind.
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1. Introduction

The elemental abundances vary from the photosphere of the sun
to the interplanetary space. A comparison of spectroscopic ob-
servations in the photosphere with in-situ measurements in the
solar wind or spectroscopic observations in the corona clearly
show, that elements with a first ionization potential (FIP) be-
low 10 eV are enriched in relation to those with higher FIP. The
factor of enhancement varies from 2 (fast wind) over 4 (slow
wind) up to 10 (polar plumes) depending on the respectively
observed structure. See Anders & Grevesse (1989), von Steiger
et al. (1995), H́enoux & Somov (1992), H́enoux (1995) and
Meyer (1996) for collections of the measurements and a review
of different attempts to describe this so-called FIP-effect theo-
retically.

It is now widely accepted that the basic mechanism for frac-
tionation of elements is driven by an ion-neutral separation in the
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chromosphere, well above the temperature minimum and near
but below104 K (Geiss 1982). For this the recent fractionation
models, which allowed for the first time a detailed quantitative
comparison with the measurements, assumed the trace gases to
diffuse on a background of hydrogen and to be ionized by the
UV-photons coming from the higher layers of the chromosphere
and transition region: von Steiger & Geiss (1989) and Marsch
et al. (1995) were able to explain the fractionation in the slow
wind, while recently Peter (1996) found a velocity-dependence
of the fractionation, which leads to the understanding of the
FIP-effect in the slowandthe fast wind within the same model.

For a more advanced fractionation model, capable of ex-
plaining also other phenomena like the strong enrichments of
magnesium in polar plumes (observations e.g. of Widing &
Feldman 1992) or the “absolute” fractionation, i.e. the fraction-
ation in relation to hydrogen (measurements of von Steiger et
al. 1995), a sophisticated model for the main gas, i.e. the back-
ground, is needed. This paper offers just such a model.

The aim is to define the background for a fractionation
model, which can describe the abundance variation from the
photosphere to the solar wind or corona. There are two ma-
jor constraints for such a main gas model: on the one hand the
flow of the material has to be treated self-consistently, because
the fractionation connects the abundances on solar surface with
those in the solar wind. Since the fractionation processes are lo-
cated in the chromosphere one has to describe the source region
of the solar wind including the plasma flow.

On the other hand such a main gas model has to be also
the model atmosphere for the chromosphere. In the last two
decades many comprehensive atmospheric models were pub-
lished, e.g. the continuum atmosphere by Gingerich & de Jager
(1968), the semi-empirical model of Vernazza et al. (1981) or
the one of Fontenla et al. (1990) including ambipolar diffusion.
But all these models assume a static atmosphere and do not
include a self-consistent treatment of the flow.

Of course, a complete model combining the source region
of the solar wind with the upper atmospheric layers, would be
the ultimate goal. Yet, it is very complicated to combine an
exact treatment of the radiative transport with the plasma dy-
namics and thermodynamics, and therefore one has to simplify
the problem. Because the aim of this paper is to offer a main gas
model for the description of a solar-wind-related phenomenon,
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the main emphasis will be on the flows. Radiative transport
will not be included, but special attention will be paid on the
ionization of the material. Thus the present modelis nota full
atmospheric model for the chromosphere, but it may serve well
as a background for the minor ion fractionation.

Another aim of this paper is to elucidate the special role of
helium: its abundance, which is about 10% in the photosphere,
varies from some percent in the “quiet” solar wind (Schwenn
1990) to up to 40% in the driver gas of flare-induced interplan-
etary shocks (Hirschberg et al. 1970, Borrini et al. 1982). With
an abundance of 10% and an atomic weight four times higher
than hydrogen, helium contributes about one fourth to the to-
tal mass and can thus not be treated as a trace gas, i.e. as test
particles, but must be included in the main gas, with collisional
coupling to the hydrogen. As it turns out, the wide variations of
the helium abundances cannot be understood on the basis of an
ionization-diffusion model for a thin layer in the chromosphere.

The models presented in this paper are an extension of the
main gas model of Marsch et al. (1995), who only considered
diffusion and (photo-) ionization. In the present models also
the effects of e.g. the absorption of the ionizing radiation, the
recombination and the gravitation are considered. This will re-
move the problems of their simple main gas model, like the
infinite proton speed at the bottom. Additionally an energy equa-
tion is solved to determine the temperature structure. This makes
possible to study the influence of the flows on the temperature
profile.

In the next section at first the assumed geometry and the
basic assumptions as used in the model are presented, before in
Sect. 3 the model equations are established. This section also
describes the ionization and elastic collisions as well as heating,
radiative cooling and heat flux. Before discussing the results
for a pure hydrogen gas in Sect. 5 an analytical approximation
for this case will be presented in Sect. 4. At least the effects of
helium will be considered in Sect. 6 and the resulting abundance
variations will be discussed. Sect. 7 summarizes the results of
the paper.

2. Geometry and assumptions

As is suggested e.g. by Hα-filtergrams, the chromosphere is a
highly structured region, and it is highly variable on long time-
scales of some days (e.g. chromospheric network) as well as on
short timescales of minutes and seconds (e.g. spicules or bright
points). Thus the first conclusion would be that a stationary
description of the atmosphere is impossible.

Nevertheless, stationary and steady models, like those of
Vernazza et al. (1981), contributed a lot to the understanding
of the relevant processes in the atmosphere. Even if the chro-
mosphere is in a highly non-stationary state, a stationary model
should give us a basic idea of the relevant processes by describ-
ing a “mean chromosphere”, which probably does not exist in
the real solar atmosphere. This philosophy corresponds with the
one of climate models: without resolving the weather, these can
describe some of the basic mechanisms leading to the global be-
haviour of e.g. the temperature runs in the earth’s atmosphere.
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Fig. 1a–d.Sketch of the geometry in the source regions of the fast and
slow wind. (see text).

As the main aim of this paper is to study in detail the source
region of the solar wind, the application of astationarymodel is
suggested also by recent ULYSSES results: Barnes et al. (1995)
found, that the particle flux density in the fast solar wind (nor-
malized to 1 AU) is nearly constant, regardless of heliocentric
longitude, latitude and distance or time in the solar cycle. Thus
if the interest is in ameanbehaviour, it is justified, given the
steadiness of the fast wind, to apply stationary conditions also
in the chromosphere.

2.1. Geometry

Concerning the geometry of the source regions of the solar wind,
for the fast and the slow wind the following two pictures may
be applicable (see Fig. 1).

