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EXTERIOR GRAVITATION OF A POLYHEDRON DERIVED AND
COMPARED WITH HARMONIC AND MASCON GRAVITATION
REPRESENTATIONS OF ASTEROID 4769 CASTALIA
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Abstract. The exterior gravitation of a constant-density polyhedron is derived analytically in closed
form. Expressions for potential, attraction, and gravity gradient matrix involve one logarithm term per
edge and one arctangent term per face. The Laplacian can be used to determine whether a field point is
inside or outside the polyhedron. This polyhedral method is well suited to evaluating the gravitational
field of an irregularly shaped body such as an asteroid or comet. Conventional harmonic and mascon
potential and attraction expressions suffer large errors when evaluated close to a polyhedral model of
asteroid 4769 Castalia.
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1. Introduction

We wish to evaluate the gravitation of irregular-shaped bodies such as asteroids,
comet nuclei, and small planetary satellites (we use the term ‘asteroid’ for all).
Such bodies are not large enough for self-gravitation to shape them into spheres
(Thomas et al., 1986).

1.1. HARMONIC EXPANSION

The classical manner of representing arbitrary gravitational fields is by expanding
the gravitational potential into a harmonic series and then explicitly computing
the series coefficients (MacMillan, 1936; Kaula, 1966; Heiskanen et al., 1967).
Series coefficients are evaluated as integrals over the volume of the body, and
for a constant density body may be reduced to integrals over the surface of the
body (MacMillan, 1936). Alternately, the coefficients can be estimated from radio
tracking data of spacecraft.

Such harmonic fields have many advantages: the series are guaranteed to con-
verge to the correct gravity field outside of a circumscribing sphere; they can be
truncated at finite order to size the accuracy in representation with the accuracy
needed in modeling; and a rich literature exists for the computation and evaluation
of such expansions.

However, harmonic expansions have several drawbacks. The first is that the
harmonic expansion is always an approximation to a gravity field due to the finite
truncation of the series expansion. The truncation error grows when evaluating

Celestial Mechanics and Dynamical Astronomy 65: 313-344, 1997.
© 1997 Kluwer Academic Publishers. Printed in the Netherlands.

- © Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1997CeMDA..65..313W

F1997CeNDA”.B5- “J13W

314 ROBERT A. WERNER AND DANIEL J. SCHEERES

the gravity field close to the model’s radius of convergence. Additional terms are
necessary in the expansion to maintain a given accuracy.

The second major drawback is that the same form of the exterior harmonic
expansion is no longer guaranteed to converge inside the circumscribing sphere,
and indeed often diverges. (Convergence is shown to be an unstable property of a
spherical harmonic series in Moritz (1980, Sections 6-8). A small change to the
mass distribution might drive a convergent series to divergence, or vice versa.)
Thus, the exterior harmonic expansion should not be used for studies of surface
gravity or particle dynamics in that region. In planetary applications, the divergence
may not exist or may be ignored, as the body will be nearly spherical. However,
irregular body applications might require gravitation to be evaluated inside the
circumscribing sphere where the divergence effects become quite strong. There
are special procedures which may be applied for the computation of gravitational
harmonics at the surface of an arbitrary body (Gozdziewski et al., 1981; Grafarend
etal., 1994). However, they are generally cumbersome and are not valid in a global
sense, but must be recomputed at each new radius of interest.

Another drawback is that the harmonic expansion yields no information about
whether a field point is outside or inside the body. In a spacecraft simulation,
a separate computer algorithm must be used to detect this important geometric
condition (a spacecraft becomes kinetically challenged if it flies into an asteroid).

1.2. MASS CONCENTRATIONS

A second, commonly used approach for evaluating asteroid gravitation is to fill the
body with point masses (‘mascons’ — mass concentrations) on an evenly spaced
grid (Geissler et al., 1995). The points are assigned individual masses so that the
total asteroid mass is realized.

The mascon approach is simple to develop but has several deficiencies. First, like
the harmonic approach, mascon gravitation provides no information about whether
the field point is inside or outside the body. Second, for a given computational
effort, the mascon approach is less accurate than a harmonic approach (in its region
of convergence). Third, although the mascon approach does not diverge, and will
converge onto the true gravity field in the limit as the number of individual mascons
become arbitrarily large, there are significant errors in the force computation (even
for large numbers of mascons) as will be shown.

1.3. POLYHEDRON

In this paper we investigate a third approach, which is to model the asteroid as a
constant-density polyhedron. The polyhedron can have concavities in its surface
(e.g. craters), overhangs, interior voids (caves), and even holes all the way through
(torus). There 1s no special penalty for including small details, i.e. the entire body
does not have to be modeled at a uniformly high resolution. As shown below, the
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exterior gravitation of a constant-density polyhedron can be derived analytically
and expressed in closed form.

The polyhedral approach remedies several drawbacks outlined above. First, the
gravity field is exact for the given shape and density. Errors can be reduced entirely
to errors in the asteroid shape determination and the level of discretization chosen
for that shape. This is still, of course, an approximation to the true asteroid shape.
However, since most asteroid shape determinations have a limited shape resolution,
this approach provides gravitational accuracy consistent with the accuracy of the
shape determination.

Second, polyhedron gravitation is a valid and exact solution up to the surface of
the body. There is no region of divergence. This makes it attractive for evaluating the
gravitational forces acting at the surface of the body, and in studying the dynamics
of particles launched from the surface (Scheeres et al., 1995).

Third, a polyhedron algorithm can detect whether a field point is outside or
inside the polyhedron by evaluating the Laplacian of the gravitational potential. If
the Laplacian vanishes (Laplace’s equation), the field point is outside; otherwise
inside (Poisson’s equation). As will be seen, the Laplacian can be calculated with
essentially no extra effort as the polyhedron potential or attraction are calculated.

Prior Work

Most papers on polyhedron gravitation appear in the geophysical literature, where
polyhedra are used to represent buried ore bodies. Most evaluate polyhedron grav-
itation in closed form, although some accomplish only two analytic integrations
and the third via numerical quadrature. Many derive only the attraction, or only the
vertical component thereof.

Polyhedra can be classified in a taxonomy from simple to complex: (1) right rec-
tangular parallelepiped (or ‘brick’); (2) prism with polygonal cross-section; and (3)
general polyhedron. The derivation of a brick’s gravitation 1s not difficult: see, for
instance, MacMillan (1930, section 43) or Waldvogel (1976). Modern geophysical
interest in brick gravitation seems to have started with Nagy (1966) and extends
through Bannerjee and Gupta (1977) and Montana et al. (1992). The gravitation
of a prism is derived in Plouff (1976), Telford et al. (1976), and Cady (1980).
In geophysical applications, vertical prisms usually extend to infinity downward,
while horizontal prisms extend to infinity in both directions. We understand that
polyhedron gravitation was first derived in the mid-1800s (Strakhov and Lapina
1990; Malovichko 1963), but we have not yet located the original works. Contem-
porary papers include Barnett (1976), Okabe (1979), Waldvogel (1979), Golizdra
(1981), Pohanka (1988), Kwok (1991), Werner (1994), and Broucke (1995).

One way our polyhedron work differs from others’ is that we pursue a geometric
meaning for a certain subexpression, the solid angle subtended by a face when
viewed from the field point. We have encountered only one other author who
mentions this insight (MacMillan 1930, section 43), and that is for a special case.
The insight leads to a subexpression requiring only one transcendental function
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Figure 1. The field point is at Cartesian coordinates (z, y, z) and the differential mass dm at (¢, 7, ).
Vector r extends from the field point to dm.

evaluation for each polyhedral face. Other papers require more than one, generally
one transcendental per vertex of each face.

Another way our work differs is that our ultimate formulas are expressed intrinsi-
cally using vectors and distances. Other papers are cluttered with special coordinate
systems and angles.

2. Derivation of Polyhedron Gravitation

By polyhedron we mean a three-dimensional solid body whose surface consists
of planar faces meeting along straight edges or at isolated points called vertices.
Exactly two faces meet at each edge. Three or more edges and a like number of
faces meet at each vertex. Note: the vertex coordinates of a polyhedron alone are
insufficient to describe it. The connective topology must also be described — edges
connect which vertex pairs and bound which face pairs. Indeed, constructing a
polyhedron by linking vertices is still an active research area (Hoppe et al., 1992).

Our expressions admit a non-convex polyhedron with depressions in its surface,
overhangs, interior voids, and holes all the way through. For asteroid gravitation,
the two unrealistic assumptions we make are that (1) the asteroid is a polyhedron,
and (2) the polyhedron’s density is constant.

When necessary, we use a right-handed Cartesian coordinate system with basis
vectors 1, j, k (unit vectors wear hats). Define vector r = iAz + jAy + kAz from
the unit mass at the field point (z,y, z) to the differential mass dm at (£, 7, ()
in the asteroid (Figure 1). Then Az = ¢ —z;Ay = n —y; Az = ( — z; and
r? = Az? + Ay? + Az?; which means dAz = d¢ — dz etc. Also, Vr = (10/0z +
jo/0y + kd/8z)(iAz + jAy + kAz) = -1
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Figure 2. Vector t is of unit length and points from the field point toward the differential element.

2.1. POTENTIAL

The divergence of vector field %i’ = r/2r with respect to the differential element’s
coordinates (£,7, () is 1/r. This identity allows us to convert the volume-integral
definition of potential U to a surface integral via the Gauss divergence theorem,
provided the density o is constant:

G [f ldm:c;a// ldV:%Ga// divdV
MT vr 1%

%Ga//s fief dS, 1)

where G is the gravitational constant. Gauss expresses this result as a normal
derivative 1Go [ [¢(8r/0n) dS (MacMillan 1930, section 59). This general result
holds for any constant-density 3D body that satisfies the preconditions of the
divergence theorem, namely: the volume V' must be bounded and connected, its
surface S must be piecewise smooth and orientable, and the vector field and ifs first
derivative must exist and be continuous throughout the volume and on its surface
(Greenberg, 1978, Ch. 9).

Bodies such as spheres, ellipsoids, torii, bricks, and polyhedra satisfy these
preconditions where the field point is outside. If the field point lies on or within
the body, the vector field r is undefined where the field point coincides with the
differential element. We suspect the violation is benign and that the expressions
below are correct in the interior.

U

I

2.1.1. Surface Integral for a Polyhedron’s Potential

Now we specialize the 3D body to a polyhedron (Figure 3). Each face f of the
polyhedron (i.e., a polygon) gets its own right-handed Cartesian coordinate system
with the origin at the field point (to reduce clutter, we do not subscript basis vectors
and coordinates). k is aligned with f 7, the outward-pointing surface normal vector

of face f. Specific directions of i, j (paralleling the face plane) are unimportant.
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Face (polygon) ng
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Figure 3. Each polyhedron face has its own Cartesian coordinate system oriented so that k is aligned
with the face’s normal vector fiy. Vector ry extends from the field point to any point in the face plane.
Az = iy e ry is the constant, signed, perpendicular distance from the field point to the face plane.

The components of r, namely Az, Ay, Az, are expressed in this coordinate system,
with Az being constant.

To proceed, separate the surface integral (1) into a sum of integrals, one per
face:

U=16o ¥ //nf-rdS——Ga > //nf.<_)

f€faces f€faces
. 1
=3Go > igpery [[ —dS. 2)
f€faces f

Since we integrate over a plane, the quantity Az = Dyer is constant. In bringing
that factor outside the integral, we replace r — ry, a vector from the field point to
some fixed point in the face plane. Its sole use is to calculate Az by dotting with

ny.