1. Fast solar wind

Between the super-granulation cells vertical magnetic field
emerges, which widens up to form the so called canopy and
build up the coronal funnels (Dowdy 1986; Fig. 1a). A possi-
ble scenario is that the fast wind leaves the sun through these
funnels. At the bottom of the funnels, in the chromosphere, the
magnetic field is vertical and a one-dimensional stratification is
a good approximation (see Fig. 1c)

The velocity in the bottom region of the funnel can be cal-
culated in the following way: At the earth’s orbit, at 1 AU,
the particle flux density in the high speed wind isΦ1 AU ≈
2·1012 m−2s−1 (Schwenn 1990). Mapping this flux back to
the chromosphere, by using the geometry factors of the spher-
ical expansion from1 R� to 1 AU ≈ 215 R� (1/2152), the
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over-spherical expansion in the fast wind (1/7 after Kopp &
Holzer 1976) and the partial filling of the solar surface by
coronal funnels (≈ 2% after Athay 1981), leads to a particle
flux at the bottom of the funnels, i.e. in the chromosphere, of
Φchromo ≈ 3·1019 m−2s−1. Using the density of8·1016 m−3 at
8000 K from the atmosphere model of Vernazza et al. (1981),
this flux leads to a velocity of the order ofU ≈ 500 m/s.

2. Slow solar wind

In this case the situation is much more complicated. But one
possible scenario may be the following: at the top of large coro-
nal loops material is accumulated because of a continuous flow
into the loop at its footpoints (see Fig. 1b). Thus from time to
time the loops in the equatorial streamer belt have to open and
let the accumulated material go out into interplanetary space,
forming the variable slow wind (see the recent SOHO observa-
tions of Sheeley et al. 1997). In the chromospheric lower part of
the loop, which is small compared to the whole loop, the condi-
tions are locally comparable to those at the base of the coronal
funnels.

Even if these are very simplifying scenarios they do account
for the basic geometric properties as known today. In both cases
a one-dimensional stratified atmospheric layer can be assumed
to exist in the chromosphere, if the interest is in its the mean
behaviour as the source region of the solar wind.

2.2. Assumptions

Besides the so far discussed assumptions — time stationarity,
homogeneous vertical magnetic field and one-dimensional strat-
ification — some more obvious assumptions are made.

The material in the chromosphere is ionized by the UV ra-
diation coming from higher layers. This radiation is (partly) ab-
sorbed in the chromosphere (see Sect. 3.2). This is a strong sim-
plification — normally the full problem of the radiative trans-
port has to be considered. But up to now no models are available
which can handle the radiative transportandthe plasma dynam-
ics self-consistently. As a first step this paper concentrates on
the latter aspects, an approach which leads to a simplification
in the treatment of the radiation.

In the chromosphere the thermal coupling between the dif-
ferent species is still strong enough to equilibrate temperatures.
Thus only one energy equation is used to describe the thermo-
dynamics. Additionally, in this energy equation the effects of
heating and radiative cooling are simply parameterized as func-
tions of the temperature and density (see Sect. 3.3).

Finally it should be stated that the plasma is assumed to be
quasi-neutral and bear no net current.

3. Model equations

For the description of the transport in plasma a (stationary) five-
moment-approximation of Boltzmann’s equation will be used
(see e.g. Schunk, 1975). In the energy balance heating and radia-
tive cooling are included as parameterized functions of temper-

ature and density. The moment expansion is closed by assuming
the pressure (of an ideal gas) to be isotropic,p = n kB T , and
that the classical formulation of the heat flux proportional to the
temperature gradient can be used (Sect. 3.3). In Sect. 3.4 and
3.5 numerical solutions of the equations are described and the
boundary conditions are formulated.

3.1. Multi-fluid transport equations

In the formulation of Marsch et al. (1995) the stationaryequa-
tions of continuity and momentumfor a speciesj read as

∇ · (nj uj) =
∑

j′

(

γj′ j nj′ − γjj′ nj

)

, (1)

(uj · ∇)uj +
1

nj
∇(v2

j nj) +
Zj

ne
∇(c2

j ne) − g =

= −
∑

k

νjk (uj − uk) −
∑

j′

nj′

nj
γj′ j (uj − uj′)

+
∑

k

ωjk (uj − uk) × b̂.

(2)

Here nj and uj denote the particle density and the velocity
of the speciesj. The sources and sinks for the particle flux
density,nj uj , are due to ionization and recombination with the
respective ratesγj′ j .

In this paper the indicesk,j, andj′ are used. Wheneverk and
j are found, an interaction of the the typej, k ↔ j, k is present,
i.e. the particles stay the same, e.g. as in elastic collisions.j
and k represent different elements.j and k are used also in
the case of resonant charge exchange, e.g. H, H+ ↔ H+, H,
because before and after the interaction the same particles are
present, just with exchanged identity. In a reactive interaction
(e.g. ionization), the particles before and after the interaction
are not the same, but they can change their state of excitation or
ionization. Because they are from the same element, the same
letter is used, with or without a prime:j andj′. In contrast to
Marsch et al. (1996) we do not usej and j+ becausej and
j′ are more general: e.g. the continuity equation (1) is valid
for both, neutrals and ions. If we would have usedj andj+,
we would have to distinguish between the case of neutrals and
ions, because there is no symmetry between the ionization and
recombination rate. Additionallyj andj′ can also be used to
describe excitation and de-excitation processes.

The sound speed and the ion-acoustic speed are given by
vj = (kBTj/mj)

1/2 and cj = (kBTe/mj)
1/2 respectively,

with Boltzmann’s constantkB, the temperatureTj and the
atomic massmj . In the present case of equal temperatures,
Tj = Te, these two speeds are equal,cj = vj . Zj denotes
the charge number of the speciesj andg is the gravitational
acceleration.

The exchange of momentum between the species is due to
elastic collisions and ionization/recombination with the respec-
tive ratesνjk andγj′ j (see Sect. 3.2). The influence of the mag-
netic field can be formulated in an analogous way with a “mag-
netic” frequencyωjk = Ωj Zk nk/ne. HereΩj = Zj e B/mj
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is the gyro-frequency with the elementary chargee and the
magnetic field strengthB. The direction of the magnetic field
is given byb̂ = B/B. Both the elastic collision frequencies
and the “magnetic” frequencies obey the symmetry relations
mj nj νjk = mk nk νkj andmj nj ωjk = mk nk ωkj .

The term∝ γj′ j(uj − uj′) in (2) describes the momen-
tum that a particle which is created or destroyed (by ioniza-
tion/recombination) adds or subtracts to the momentum of the
species (see e.g. Geiss & Bürgi 1986). This was neglected
in the model of Marsch et al. (1995) because the ioniza-
tion/recombination rates are some orders of magnitude smaller
than the momentum transport due to resonant charge exchange;
compare (9) and Table 2 with Table 1. But as it can be seen im-
mediately from (2) this term can become important if the density
of either the neutral or the ionized species becomes very low.
Thus this term is considered in all numerical solutions.