2.1.2. Potential of a Planar Region

We recognize the integral [[ dS/r in Equation (2) as the potential of a 2D planar
region. Although in (2) the region is a polygon, we can as easily derive a result
for a general planar region S by performing an add-subtract trick and invoking

Green'’s theorem. An integral [[(Az/r3) dS appears, which we label w 7 and deal
with later:

[[ Las- //S(T )ds [[AZas
=//S<"°2‘T3Ax2 T‘Ay)ds Az//s—dS
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0 Aa: 0 Ay
= dS — Az-
// (am r T Ay T ) Zrws
1
= 7{ ;(AmdAy—AydAz)—ﬁforf-wf 3)
C

where C 1s the boundary of the region, traversed counterclockwise according to
n; and the right-hand rule. A planar region’s potential can be evaluated as a line
integral around the boundary and another term involving the entire region.

2.1.3. wy Interpreted
In so many words, the integral

wf’//ngdS 4)

is the signed solid angle subtended by planar region S when viewed from the field
point. Alternately, it is the signed area of S when projected onto a unit sphere
centered on the field point.

As proof, let r be the distance from the field point O to the differential surface
element dS in the plane (Figure 4). Let ¢ be the plane’s normal vector, and let f be
the normal vector of the corresponding differential surface element dw on the unit
sphere. Due to the projection, area dw is proportional to dS/r2, further modulated
by the cosine of the angle between the two normal vectors iy and r:

dw = sty dS = 1r i ds = g ds.
rZr
When we integrate over the entire planar region S, the result (4) follows. An
alternate proof using differential geometry appears in Werner (1994, Appendix A).

Due to the projection (a plane onto a sphere), the magnitude of w cannot exceed
the area of one hemisphere, or 27 steradians.

Although the area of the planar region S is positive, wy is signed according to
Az (Figure 4). That is, when F points in the same general direction as ny, wy > 0,
and when r generally opposes fif, wy < 0.

There 1s more to be said about wy; in particular, how to evaluate it. We postpone
this matter until after we finish the polyhedron gravitation derivations.

2.1.4. Potential of a Polygon

We had just derived the potential of a general 2D region (Equation 3). Next spe-
cialize the region to be a polygon, e.g. a face of a polyhedron. Integral (3) can be
written as a sum over the polygon edges e:

//p —dS— Z / (AzdAy — AydAz) — fjery - wy. (5)

olygon T ecedges
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Figure 4. Planar area element dS is projected onto a unit sphere centered at the field point O. The
resulting spherical area dw has the same sign as Az.

Next concentrate on a typical edge e (Figure 5). Each edge has an edge normal
vector ﬁf which lies in the face plane, is orthogonal to both the along-the-edge
vector and the face normal vector, and points outward. Define angle o, between
the edge and the face’s 1 axis in terms of this edge-normal vector: cos ae = —nf o
and sin a, = -%—néc ol.

With these definitions, we can evaluate the integral in (5) for typical polygon
edge e. Let s parameterize the distance from some fixed point (Az., Ay.) on the
edge or its infinite extension. The 2D coordinates (Az, Ay) of a general point
along the edge are (Az, + scos ., Aye + ssinag). Then

/ L AzdAy — Aydax)
eT

/ [ (Az, +scosae)smae ds

(Aye + ssinag) cos ae ds
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PR

polygon - j

Figure 5. A typical edge e of polygon f is inclined by angle a. relative to the polygon’s i axis. The
edge-normal vector if lies in the i — j plane, is perpendicular to the edge, and points outward. Points
on the edge are parametrized by distance s from a fixed point r/ on the edge or its infinite extension.

) 1 af on N 1
= (Az, sin @e — Aye cOs ) / - ds = (n{;-lAfCe + n£°JAye) / - ds
e €

1
= iferf /e —ds, (6)

where r£ =1Az. + jAye + kAz, is a vector from the field point to the fixed point

on edge e of face f (later we will drop the superscript f). Since fl(]; ok =0, r/ need
not lie in the face plane.

2.1.5. Potential of a Wire

We recognize the integral [ ds/r in Equation (6) as the potential of a 1D straight
‘wire’. We adopt the symbol L{gc = [, r~1ds for the general edge e of face f (later
we will drop the superscript f). MacMillan (1930, Sections 31 and 43) and Werner
(1994) show the definite integral can be expressed intrinsically in terms of the
distances a and b from the field point to the edge’s two ends and the edge length e
(Figure 6):

+b+e
Lf—/ ds = m2tote
na+b—e 7

2.1.6. Backtracking to Polyhedron Potential
With (7), Equation (6) reads simply ﬁ£ or/ - LS. In turn, the potential of a 2D
polygon (Equation 5) is

// Las= S Ml I —hgery -y, @®)
p

olygon T e€polygon’s edges
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typical
edge

field
point

Figure 6. Constant edge-length e and variable distances a and b are needed to evaluate L.

When we substitute this polygon result into the polyhedron expression (2), we find:

. 1
U:%GO’ Z nforf//f;dS

f€faces

1 A ~ A
= >Go E Iyehif E nferf . LS — Nfery - wy
f€faces ecface’s edges

— 1 tatens orf . T
= 2GO’ Z Z rf.nfne.re . Le
fefaces \ ecface’s edges

— %GO’ Z ff.nfﬁf.rf-wf. 9
f€faces

2.1.7. Common Edges

We can simplify the nested sums in Equation (9). First, substitute ry — r/ because
rpefiy = Az = rfefis for all the various r/ of aface’s edges. Next concentrate on a
typical edge, for example P; P;, in common with faces A and B (Figure 7). Exactly
two terms of the nested sums are involved with this edge, one from face A and one
from B. We can choose the same r/ vector for both faces, i.e. rfy = r§ = ry,.
Also, the integrals sz = Lﬁ = Ly, for both A and B, since they depend only on
the edge length and the distances from the field point to the two ends. The nested

sums becomes a single summation over the polyhedron edges:

2. > rleapplal L]
f€faces \ ecface’s edges
A o ~A A LA
o rppengNyyery; - L + - -

B ~ oB B 1B
--- - ryefpny ery; - Loy + - -
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Figure 7. Two face-normal and edge-normal vectors are associated with each edge.