In the derivation of the momentum equation (2) the mass of
the electrons was assumed to be much smaller than the mass of
the ions,me � mj , and quasi-neutrality and zero-current was
presumed,

ne =
∑

j Zj nj , ne ue =
∑

j Zj nj uj . (3)

The (ambipolar) electric field is given byE = −(ue × B) −
∇(nekBTe)/(e ne), a relation which has been exploited in the
derivation of (2).

As outlined in Sect. 2.2 the temperature is assumed to be
the same for all species,T = Te = Tj . For this only oneenergy
equationhas to be solved. Following Schunk (1975) the energy
equation for the electrons is given by

(ue · ∇)

(

3

2
ne kB T

)

+
5

2
ne kB T ∇ · ue + ∇ · q = E . (4)

The sources and sinks in the energy balance are due to

E =
∑

j

√
2 Z2

j νee ne mj (uj − ue)
2 + H − L, (5)

namely elastic collisions with the heavy ions, heating and cool-
ing. Often also the heat flux∇·q is comprehended as a source
or sink of energy. These processes are discussed in more detail
in Sect. 3.3.

3.2. Ionization, recombination and collisions

In the chromosphere the material becomes (first) ionized, and
thus in the particle dynamics ionization and recombination play
an important role. Additionally elastic collisions are of impor-
tance, particularly in the nearly neutral regions of the atmo-
sphere where diffusion may be of relevance.

Ionization

In the atmospheric layer considered here the most important
process isphotoionization, for which the rate for hydrogen
is about γ(ph.)

Hp ≈ 0.014 s−1 (von Steiger & Geiss 1989).
This process overwhelms ionization due to electron collisions

at chromospheric temperatures of104 K by some orders of
magnitude: following Lotz (1967) the corresponding rate is
γ

(el.)
Hp ≈ 7.8·10−5 s−1.

With the photoionization rate and the typical diffusion ve-
locity as mentioned in Sect. 2.1 one can define an ionization
length

lion = U/γion, (6)

which is of the order of 50 km. Thus the thickness of the ioniza-
tion layer of hydrogen is somewhat smaller than the gravitational
scale height in the chromosphere (300 km), but not negligibly
small.

As in models for the earth’s ionosphere (see e.g. Banks &
Kockarts, 1973), the chromosphere is assumed to be irradiated
from above by UV-photons originating in the transition region
and corona. In the considered layer these photons are absorbed
in the ionization process. As a consequence, the ionization rate
will vary with depth in the atmosphere. The below presented
description of this variation of the ionization rate follows the
one given in the analytical model of Peter & Marsch (1997).
For a further discussion of the assumptions leading to (7) see
their paper. The change of the ionizing radiative fluxφ over the
distance ds is proportional to the flux itself and the densityn
of the absorbing material: dφ ∝ nφ ds. If the cross sectionσ
for photoionization is assumed to be nearly constant over the
relevant wavelength band, then one can apply the same relation
to the ionization rate: ifs is the vertical coordinate, the respective
photoionization rates of hydrogen and helium are determined by

d

ds
γni = σn γni nn, (7)

where the indicesn andi stand for the neutral and ionized com-
ponents of the respective elements. This corresponds to the pro-
cesses as found in the earth’s ionosphere (see e.g. the textbook
of Banks & Kockarts 1973). The latter equation for the ioniza-
tion rate has to be solved together with the transport equations
(1), (2) and (4).

The cross sections for photoionization as needed in the de-
scription of the ionization rate (7) are taken from Vernazza et
al. (1981). The mean values (see Peter & Marsch 1997) can be
estimated as

hydrogen: σH [m2] = 5.5·10−22,

helium: σHe [m2] = 5.2·10−22.
(8)

This treatment of the ionization rate and photon flux is just an
approximation: on the one hand the cross sections and the pho-
ton flux depend on the wavelength, on the other hand the exited
states of the hydrogen atom are neglected. Thus in a complete
atmospheric model one would have to solve not only two conti-
nuity and momentum equations in the case of a pure hydrogen
gas, but 26 if e.g. a 12-level hydrogen atom is described (two
for every level and two for the protons). Additionally one would
have to solve properly the rate equation for the photon flux as a
function of wavelength.
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Table 1. Collisional rates in a hydrogen-helium mixture consisting
of neutral and (first) ionized components.T4 and nk,16 denote the
temperature in104 K and the particle density in1016 m−3 respectively
(from Geiss & B̈urgi, 1986 and von Steiger & Geiss, 1989).

dominant
j k

collision
frequency:

νjk

nk,16
[s−1]

interaction

H p 118T
1/2

4 (1 − 0.125 log T4)
2 RCE

He H 3.30 T 0.3
4 hard spheres

He p 2.67 induced dipole
He+ H 4.71 induced dipole
He+ p 2500T

−3/2

4 Coulomb
He He+ 34.4 T

1/2

4 (1 − 0.148 log T4)
2 RCE

e− e− 182mp/me T
−3/2

4 Coulomb

This has been done e.g. by Vernazza et al. (1981) or Fontenla
et al. (1990). But they solved these equations just for the single-
fluid hydrostatic case, i.e. for zero velocities, and thus did not
have to solve the momentum equations. In contrast, in the
present paper the emphasis is on the diffusion and flow of the
material. To avoid the problem of combining the radiative trans-
port with the plasma dynamics we use the practical approach
described above, where we consider a “mean” or “effective”
hydrogen atom. A more complete model including radiative
transport would probably result in a (slightly) different profile
of the ionization rate with depth, but this should not change the
main results for the plasma dynamics.

Recombination

The respective rates for the recombination are simply taken from
von Steiger & Geiss (1989).

hydrogen: γp,H [10−3 s−1] = 4.3 T
−2/3
4 ne,16,

helium: γHe+, He [10−3 s−1] = 2.1 T−0.672
4 ne,16.

(9)

HereT4 denotes the temperature in104 K andnk,16 the particle
density in1016 m−3.

Elastic collisions

As this paper deals with a mixture of hydrogen and helium, each
being either neutral or (singly) ionized, the following processes
in the elastic collisions have to be considered: hard sphere col-
lisions (between neutrals), induced dipole interaction (ions and
neutrals) and Coulomb-collisions (ions). The respective colli-
sional rates are derived in various textbooks, e.g. in Burgers
(1969). For the collisions between the neutral and ionized parti-
cles of hydrogen as well as helium the resonant charge exchange
(RCE) is the most important process. The respective cross sec-
tions can be found in Banks (1966).

In this paper the (parameterized) collisional rates as given
in Geiss & B̈urgi (1986) and von Steiger & Geiss (1989) are
used. These are listed in Table 1.

3.3. Energy sources and sinks

The energy sources and sinks are of great importance for the
energy balance in the lower atmosphere. The most important
processes are mechanical heating and radiative losses. The loss
of kinetic energy (of the electrons) due to collisional ionization
can be neglected in the lower chromosphere, because it is not
efficient at those low temperatures. However, in a model which
includes the transition region this process would have to be taken
into account.

Heating

The exact determination of the heating rate is an unresolved
problem. For that reason mostly parameterizations are used.

Following Ulmschneider & Kalkofen (1977) the heating in
the lower chromosphere is due to the damping of shocks. Priest
(1982) gave some heuristic arguments that in this case the heat-
ing rate behaves likeH ∝ p/T 1/2 and is exponentially damped.
This result corresponds to the behaviour ofH as described by
Rosner et al. (1978).

With parameter values taken from the references mentioned
above, giving a damping length of about 3000 km and an en-
ergy flux of5·105 W/m2 at the bottom of the chromosphere, the
resulting heating rate is

H [W/m
3
] = 0.2 np,16 T

1/2
4 exp(−s/3000 km). (10)

Once more,np,16 andT4 are the density in1016 m−3 and the
temperature in104 K respectively.

Radiative cooling

Besides heat conduction radiative cooling is the most important
energy loss process. Although the radiation is emitted by the
atoms and ions, this process is a loss mechanism for the energy
of the electrons, since the excitation of the atoms and ions is
due to electron collisions and thus the required energy is taken
from the kinetic energy of the electrons.

If the radiation is not treated self-consistently, an approxi-
mate description is required. For this purpose the radiative loss
functionL is often assumed to be a power law of the tempera-
ture. A great variety of work has been done on this subject.

The description in the present paper will follow the work of
Peres et al. (1982). For chromospheric temperatures they give
the following parameterization:

L [10−5 W/m
3
] = ne,16 nH,16 α T

χ
4 , (11)

with

{

α = 7.95, χ = 11.7 : 0.44 ≤ T4 ≤ 0.8
α = 1.96, χ = 6.15 : 0.8 ≤ T4 ≤ 2

As before, the indices16 and4 indicate that the density has to
be taken in units of1016 m−3 and the temperature in104 K.

It should be noted that this treatment is a little problematic,
because the main assumption going into (11) is to describe an
optically thin plasma. But this may not be true at low temper-
atures. However, Kuin & Poland (1991) showed that for the
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optically thick plasma of a loop a similar (though corrected)
radiative loss function can be used.

Heat flux

Instead of describing the heat flux vector by a heat flux moment
equation, it is assumed to be proportional to the temperature
gradient, i.e.

qe = −κe ∇T, (12)

Following Geiss & B̈urgi (1986) this long known relation can
be derived by assuming a subsonic flow, an isotropic pressure
and time stationarity. In this case the heat flux equation for the
electrons can be reduced to

5

2
kB pe ∇T = −η me νeeqe, (13)

with the dimensionless number

η =
∑

k

13

10

√
2

nk

ne
+

4

5
. (14)

For a plasma consisting only of neutral and singly ionized par-
ticles, as considered in the present paper, the quasi-neutrality
rendersη a constant,η = 1.3

√
2 + 0.8 ≈ 2.64.

Using the value for the collisional rateνee as given in Ta-
ble 1, the simplified heat flux equation (13) leads directly to the
relation (12) with the thermal conductivity along the magnetic
field being

κe = 0.0593 T
5/2
4 W/(m K). (15)

This relationκe ∝ T 5/2 together with (12) is also known as
Spitzer’s law.

It is just interesting to note that this conductivity in the chro-
mosphere at104 K is of the same order as in the air on the earth
at room temperature!

In this paper the conductivity across the magnetic field is
not considered, because it is some orders of magnitude smaller
thanκe. Given the strong magnetic fields ofB = 10 – 100 Gauß,
the electrons are strongly magnetized and despite of collisions
constrained to move along field lines.

3.4. Formulation of the transport equations appropriate for
numerical treatment

In this section the transport equations (1), (2) and (4) will be
formulated for one spatial dimension along the magnetic field
(see Sect. 2.1) and in a way appropriate for the numerical treat-
ment. As the aim is to use standard numerical routines solving
a system of differential equations of first order, the equations
have to be written in the form

y′

i = f(yj , s), (16)

whereyi stands for the densities, velocities and temperatures of
the respective elements.

Here as in the following the prime,′, denotes the deriva-
tive with respect to the vertical coordinates. Concerning the

numerical treatment it is better to use the particle flux densities
φj = nj uj instead of the velocities, whereuj is the component
of the velocityuj along the coordinates. This is because for
very low densities the flux remains finite while the velocity can
become extremely high due to numerical errors.

First of all the energy equation (4), which is of second order,
will be divided into two equations of first order. For this purpose
a new variableq = −κe T ′, with κe from (15), is introduced,

T ′ = −q/κe, (17)

q′ = E +

(

n′
e

ne
− 5

2

φ′
e

φe

)

φe kB T +
3

2
φe kB

q

κe
. (18)

Becausen′
e andφ′

e can be written in terms of the variables but
not their derivatives (see below), the energy equations thus attain
the required form (16).

Before re-formulating the continuity and momentum equa-
tions the following abbreviations are introduced:

Nj =
∑

j′

(γj′j nj′ − γjj′ nj),

Mj =
∑

k

νjk

nk
(φk nj − φj nk) +

∑

j′

γjj′

nj
(φj′ nj − φj nj′),

Qj = Mj −
[

g + (1 + Zj) (v2
j )′

]

nj − (φj/nj) Nj ,

Rj = Zj v2
j

nj

ne
,

Sj = v2
j − (φj/nj)

2.

The derivative of the squared sound speed is given by(v2
j )′ =

kBT ′/mj = −(kB q)/(mj κe). All these abbreviations are
functions of the variables itself but not of their derivatives!

Now the equations of continuity and momentum can be writ-
ten in compact form as

φ′

j = Nj , (19)

n′

j =
Qj

Sj
− Rj

Sj
n′

e. (20)

Because of the quasi-neutrality condition (3) this system of
equations can always be written in the standard form (16).

In the case of a pure hydrogen plasma the system (19) and
(20) reads

φ′
H = NH, φ′

p = −NH,

n′
H = QH/SH, n′

p = Qp/(Sp + Rp).
(21)

It is straight forward to obtain the system for the hydrogen-
helium mixture. The corresponding eight equations are just a
little longer.

φ′
H = NH, φ′

p = −NH,

n′
H =

QH

SH
, n′

p =
Qp(SHe+ + RHe+) − QHe+Rp

SpSHe+ + SHe+Rp + SpRHe+
,

φ′
He = NHe, φ′

He+
= −NHe,

n′
He =

QHe

SHe
, n′

He+
=

QHe+(Sp + Rp) − QpRHe+

SpSHe+ + SHe+Rp + SpRHe+
.

(22)



H. Peter & E. Marsch: Hydrogen-helium background for fractionation models 1075

It is easily proven, that for vanishing helium components,
i.e. the densities and fluxes of He and He+ are set to zero, this
system results in the system (21) for a pure hydrogen gas.