= { -+ + rize(fafify + fiphy})eriz - Lip + -}
={ - +rpeEperp:Lip +--}

= Z re.Ee.re * Le.‘
ecedges

Here, r. is a vector from the field point to any point on edge e or its infinite
extension. As promised, we have dispensed with the superscript f.

2.1.8. Dyads

We have defined a dyad Ej; = fighfs + npghd in terms of the two face- and
edge-normal vectors associated with edge P; P;; each edge has its own such Ee.
In looking back to Equation (9), it is also convenient to define another dyad
F; = nsny, one for each face.

One conventionally uses matrices instead of dyads. We use them here because
results are expressed intrinsically; not in any particular coordinate system. Dyads
are described in Goldstein (1980, pp. 192-195) and Greenwood (1988, pp. 315-
318). In matrix notation, dyad E 1, is expressed as fig (i3)7 + fig(a2})7, the sum
of two outer products; a 3 x 3 matrix. F; is simply the outer product of vector n
with itself.

F; is symmetric by construction. To show E, is likewise symmetric, evaluate
it in a special Cartesian coordinate system I, J, K (Figure 8). Align the K vector
parallel to E’s edge (along the figure’s lines-of-sight) and the I vector to bisect the

dihedral angle € between faces A and B. Our convention is that I points inward,
although this is not crucial.
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convex edge; sin 6>0 concave edge; sin 6<0

Figure 8. In a special 1,J, K coordinate system, the matrix corresponding to the edge dyad E. is
diagonal, with + sin 8, — sin 8, and O on the diagonal. 8 is the dihedral angle of the two faces.

The face and edge normal vectors lie in the i,j plane. The face normal vectors
are

R 0 N: . [0 o) v . 0 0 .
nA—cos(—2-+9O>I+s1n(§+90)J——sm§I+cos§J

. 0 Ns o . 0 o5 . 0O 0 .
nB—cos<~—2——9O)I+s1n<—§—90)J— smil coszJ

and the edge normal vectors are

6 < 0 ) 0. 0 -
~A v o : z o - _ Yy oY
nlz—cos(2+180)I+sm(2+180)J coszl s1n2J

0 < 0 s 0. 0 .
~B 7 fo) : _ o — _ mn —
ny; —cos( 7 180 ) I+sm< > 180 )J oS 2I—i—sm 2.]

Then

. A | ~ B
E;» = ngnp, + npny;

<— sin gi + cos §j> (— cos Qi — sin Qj)

\®]
[\

. 0. 0 - 6 . 0.
_+ (— sin EI — COS -2-J) (— cos 51-{— sin EJ)

. 0 0. 50~ .2 0. .0 0 -~
smz coS EII—cos EJI+ sin EIJ_ smz cos 2JJ

0 0 S0 0. 0 6
L+Sm§COS §H+cos EJI—sm EIJ—sm—z— cos 2JJ
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0 0 - .0 0 - L an e
= |2 sin 5 cos EII — 2 sin 5 cos EJJ = sin O[II — JJ]
which shows that E is symmetric in all coordinate systems. When rendered as a
3 x 3 matrix in this coordinate system, E is a diagonal matrix with + sin 8, — sin 6,
and zero on the diagonal.
2.1.9. Conclusion: Potential of a Polyhedron

After we incorporate all substitutions and definitions into Equation (9), the potential
of a constant-density polyhedron is expressed as

U=1Go > reeEeero-Lo—3Go > rjeFrers-wy. (10)
ecedges f€faces

2.2. ATTRACTION

Before differentiating Equation (10) to derive 3D polyhedron attraction, we first
derive the attraction of a 2D polygon in two different ways. Extra terms appear in
the second which must cancel because they are absent from the first. The terms
which cancel in 2D expressions markedly simplify 3D expressions.

First, differentiate the integral definition of a general planar region’s potential,
again using Green’s theorem:

() e
o eyt [ ke
) ol

[ iy () s

L[] . [ 1 .
= —1}[ —dAy+j% —dAz + Kkwy.
cr cr

Now restrict the planar region to be a polygon. The boundary integrals become a
sum of line integrals along the straight edges:

1 1 ) )
v// —ds = ) [—i/—dAy—l—j/ldAa:J-l—kwf
polygon T eT el

ecedges
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.. 1 A 1 .

= Z —1 sin ae/—ds-i—J cos ae/—ds + Kwy
ecCedges el e’

= > [—i(en]) - LL - jGen]) - L]+ fpw;
ecedges

= — > AL + ;. (11)

ecedges

Again, l:m]ér = 0. This concise formula expresses the attraction of a 2D polygon.

2.2.1. Canceling Terms
To reveal the terms which cancel one another, rederive the 2D polygon attraction
by differentiating the polygon potential result (8). Recall that Vr = —1I:

V ( Z flg.réc 'L£ —ﬁfol‘f -CLJf)

e€edges

= Y (8feVr! - LI +ffer] - VLI) —iifeVr; - wyp — figers - Vo

ecedges
= | — Z ﬁf;-Lg-i—ﬁf-wf + Z ﬁgor{:-VLﬁ:—ﬁf.rf-wa .
e€edges ec€edges

The first two terms (in brackets) are Equation (11). Thus the last two terms (in
braces) cancel. We write them thus:

3" fler] VLI =figers - Voy. (12)
ecedges

MacMillan (1930, Section 45) notes that such canceling terms occur with any
homogeneous (constant-density) body.