It should be noted that in both systems, in (21) and (22), no
use was made of the conservation of flux. It would have been
easy to replace one of the two continuity equations for each ele-
ment respectively. But as one aim of this model is todetermine
the total flux for every element, the full system is solved, while
no absolute number of the flux is given as a boundary condition
(see Sect. 3.5).

For the complete model the ionization equations (7), one
for each element, and the energy equations (17), (18) have to be
solved together with the continuity and momentum equations
(21) or (22). This means that in the case of a pure hydrogen gas
seven first order differential equations have to be solved. In the
case of a hydrogen-helium mixture this number is twelve.

As this system has the explicit form (16), numerical standard
routines to solve a system of ordinary differential equations
can be applied. In the present case the routineD02RAF from
the NAG-library was used. This routine allows the supply of
an approximate first-guess solution, automatic addition of grid
points and a flexible formulation of the boundary conditions.
To solve the differential equations it uses a deferred correction
technique and a Newton iteration.

3.5. Boundary conditions

To solve the above mentioned first order differential equations,
in the case of a pure hydrogen gas seven, or for a hydrogen-
helium mixture twelve boundary conditions are needed. These
are chosen from a physical point of view.

The lower boundaryof the considered chromospheric layer
is placed at about 8000 K, well above the temperature minimum.

Here the particle density is assumed to be of the order of
some1016 m−3. This value is the often used, e.g. in Vernazza
et al. (1981). The abundance of helium at the bottom is assumed
to be the same as in the photosphere; this value is known quite
exactly (e.g. Anders & Grevesse, 1989). The degree of ioniza-
tion at the bottom is calculated from the Saha equilibrium.

At least the ionized and the neutral component of every ele-
ment should enter the layer from below with the same velocity,
which is due to their tight “collisional” coupling in the form of
charge exchange or ionization-recombination balance. Please
note, that this does not mean that the different elements must
have the same velocity. There can (but does not have to) be
diffusion at the bottom of the chromosphere.

The upper boundaryof the layer is placed about 1000 km
above the bottom. The numerical calculations have shown that
for a thicker layer the results remain unchanged.

At the top the ionization rate is fixed. This means that the
photon flux is given at the top. Here the flux values calculated
by von Steiger & Geiss (1989) from a solar spectrum are used.

The relative velocity of the neutral and ionized component,
e.g.uH/up, is assumed to be constant at the top. This was used
instead of the stronger condition of equal velocities, e.g.uH =
up, because of numerical reasons: in the case of a bad first-guess

Table 2.Boundary conditions used for the hydrogen-helium mixture.
The conditions marked with an asterisk, *, are not needed for a pure
hydrogen gas. In the calculations the given values are used, unless
stated otherwise.

top: γH p = 0.014 s−1

ionization rate
γHe He+ = 0.0044 s−1 *

(uH/up)′ = 0relative velocity
(uHe/uHe+)′ = 0 ∗

heat flux q ≈ 0.01 W/m2

bottom: temperature T = 8000 K
total density NH = 8·1016 m−3

helium abundance NHe/NH = 0.1 *
np/nH = 0.018degree of ionization

nHe+/nHe = 0.00053 *
uH = upequal velocities

uHe = uHe+ *

solution the solving routine was much more stable when using
the weaker condition. But in the end the numerical solution
results in invariably equal velocities at the top, e.g.uH/up = 1
(see Fig. 3).

The heat flux at the top of the layer, where the temperature
reaches about2·104 K, is chosen according to Hansteen et al.
(1993), leading to about 0.01 W/m2 by using (15). This value is
somewhat arbitrary, as it is not well known, but only calculated
in models and not measured directly. However, the numerical
calculations have shown that the result does not depend on the
exact value of the heat flux given at the top. If it is chosen “not
correctly”, this results in a boundary layer for the temperature
at the top, i.e. the temperature rises or drops rapidly on the last
km. For this reason the heat flux is chosen to give a smooth
temperature profile at the top.

In Table 2 the boundary conditions are summarized and the
respective values as used in the present paper are given.

It should be noted that no absolute value for the particle
flux or the velocity is given as a boundary condition or imposed
as a constant of integration. The only absolute values given as
a boundary condition are densities, temperature and ionization
rates. Especially no absolute values of the velocities are given.
Thus the particle flux through the layer will result from the
boundary conditions in terms of ionization rates on the top and
densities at the bottom of the layer.

4. An analytical approximation for the hydrogen gas

Before discussing the numerical solution of the full hydrogen
problem it might be instructive to deal with a simplified model
allowing an analytical solution. A more detailed description of
the following analytic model can be found in Peter & Marsch
(1997).

First of all the temperature will be assumed to be constant,
which is reasoned by the fact that the ionization layer is located
above the temperature minimum in the chromospheric temper-
ature plateau. For this no temperature equation has to be solved.
As the expected typical velocities are ranging below 1 km/s, a
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subsonic flow can be expected; the sound speedv of hydro-
gen at104 K is about 10 km/s. This circumstance allows one to
eliminate the advective derivative(u·∇)u term in (2). The scale
height at104 K is aboutH=v2/g≈300 km, which is larger than
the thickness of the ionization layer (see Sect. 3.2). Thus the
effects of gravity are small compared to the effects of friction
and may be neglected. As a first approximation the recombi-
nation can be neglected too, because it is overwhelmed by the
photoionization (compare (9) and Table 2). The ambipolar ef-
fects are weak as well, i.e. the electron pressure gradient, will
be neglected. The full numerical studies confirm this statement
(see Fig. 4).

With these assumptions the Eqs. (1) and (2) for hydrogen
are reduced to

(nHuH)′ = −γHp nH, (23)

v2 n′

H = νHp nH(up − uH). (24)

The respective equations for the protons can be replaced by the
conservation of the total flux and total particle density,ΦH =
φH + φp andNH = nH + np.

The solution of the above equations together with (7) leads
to the result for the hydrogen density given by

nH = NH
γ∞

ΦH σ

1

2

(

1 − tanh
s − sI

2 lion

)

, (25)

whereσ andγ∞ are the ionization cross section and ionization
rate at the top for hydrogen as given in (8) and Table 2. Fol-
lowing (6) the ionization length is given bylion=UH/γ∞ with
UH=ΦH/NH. The symbolsI represents the point of inflection,
which has been chosen to be the origin of thes-coordinate axis,
i.e.sI = 0.

The velocity turns out to be nearly constant,

uH = UH

[

1 +

(

wH

UH

)2
1

2

(

1 + tanh
s − sI

2 lion

)

]

. (26)

This is because the ionization-diffusion speed of hydrogen,
wH = vH

√

γ∞/(νHpNH/np), is small compared to the mean
flow velocityUH. Following the discussion in Sect. 2.1 the lat-
ter one is in the order ofUH≈500 m/s, while at a typical chro-
mospheric density of8·1016 m−3 andT=104 K the ionization-
diffusion speed is given bywH≈30 m/s.