To prepare for the 3D case, multiply (12) through by ryen;, sum over all
polyhedral faces, expand the nested sums as before, and collect the common edge
terms. The result is

> reeEeor. - VLe= Y rpeFrers- Vuwy. (13)
e€edges f Efaces

Also, multiply (12) through by only the face normal vector n; and follow the rest
of the procedure to find

> Eeere-VLe= Y Fyery-Vuwy. (14)
e€edges fefaces
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2.2.2. Conclusion: Polyhedron Attraction
To find the attraction of a 3D polyhedron, formally differentiate the potential result
(10):

VU =1GoV > reeEeere- Lo — 3GoV Y~ rpeFjery - wy
ecedges f€faces

= —Go Z Eger, - L, — Z Ffol‘f‘(.df +

ecedges f€faces

+%GU Z reeEcer, - VL, — Z rreFrers - Vwy 5.
e€edges f€faces
The terms in braces cancel due to Equation (13) and Equation (15) remains:

VU=-Go Y Eeere-Le+Go Y Fperg-wy. (15)
ecedges fEfaces

2.3. GRAVITY GRADIENT MATRIX

To calculate the symmetric gravity gradient matrix of second partial derivatives,
formally differentiate the attraction expression (15):

e€edges f€faces

V(VU) = —Go (V Z Eeol'e 'Le> +G0’ (V z Ffol'f U.)f)

= Go

> Ee-Le— > Ff-wf]+

ecedges fefaces

—|—Ga{ > Eeere-VLe— > Ff.rf-vwf}.

e€edges f€Efaces

The terms in braces cancel due to Equation (14) and (16) remains:

VVU=Go > E.-L.—Go > F;-wy. (16)
ecedges fefaces
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2.4. LAPLACIAN OF A POLYHEDRON’S POTENTIAL

Although the Laplacian V2U can be calculated as the trace of the gravity gradient
matrix (16), a formal differentiation of Equation (2) leads to a very simple result:

VU = ;Ga( > v ﬁf.de)
f

f€faces

~ [.Ax AAy ~ Az
—1 2 . 3
_2GO'(E V//fk [lr+']7“+kr]ds>

f€Efaces

:%Ga( ) //fv2%d5> =Ga< 3 //f -ﬁzﬁ)

fefaces fefaces

- —Go 3wy (17)

f€faces

The sum — ) w; vanishes where the field point is outside the polyhedron (Laplace’s
equation), and equals —4 inside (Poisson’s equation).

The Laplacian can be calculated at essentially no cost as any of the poten-
tial, attraction, or gravity gradient matrix are calculated, since all require wy. A
computer-based simulation can use the Laplacian to determine whether a field point
is outside or inside what might be a complicated, gnarly polyhedron.

This concludes the gravitation derivation.

2.5. SOLID ANGLE

Two dimensionless scalars, L. and wy, appear in the polyhedron gravitation expres-
sions. A logarithm expression L, is associated with each edge and a solid angle
ws = [[(Az/r*)dS is associated with each face. Equation (7) indicates how to
calculate L.. Here we show how to calculate wy for the simplest case, a triangle.
Our approach is to use the alternate, spherical polygon interpretation, calculate its
magnitude |wf| = [f(|Az|/r?)dS using spherical geometry and vector algebra,
then multiply by sign (Az).

2.5.1. A Spherical Polygon’s Area |wjy|

When the planar region S is a polygon (i.e. a face of a polyhedron), the image
projected on the unit sphere centered on the field point is a spherical polygon whose
edges are great-circular arcs (Figure 9). The (non-negative) area |wy| of a spherical
polygon on a radius R sphere is R? [Z?zl S;—(n— 2)7r} , Where n is the number
of vertices and S; are the measures of the spherical vertex angles (CRC Standard
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planar
polygon

spherical
polygon

Figure 9. A planar polygon projected onto a sphere becomes a spherical polygon whose edges are
great-circular arcs. The spherical polygon’s area can be calculated from the spherical vertex angles
S;.

Mathematical Tables 1965, ‘Mensuration Formulae’). The bracketed quantity is
called the spherical excess; the sum of a spherical polygon’s vertex angles > .S;
exceeds the sum of a corresponding planar polygon’s 3 P; = (n — 2)7. Since we
use a unit sphere, R = 1 and we write simply

lwrl = S; = (n—2)r. (18)
j=1

By knowing this formula for the area of a spherical polygon, we need not devise a
way to integrate [[(]Az|/r®) dS. Instead, we need to calculate the spherical vertex
angles S;.

2.5.2. A Spherical Polygon’s Vertex Angles S;

Here we develop vector expressions to calculate the sine and cosine of a spherical
polygon’s vertex angles S;. Let r;,r;,r; be vectors from the sphere’s center O
to three consecutive vertices F;, P;, Py, of the planar polygon (Figure 10). We use
these to calculate two new vectors sj; and s;; which lie in planes P; — O — P;
and P; — O — P, and which are tangent to the sphere, i.e. orthogonal to r;. After
normalization, the dot and cross products of the two vectors yield the cosine and
sine of S, the spherical vertex angle corresponding to F;. For brevity we use
Cij, Cjk» and cy; to represent the cosines of angles P, — O — P;, P; — O — Py, and
P, -0—-PF,.

Sji = (I‘j Xl‘i) XTj =ri(rj-rj) —I'j(l'iol‘j) =ri'l‘j2- — T (l‘iol‘j) = (f'i—f'jcij)’f'ﬂ’]z,

Sjk = (I‘j X I'k) X I‘]' == (f‘k — IA'jCjk)’r‘k'f‘g.
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P; P;

l'j.flf=AZ>0 l'j.flf=AZ<O

Figure 10. Given three consecutive planar vertices F;, P;, Py, the sine and cosine of the spherical
vertex angle S can be calculated by constructing vectors s;; and s;.

The norms are
lI856l1> = sjiesji = (B — Fjcij)e(Rs — £jci5)rery
= [(F;F;) — 2(F;08;)cij + (f'jof'j)c%j] 22 ;1 (1-— czj)rf'r?
Isjkll® = sjresjn =+ = (1 — Fp)rirs.

Then the cosine of the spherical vertex angle S; is
(F; — Tjcij)e(Fx _r]ch)
1=y /1-
_ (f’iof'k) — (f'jof‘k)cij — (f'iof‘j)cjk + (f'jof'j)cijcjk
\/1 —c? \/1 — c? Tk
Cik — CijCjk

\/1 — c%j\/l —c?k

which, in its way, expresses the law of cosines for spherical triangles.