In Fig. 2 the height profiles for the density of the neutral hy-
drogen and the protons (middle panel) and of the relative veloc-
ity (left panel) are shown. For comparison also the normalized
densities as following from the numerical model shown below
in Fig. 3 (forN◦

H = 8·1016 m−3) are plotted in the right panel.
In the more realistic numerical models the density profiles are
not symmetric. The main reason for this is the gravitational
stratification, which was neglected in the analytical model. Be-
cause the (total) density drops exponentially the production rate
of ions changes dramatically within the ionization layer. This
effect can also be found in the Chapman-layer of the earth’s
ionosphere (see Banks & Kockarts 1973).

The inclusion of the absorption of the ionizing radiation
removes one of the biggest problems of the main gas models
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Fig. 2. Solution in the analytical H-p model and comparison with the
numerical results (see text). In the middle and right panel the solid line
shows the density of the neutrals, the dashed line the one of the ions.

of Marsch et al. (1995): they found that the protons leave the
layer at the bottom at very high velocities. This unsatisfactory
result is removed and the ions and neutrals enter the layer at the
bottom with the same velocity (see Fig. 2).

While neutral and ionized hydrogen have the same velocity
at the bottom, there is a diffusion at the top. This is an arti-
fact of neglecting recombination, which causes the density of
the neutrals to drop much faster in the analytical model. For
this the coupling at the top is much weaker than in the numeri-
cal model which includes recombination. As it can be seen from
Fig. 2, with recombination the ionization layer is more stretched
out in altitude. This result shows, that in a realistic and more
advanced model not only the recombination, but also the grav-
itational stratification has to be taken into account. As a result
the thickness of the ionization layer is of the same order as the
gravitational scale height in the chromosphere.

Another interesting result from this model is the determi-
nation of the total particle flux and thus the mean velocityUH.
For this purpose (7) can be written in terms of the photon flux
φγ = γHp/σ, i.e.φ′

γ = σφγnH. The same can be done for the
continuity equation of the protons, i.e.φ′

p = σφγnH. Applying
the boundary conditions at the bottom, that all the photons are
absorbed,φγ(−∞) = 0, and that the material is completely
neutral,φp(−∞) = 0, it follows directly, that the photon flux
equals the proton flux. This especially means, that at the top
(where the material is fully ionized) the total plasma flux equals
the photon flux,ΦH = Φγ . This result can also be obtained by
simply analyzing (25) in more detail. Thus also the mean ve-
locity UH as used in (26) can be calculated if the total density
is given.

Peter & Marsch (1997) pointed out, that using the observed
photon flux in the Lyman-continuum (which mainly ionizes H)
to calculate the particle flux in the chromosphere, gives the ob-
served value of the particle flux in the solar wind at the earth’s
orbit. However this result should be taken with a grain of salt
as in their paper the recombination was neglected. In the dis-
cussion in Sect. 5.2 it becomes clear that the recombination can
have a strong influence on the resulting particle flux and reduces
it by a factor of 3. This consideration allows a new interpreta-
tion and simple solution of the so-called mass flux problem as
stated e.g. by Leer & Holzer (1991). The solar wind particle
flux is already determined by ionization processes in the so-
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Fig. 3.Solution in a pure hydrogen gas for the densitiesn, the fluxesφ,
the resulting velocitiesu, the ionization rateγHp and the temperature
T . The solutions are shown for three different values of the boundary
condition of the total hydrogen density at the bottom,N◦

H.

lar chromosphere and does not depend on the coronal plasma
conditions.

5. Pure hydrogen gas: numerical studies

In this section the model results for a pure hydrogen gas will be
discussed. After some more general remarks special attention
will be paid to the resulting total particle flux and the mean
chromospheric velocities and densities.

In Fig. 3 the solution for the densities, the particle fluxes
and the velocities of neutral hydrogen and protons are shown
together with the ionization rate and the temperature for three
different values of the total density at the bottom,N◦

H.
The most obvious result is that the velocity increases rapidly

in the numerical model, while it is more or less constant in the
analytical case (Fig. 3, top right panel). This is reasoned by the
assumption that the flow is confined by the magnetic field struc-
ture: in the base region of a coronal funnel or a coronal loop no
significant expansion is to be expected. Because of the gravi-
tational stratification and the conservation of the total particle
flux the density must increase with altitude. Because in the an-
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Fig. 4.Total density and ambipolar effects. This figure shows the total
density in the solution forN◦

H = 8·1016 m−3 from Fig. 3 (solid line).
The dashed line shows the result without ambipolar effects.

alytical model the gravitation is not considered, the density and
thus the velocity is constant.

The profile of the proton density is similar to the one of
the oxygen ions in the earth’s ionosphere in the Chapman layer
(see e.g. Banks & Kockarts, 1973). This is because the same ba-
sic processes, namely the photoionization and the gravitational
stratification, are of relevance.

From Fig. 3 it can also be seen, that higher densities prevent
the material from flowing. If the density is too high, a static at-
mosphere will be found (dotted line in Fig. 3). The behaviour of
the (total) particle flux will be discussed separately in Sect. 5.2.

Normally, i.e. for densities of some1016 m−3, a flow of
the material will be present, which can be understood as the
solar wind flow in its source region. Fig. 3 (lower-right dia-
gram) shows that this flow has a strong influence on the temper-
ature structure. Advective transport and enthalpy flux prevent
a stronger temperature gradient from building up in the lower
chromosphere, even if the mean velocities are small. This leads
to the conclusion that even in the chromosphere the flow of the
plasma has to be considered when calculating the temperature
structure.

The middle-right diagram in Fig. 3 shows that the diffusion
between the neutral hydrogen and protons is weak. Only where
np is high enough andnH is not too small the velocities of the
two components can differ significantly. But this difference is
only in the order of some percent. This corresponds to the results
of the analytic model of Peter & Marsch (1997), see also Sect. 4.

5.1. Total density and ambipolar effects

The total density, i.e.NH = nH + np, decays mostly as in a
barometrically stratified atmosphere, but with a small deviation
(see Fig. 4).