A cross product yields a vector parallel to r; of length sin S; (in Figure 10 it
appears as a short vector paralleling r;). If we assume the polygon is convex (i.e. no
vertex angle exceeds 7 radians), then each sin .S; > 0. To calculate this magnitude,
dot with r; and take the absolute value:

c0s S = §j;08,5 =

(19)

[Bje[(Fr — Ejcjr) X (B — Fjcq5)]]
\/l —c%k\/l —czzj
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_|Rje[(Bk X By) — (B X By)ejp — (B X Fy)cy]|
- JTI-&n/1-4
|Fjel; X T

B \/1— §k\/1 -

2.5.3. Calculating |wy| and wy

Having calculated a convex polygon’s cos S; and sin.S;, we could calculate each
S; with arctangent and sum to calculate jws| = [S1+ S +--- + S, — (n —2)7] =
[arctan(...) + arctan(...) + - -- — (n — 2)7]. This approach requires n arctangent
evaluations per polygon. However, another approach considers |wy| to be a sequence
of plane rotations, first by S, then by 5, etc. Use the various cos S; and sin S; in
rotation matrices to calculate cos|wy| and sin|wy|, from which a single arctangent
yields |wy|. To do this, regroup terms to read |wy| = - - - 4+ (S, —m) +(S1 —7) + (27)
and write down rotation matrices:

[COSILUfI ]
sin]wf|

B [ cos(S> —m)  —sin(S; — ) ] |:COS(51 —m)  —sin(S| — ) J [ cos(2m) ]

(20)

sin(S; — ) cos(Sy — ) sin(S) — ) cos(S| — ) sin(2m)
—cos 52 sinSy ] [ —cos S| sin Sy 1
I Io) 2
—sin 5, —cos S, —sin .S, —cos 5| 0

This suggests using a loop in a computer subroutine.

Due to the projection, |w¢| never exceeds the area of one hemisphere (27
steradians). Thus, there is no ambiguity due to multiple revolutions. The half-angle
formula tanz/2 = (1 — cos z)/sin z suggests

1 — cos|wy]|

|wy| = 2arctan (22)

sinjwy|
There are three reasons to use the half-angle formula instead of the usual
tan z = sin z/cos z. One is that a computer’s atan2 function ranges over (—7, +)
instead of [0, 27) which we desire. In the half-angle formula, the numerator is never
negative and the denominator is signed; atan2 ranges over [0, 7) and |wy| ranges
over [0, 27) as desired.
Another reason 1s that the ultimate goal is to calculate the signed wy, which

ranges over (—2m,+2m). We produce the correctly signed w; by multiplying
Equation (22) by sign(Az):

1 —cos|wy| — 5 arctan sign(Az)-(1—cos|wy|) '

wy=sign(Az) - 2 arctan—; :
sin|wy| sinfw |

(23)
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The final reason is that a nice cancellation occurs when we calculate a triangle’s
wr.

2.5.4. Area of a Spherical Triangle

Marked simplifications occur when the polygon is a triangle. One occurs because
the numerators of all three sin S; expressions (Equation 20), |F;ef; X I'g|, are equal.
Another simplification occurs when we expand the iterative computation of cos|w |
and sin|wy| for the three vertices Py, P, P; of a triangle. Routine, tedious algebra
yields

coslws| = 1— [Frefz x E° (24)
f (1 + c2)(1 + c23)(1 + ¢31)
1 .. .
sinfwy| = 1 o ¥ €23 F 31 - [Fpely X T3 (25)

(14 ci2)(1 4+ e3)(1 + c31)

We absorb an upcoming sign (Az) factor in the following way. For a convex
polygon such as our triangle, we can calculate the face normal vector as the cross
product of along-the-edge vectors. An unnormalized vector aligned with a convex
polygon’s face normal 1s

ng=(rp—ry) X (r3—ry) =r; Xr,+r; xr3+r3 xry.
From the definition Az = ryehy, substitute ry — r; and calculate sign(Az) as
sign(Az) =sign(rypeh¢) =sign(rjeny) =sign(rie(r; xry+r; xr3+r3 xry))
= sign(rjery X r3) = sign(fefy X I3).
Then
sign(Az)|Fjefy X T3] = Fjef) X I3. (26)

When we incorporate Equations (24)—(26) into Equation (23), we get the fol-
lowing simple expression for a triangle’s signed wj:

on( A B
// .A_;dg =wp = 2arctanSlgn( z).(l cos|wy|)
triangle T Smlwfl
i _ _ I oF) xI'3|2
= 2arctan81gn(Az) [1 (1 (l+c12)1(1—i—2c23)3(1+631))]

I+cip+cates
(14cr2)(14ca3)(14car)

‘f']of‘z X f'3|

sign(Az)|Fyery X I3

= 2 arctan
1 4+ c12 + a3 + ¢31
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f‘] of‘z X f’3

= 2 arctan — — P
1 4+ rjery + roer'y + I'3er;

rjel'y X I3

= 2 arctan )
717273 + 71 (1’201‘3) + 7 (I‘3ol’1) + T3(I‘10r2)

27

The factors |Fjefy X T3], (1 + ¢12), (1 4+ ¢23), (1 + ¢31) are never negative and
canceling them does not affect the quadrant returned by arctan.

Both the numerator and denominator in Equation (27) are signed. They can
be presented as separate arguments to a computer’s atan2 function to calculate a
triangle’s wy = [[(Az/r*)dS in the range (—2m, +27).

2.6. SUMMARY: POLYHEDRON GRAVITATION

Symbols G and o represent the gravitational constant and the polyhedron’s constant
density. Suffixes e and f indicate edge and face, respectively.

Each polyhedron face has an outward-pointing face normal vector ny and face
dyad Fy = ngny. Each edge of each face has an outward-pointing edge normal
vector ﬁ{; perpendicular to both n and the edge. For the edge connecting vertices
1 and 2 shared by faces A and B, the edge dyad is Ej; = f)Aﬁ’flz + ﬁBﬁﬁ, with
other E.s defined similarly.