The decline of the total density can be divided into two
regions: the neutral phase with a scale height of the order of
the barometrical scale height and the ionized phase, where the
scale height is increased by the ambipolar effects; in the case of
a single constant temperature the scale height in a pure electron-
proton gas would be two times larger than in neutral hydrogen.
For this the total density (solid line in Fig. 4) has a steeper gra-
dient in the neutral phase (below≈300 km) than in the ionized
phase.
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Because of this one would naively expect that the total den-
sity falls more rapidly if the ambipolar effects are neglected,
i.e. the solid line in Fig. 4 shouldalwaysbe above the dashed
one. But this is not the case and the question arises why the total
density falls more rapidly at altitudes of about 200 – 400 km,
i.e. in the region were the density of the ions and the neutrals are
comparable,nH≈np. At that region the effects of diffusion are
most important: the difference in the velocity of H and p reaches
a value of about(uH − up)≈ 20 m/s (see Fig. 3). This value is
small, but as it can be seen below, the problem mentioned is
caused by this (weak) diffusion:

In a simplified case of subsonic flows, constant temperature
and no momentum transport due to ionization and recombina-
tion (γjj′�νjk, see Table 1 and 2) the momentum equation (2)
along thes-coordinate is given by

v2
j n′

j + Zj
nj

ne
c2
j n′

e = −g −
∑

k

νjk nj (uj − uk). (27)

Now the variation of the total density of hydrogen,NH = nH +
np can be analyzed. If the ambipolar term∝c2

jn
′
e is neglected

this results in the well known barometrical stratification,

v2
H N ′

H = −gNH. (28)

Because of the symmetry of the collisional rate the collisional
term cancels out.

With the ambipolar term and assuming a single temperature,
i.e. cj = vj , the above variation can be written as

v2
H N ′

H = −α gNH, (29)

with the factorα given by

α = 1 +
1

2

νHp

g

nH

NH
(uH − up) − 1

2

np

NH
. (30)

At the region wherenH=np=1/2 NH this value can be esti-
mated as follows: at typical densities ofNH = 1016 m−3 the col-
lisional rate is of the order ofνHp = 60 s−1 (see Table 1). With
g = 274 m/s2 and the diffusion velocity(uH − up) = 20 m/s
as mentioned above this results in the factorα = 1.8.

Thus comparing the cases without and with ambipolar ef-
fects (28) and (29), in the region with a noticeable diffusion the
density falls stronger if considering the ambipolar effects, as it
can be seen in Fig. 4. This effect is really caused by the diffu-
sion: if one assumesuH=up for a moment, it is immediately
clear from (30) that in this case everywhereα≤1. Thus with the
help of the diffusion, resulting inα>1, the problem mentioned
above can be resolved.

5.2. Total particle flux

From Fig. 3 it can easily be deduced that different total particle
fluxes,ΦH = φH + φp, result for different boundary conditions
for the total density at the bottom. For higher chromospheric
densities near1017 m−3 a nearly static atmosphere is obtained,
while in general a weak flow through the chromosphere will
set in. As mentioned above this flow can be interpreted as the
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Fig. 5.Resulting total fluxΦH for models with different ionization rates
γ∞ at the top of the considered chromospheric layer. The dotted line
indicates the result of the analytical study of Peter & Marsch (1997).

nascent solar wind. The increase of the velocity in the chromo-
sphere is caused in this model mainly by the geometry: the flow
tube, e.g. the bottom region of a coronal funnel (see Sect. 2.1),
is constricted by the magnetic field and thus has a constant di-
ameter. Because of the gravitational stratification the density
drops and together with the conservation of flux this leads to
the increase of the velocity with altitude.

But the resulting particle flux depends also on the choice
of the boundary condition of the ionization rate at the top,
i.e. the photon flux, which is related to the ionization rate by
γ∞ = σΦγ . In Fig. 5 this dependence is shown together with
the one as following from the analytic model of Peter & Marsch
(1997), see also Sect. 4. The present numerical study con-
firms the qualitative behaviour as determined by the analytical
model, but the value of the particle flux at an ionization rate
γ∞ = 0.014 s−1 (von Steiger & Geiss 1989) is about a factor
of three lower than in the analytical approximation. The main
reason for this difference is the inclusion of recombination in
the numerical model.

The numerical curve in Fig. 5 also implies thatγ∞ must
exceed some threshold value to result in a non null total hydro-
gen flux. If the UV radiation is below this threshold, a static
atmosphere will be established.

The main conclusion from Sect. 4, that the mass flux of the
solar wind is determined already deep in the solar atmosphere,
is confirmed by the more complete numerical model. The next
step towards physical sophistication would be to include the
radiative transport for the hydrogen atom as well.

5.3. Typical chromospheric velocities

The fractionation model of Peter (1996) includes the velocity
of the main gas in the mechanisms leading to the FIP-effect,
namely photoionization and diffusion. The main result is that
the higher the velocity is, the shorter is the transit-time through
the ionization-diffusion layer, and the shorter the time for the
fractionation processes to act and thus the smaller is the frac-
tionation. In his model gravity was neglected and thus the ve-
locity through the layer was constant, as it is in the analytical
approximation in Sect. 4 of this paper. Contrary to this, in the
present numerical study the velocity is increasing because of
the gravitational stratification (see above).
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To compare the results of fractionation models based on
the main gas models of the present paper (Peter 1998) with the
results of Peter (1996) a typical velocity in the ionization layer
has to be defined. In the recent fractionation models, like those of
von Steiger & Geiss (1989), Marsch et al. (1995) or Peter (1996)
the FIP-effect is driven by an ion-neutral-separation process.
Thus the region of relevance is located where the ions and the
neutrals of the main gas have a comparable density. This is
the region around the maximum of the proton density, where
the neutral density is not too low and comparable to the one
of the protons. At lower altitudes, where the neutral density is
much larger, the proton density is too low, at higher altitudes
the situation is the other way round.

Because of this situation the (mean) velocity of the main gas
at the maximum of the proton density is used to characterize the
different main gas models, which can serve as a background
for fractionation models. In the low-density model shown in
Fig. 3 for a density ofN◦

H = 7·1016 m−3 the typical velocity
results in approximately 890 m/s, in the mid- and high-density
case (N◦

H = 8 and9·1016 m−3) the velocities are in the order
of 350 m/s and 20 m/s respectively.

6. Inclusion of helium

In the photosphere helium has an abundance of ca. 10%. Since its
atomic weight is four times higher than that of hydrogen, helium
contributes about one fourth to the total momentum transport.
Therefore in contrast to the other much less abundant trace gases
(together less than 1%), in the case of helium one has to examine
if it has an influence on the dynamic behaviour of the bulk of
material of the solar atmosphere.

The first and most obvious effect of the inclusion of helium
is shown in Fig. 7 (left and middle panel). If He is included as
a main gas component, i.e. with full interaction as described in
(22), the density gradient is larger than in the case in which He
is treated as a trace gas, i.e. when there is no reaction of helium
on hydrogen. In the main gas case simply the mean molecular
weight is higher, leading to a steeper decline in overall density.

But besides this, no strong changes in the dynamic behaviour
can be found. This is not surprising, because the considered layer
is thin, and thus the main difference between H and He, which
is in the masses, is not that important. On larger scales there
are stronger mass dependent effects effects, as the coronal and
solar wind models e.g. of Hansteen & Leer (1995) or recently
of Hansteen et al. (1997) show.

But even if there is no strong reaction on the hydrogen, it is
interesting to look at the diffusion velocities and the variation
of the relative abundance of helium in that thin chromospheric
layer.

6.1. Diffusion

Because of the very effective Coulomb-collisions (see Table 1)
the velocities of the ionized hydrogen and helium are equal
throughout the layer. Only at the bottom, where the material
is nearly neutral, and thus the ion collision frequency is low, a
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Fig. 6. Diffusion in a hydrogen-helium mixture for the model with
N◦

H=8·1016 m−3 as shown in Fig. 3. At the top of the considered layer
the elements have the same velocity, but at the bottom a significant
diffusion can occur. This diffusion is stronger if helium is considered
as a trace gas (dotted line).

difference can occur, but because of the low ion densities there
this is not of significance (see Fig. 6, middle panel).

For the neutrals the situation is quite different (Fig. 6, left
panel): as the neutral-neutral collision frequency is rather small
(a factor≈1000 smaller than the ion-ion rate, again see Table 1),
a velocity-difference between the neutral components can es-
tablish itself. In the present case this relative differential speed
is only in the range of some percent, but finite throughout the
whole layer. Additionally, with increasing height the diffusion
between the neutrals get stronger. Because of their weak cou-
pling, the heavier helium is more influenced by the gravitational
force and thus stays behind the lighter hydrogen: a gravitational
settlement is setting in.

In summary, the overall picture of the diffusion between
the elements (neutral and ionized) is the following (see Fig. 6,
right panel). A significant diffusion can occur only in the neutral
phase, i.e. at the bottom of the ionization layer. There the mean
(hydrogen) speed is in the order of (some) 100 m/s, while the
helium diffuses with a velocity of below 10 m/s. Thus the abso-
lute value of the diffusion velocity is small, but not vanishing.
But at the top, in the ionized phase, no diffusion occurs due to
the effective Coulomb-coupling.

6.2. Abundance and fractionation

The conservation of the total particle flux of every element di-
rectly couples the diffusion to the abundance variation. In Fig. 7
in the right panel the change of the He/H abundance is shown.
As the diffusion is small, also the change in the abundance has
to be weak. A weak depletion can be found, but the fractionation
of helium to hydrogen is at least only in the order of fractions
of a percent.

This clearly shows, that the abundance of helium as ob-
served in the solar wind, (4% in the fast, 2.5% in the slow wind,
Schwenn 1990) cannot be explained within the present model.
An ionization-diffusion model is able to describe the fraction-
ation of the minor species, i.e. the FIP-effect (see e.g. Peter
1998), butfails for an explanation of the behaviour of helium.
The reason for this might be the fact that the minor species are
just trapped in the solar wind, once they are ionized, i.e. from
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Fig. 7.Total densities and fractionation in a hydrogen-helium mixture
for the model withN◦

H=8·1016 m−3 as shown in Fig. 3. The total
densities drop more or less barometrically and nearly no fractionation
occurs. If helium is considered as a trace gas the decrease in density is
less rapid and the fractionation is stronger (dotted lines).

the chromosphere on. Because of the effective Coulomb-coupl-
ing there is no possibility for diffusion and thus no additional
fractionation throughout the corona and the solar wind.

The situation is different for helium. Because of its high
contribution to the momentum transport (≈25%, see above) it
can have a significant influence on the dynamic behaviour of the
whole main gas and strong diffusion can occur e.g. by thermal
forces in the transition region. These effects are described in
detail in a recent paper of Hansteen et al. (1997).

The main result of this subsection is that the ionization-
diffusion processes leading to the fractionation, i.e. the FIP-
effect, of the minor species cannot work similarly in the case of
helium.

6.3. Helium abundance and origin of CMEs

Also the strong enrichments of helium of up to 40% in the driver
gas of coronal mass ejections (CMEs), see e.g. Borrini et al.
(1982) cannot be explained using ionization-diffusion models
for the chromosphere. Especially the speculations of Marsch
et al. (1995) about an inversion layer, i.e. and enrichment of
heliumin the ionization-diffusion layer and its possible respon-
sibility for the observed helium enrichments in the driver gas are
doubtful. In the presented more sophisticated models, including
also recombination, these inversion layers do not occur.

Furthermore, these models suggest that the driver gas of a
CME cannot come directly, i.e. unchanged, from the deep layers
of the solar atmosphere, because there helium still has its pho-
tospheric abundance of about 10%. There are two possibilities:
the material comes from the chromosphere and gets fractionated
within the dynamic processes of the acceleration of the CME,
or, what sounds more reasonable, the driver gas originates from
the corona: solar wind models like the one of Bürgi (1992) or
Hansteen et al. (1997) give a strong enrichment of helium in the
region around the coronal temperature maximum.

Because of this the coronal mass ejection should in deed be
called “coronal” and not “solar”.

7. Summary

Multi-fluid models for a hydrogen and a hydrogen-helium ion-
ization-diffusion layer were presented. The continuity and the
momentum equations for the respective components were solv-
ed together with an energy equation. As the main aim was to
supply a background gas model for minor ion fractionation mod-
els, and as these are working in the source region of the solar
wind, where the mass flux originates, the main emphasis was
on a detailed description of the flows.

The hydrogen model enables the determination of the plas-
ma flux in the chromosphere. This numerical study corrects the
simple analytical model of Peter & Marsch (1997), who found
that the plasma flux is more or less given by the photon flux in the
UV, or more precisely in the Lyman-continuum. The inclusion
of the recombination reduces the resulting particle flux by a
factor of three. The hydrogen model also shows that even if the
velocities are small, i.e. below 1 km/s, this slow flow can have
a strong influence on the temperature stratification due to the
advective transport and flux of enthalpy.

The inclusion of helium gave the (negative) result that the
observed depletion in the “quiet” solar wind as well as the strong
enrichments in the driver gas of CMEs cannot be understood as
being caused by the same process leading to fractionation of the
minor species, namely the ion-neutral separation. For the minor
elements the fractionation processes are located in an ionization-
diffusion layer in the chromosphere (Marsch et al. 1995, Peter
1996). But in the case of helium no significant change of its
abundance can be found in such a thin layer. The conclusion
from this is that the abundance variation must be explained by a
large-scale coronal/solar wind model, like the one of Hansteen
et al. (1997).

To avoid the complexity and perhaps difficult numerical
problems arising if one would combine radiative transport with
plasma dynamics, we did not deal explicitly with radiative trans-
fer in the present model. The justification for this is not well
founded but rather practical: as the source region of the wind
was to be described, the emphasis has been on the flows. The in-
clusion of radiative transport would result in a (slightly) different
variation of the ionization rate with the altitude, but nevertheless
the main results and conclusions should be left unchanged.
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