Let r; represent the vector from the variable field-point location to polyhedron
vertex P;, and let r; = ||r;|| be its length. For the polyhedron edge connecting
vertices F; and P; of constant length e;;, the dimensionless per-edge factor L is

1 P'l ; . ..
Lez/—ds:/ P lds =ity %)
el P, T Ty + 15 — €

For a triangular face f bounded by vertices P;, P;, P, the dimensionless per-
face factor wy is

Az F;el'; XT
wf:// —3dS:2arctan g7k . (27)
triangle 7 TiTTk +ri(rjork)+7"]~ (rkori)—l—rk(ri.rj)
Using these definitions, the gravitational potential, attraction, gravity gradient

matrix, and Laplacian of a constant density polyhedron are expressed intrinsically,
in closed form, thus:

U=3Go > reEeere-Le— 5Go Y rpeFpery-wy (10)
e€edges f€faces
VU=-Go Y Eer.-L.+Go > Fperp-wy (15)
ecedges f€faces
VVU=Go > E.-L.—Go Y Fi-uwy (16)
e€edges f€E€faces
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VU =-Go Y wy. (17)
f€faces

There is a straightforward progression from potential to attraction to gravity gradi-
ent matrix.

3. Modeling Asteroid Gravity Fields

A prime application of the polyhedron approach is for modeling asteroid gravity
fields. Asteroid shapes have been estimated from optical information obtained
during a spacecraft flyby (Simonelli et al., 1993; Thomas et al., 1994; Thomas
et al., 1995) and from range-Doppler radar imaging of near-Earth asteroids from
ground-based stations (Hudson ez al., 1994).

In this section we use a shape model of asteroid 4769 Castalia to compare
harmonic, mascon, and polyhedral approaches to asteroid gravitation. The shape
data were obtained from range-Doppler imaging of Castalia from the Arecibo
radio antenna during a close approach to Earth (Hudson ez al., 1994). The model
consists of 3300 faces, yielding a shape resolution on the order of 5° as measured
at the equator. Figure 11 shows a computer model and a contour map of Castalia’s
shape. The minimum radius is approximately 0.3 km at the poles of the asteroid,
the maximum radius is approximately 0.8 km at the ends, and the mean radius is
0.543km. The density is assumed to be 2.1 g/cm?, giving a total mass of 1.4 x
10'2 kg (Scheeres et al., 1995). See Figure 12 for contour plots of the magnitude
of the force attraction based on this model.

Figures 13, 14, 16 and 17 show contour maps of the percent error of the harmonic
and mascon fields relative to the polyhedron field. For comparison of the potential,
the polyhedron potential is subtracted from the harmonic or mascon potential
and the difference is divided by the polyhedron potential. For comparison of the
attraction, the magnitude of the vector difference of the polyhedron attraction
from the harmonic or mascon attraction is divided by the polyhedron attraction
magnitude.

Neither the harmonic nor mascon model yields any information about whether
the field point is inside or outside the body.

3.1. HARMONIC FIELD

The coefficients of a degree and order 20 exterior harmonic expansion were cal-
culated by performing surface integrals over the asteroid shape, using the existing
polyhedron to tessellate the asteroid shape. In performing the integrations, the exact
surface area projection for each elemental area (as calculated in this paper) was
used with the integrand being evaluated at the center of each elemental area.

For a harmonic expansion, the radius of the reference sphere may be convenient-
ly equated with the maximum radial dimension of the body (the circumscribing
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{4}

(B) Radius Contours Over Castalia
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Figure 11. (a) A representation of asteroid 4769 Castalia’s radar resolved shape model and (b) a
contour map of its surface radius (photo courtesy of JPL/CALTECH).

sphere). When evaluating the harmonic expansion inside of this sphere the exterior
series may diverge (and in general will for a generic body) (Heiskanen et al., 1967,
p. 60).

Figure 13 shows contour plots of the percent of potential error due to the
harmonic model’s truncation and divergence, relative to the polyhedral model.
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Figure 12. Magnitude of the force vector about . . . ‘
the asteroid Castalia, assuming a uniform den- -1 -05 v &m ) 0.5 1
sity of 2.1 g/em®. Contours are in units of
mm/sec?. (a) x, y plane projection onto z = 0. ©

(b) x, z plane projection onto y = 0. (¢) y, z
plane projection onto x = 0.

Figure 13a, b, and c are in the 2 = 0,y = 0, and z = 0 planes, respectively. The
outermost contour is 0.1% error and circumscribes contours of 1%, 10%, and 100%
error. The innermost outline 1s Castalia’s surface.

Figure 14 shows contour plots of the harmonic model’s attraction magnitude
errors, again in the z = 0,y = 0 and x = O planes. The harmonic expansion
diverges inside its circumscribing sphere and errors increase quickly. Outside, the
harmonic expansion converges rapidly upon the correct result.

These figures nicely show the divergence of the harmonic expansions, and the
waviness in the contours which arises from truncating the harmonic series.
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Figure 13. Percent error of degree-and-order 20 ©)

harmonic potential with respect to the polyhe-
dral potential. (a,b,c, as in Fig. 12).

3.2. MASCON FIELD

A simple approximation for an arbitrarily shaped body is to fill the shape with a
uniformly spaced grid of point masses. This mascon approximation does not suffer
series divergence or truncation as does the harmonic approach. However, when
considering the geometry of this approximation, it is clear that the solid body is
being replaced with a topologically different body composed of spherical balls.
Assuming that the spheres touch without overlap, the ratio of the volume of a
radius 7 sphere to a cube of edge length 2r is ~ 0.52. The mascon model replaces
the true body’s continuous mass distribution with a field derived of spheres with
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Figure 14. Percent error of degree-and-order 20
harmonic attraction with respect to the polyhe-
dral attraction. (a,b,c, as in Fig. 12).

density approximately twice the nominal density and with ~ 48% of the body
being vacant.

To clearly demonstrate the error involved with an individual mascon, Figure
15 shows the percent error between the attraction of a unit cube and a unit sphere
having equal masses. The largest error on the surface of the cube approaches 50%
at the midpoint of each face of the cube. The error is not uniformly less than 0.1%
until further than 2.5 radii from the cube center.

Simple estimates show that the modeling error is proportional to the size of each
individual mascon (i.e. to the resolution), while the number of mascons needed is
inversely proportional to the cube of the size of each mascon. Thus, to drive the
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Figure 15. Percent attraction error of a unit sphere as compared with a unit cube of the same mass.
This is the generic picture of the error associated with the mascon approximation. The maximum
error approaches 50% on the sides and does not diminish to 0.1% until greater than 2.5 units from
the center.

error of the mascon model down by an order of magnitude will, in general, require
a 3 order of magnitude increase in the number of individual mascon particles.
Thus, accurate representations of the gravity field near the surface of an irregularly
shaped body may require large numbers of individual mascons.

For this comparison, Castalia was filled with approximately 3300 point masses
corresponding to a modeling resolution of 59 meters, all appropriately scaled to
yield the same total mass. The potential field of this mascon model compares well
with the true potential, with agreement to within 0.1% over most of the body, even
when evaluated close to the surface. Since the agreement is so good, we do not
exhibit any figure of mascon potential errors.

Figure 16 shows contour plots of the percent errors in mascon attraction mag-
nitude. The attraction errors are between 1 and 10% over most of the surface but
swell to over 10% at isolated pockets, depending on the model resolution. How-
ever, away from the asteroid the mascon attraction error does not diminish as quick-
ly as does the harmonic expansion. Instead, mascon error remains between 0.1 and
1% over most of the space away from the body shown in the plots. Increasing the
resolution by a factor of 1.4 (to 41 meters) increases the total number of mascon
particles to ~ 9700, yet still has appreciable errors (Figure 17).

The force magnitudes found using mascons are less accurate than those found
with the harmonic expansions in its convergence region. The process of differenti-
ation tends to accelerate convergence and divergence of the harmonic expansion,
thus delineating the radius of convergence more clearly. For the mascon model,
the process of differentiation exposes the presence of the point masses and extends
the error due to their existence well away from the body. Finally, when evaluated
over the surface of the body, appreciable errors (greater than 10%) in the mascon
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Figure 16. Percent error of mascon attraction ©

with respect to the polyhedral attraction. The
contour circles at the asteroid surface corre-
spond to regions of error >10%. The model
includes 3300 mascons on a 59 meter grid.
(a,b,c, as in Fig. 12).

attraction exist at isolated locations. The size of these regions depends directly on
the resolution used for the mascon model.

3.3. MODELING DENSITY VARIATIONS

Another application of polyhedral gravitation is to simulate density variations
within an asteroid. Such a possibility will be forthcoming when the Near Earth
Asteroid Rendezvous (NEAR) spacecraft rendezvous with the asteroid 433 Eros
in early 1999 (Miller et al., 1995). During the course of the mission, a harmonic
representation of the asteroid gravity field will be estimable to ~ 10th degree
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Figure 17. Same as Fig. 16, except the mod-
eling resolution has been increased by a factor
of 1.4 and the number of mascons has been
increased by a factor of 3. The contour circles
at the asteroid surface correspond to regions of
error > 10%. (a,b,c as in Fig. 12).

and order. Any density variations expressed by the harmonic expansion might
be simulated by adding and subtracting small polyhedra internal to an overall
polyhedral model. '

Given the main shape of the asteroid, it will be necessary to compute the
resulting gravity field over the appropriate grid only once. Then candidate shapes
for the internal topology of the asteroid can be computed and added to the existing
field. A necessary constraint is that the total mass of the asteroid (which will be
well known) be held constant. This is possible since the volumes of the asteroid
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and interior shapes can be directly computed from the polyhedral shape, and the
necessary densities chosen so that the sum

N
M = poVo+ Y _(pi — po)Vi

1=1

is constant, where M is the total mass of the asteroid, Vi the volume of the total
asteroid shape, pg the assumed nominal density of the asteroid, V; the volume of the
uth internal addition and p; the density of the sth internal addition. It is possible, if
desired, to fix the nominal density pg equal to M /V}, although then the additional
volumes and densities must be chosen so that they sum to zero. In practice it will
be simpler to specify the candidate internal volumes and densities and then choose
Po such that

4. Conclusions

We have presented a new derivation of a constant-density polyhedron’s gravita-
tional potential, attraction, gravity gradient matrix, and Laplacian of potential. The
derivation is analytic throughout; there are no numerical quadratures. Results are
expressed intrinsically in closed form and involve only elementary functions (arc-
tangent and logarithm). There is a straightforward progression from potential to
attraction to gravity gradient.

The polyhedral approach provides a simple means of determining whether a
point is inside or outside of a polyhedron, since the potential satisfies Laplace’s
equation outside the body and Poisson’s equation inside. The Laplacian can be
calculated at essentially no additional cost if the potential or attraction is also being
calculated, such as in a spacecraft simulation.

Our work can be used for studies of regolith motion, ejecta trajectories, and orbit
stability in the vicinity of irregular-shaped bodies, where other approaches suffer
accuracy and convergence problems. Errors exceeding 100% have been demonstrat-
ed with the classic harmonic approach. Mascon attraction errors decrease slowly
as the distance from the asteroid surface increases.

There might be utility in superimposing polyhedron and conventional spherical-
harmonic expressions in a planetary gravitation field, to include details such as
ocean trenches, mountain ranges, or density variations.

A drawback to the polyhedral approach is the greater compute time needed, as
the entire surface must be summed over to achieve one force value. With the current
computer workstations available, it is not prohibitive to make such calculations,
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and even numerical trajectory integrations are possible using asteroid shapes with
a few thousand faces.

New investigations into using parallel computing techniques should yield a
significant speed-up in computation time. The polyhedron expressions can be
evaluated in three phases once a field point has been chosen: (1) Calculate vectors
and distances from the field point to all of the polyhedron’s vertices. Results serve as
r. and r; in subsequent phases; (2) Calculate and accumulate edge terms involving
L. and E; and (3) Calculate and accumulate face terms involving wy and Fy.
Individual tasks in each phase can be calculated in parallel, and phases (2) and (3)
can be calculated in parallel.
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