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ABSTRACT 
We use rich clusters of galaxies in the Northern and Southern Galactic hemispheres up to a 
redshift z = 0.12 to determine the cluster correlation function for a separation interval 
—650/z-1 Mpc (h is the Hubble constant in units of 100 kms^Mpc-1). We show that 
superclusters of galaxies and voids between them form a moderately regular network. As a 
result the correlation function determined for clusters located in rich superclusters oscillates: it 
has a series of regularly spaced secondary maxima and minima. The scale of the supercluster- 
void network, determined from the period of oscillations, is P = 115 ± 15 h~x Mpc. Five 
periods are observed. The correlation function found for clusters in poor and medium-rich 
superclusters is zero on large scales. The correlation functions calculated separately for the 
Northern and Southern Galactic hemispheres are similar; only the amplitude of oscillations for 
clusters in the Southern hemisphere is larger by a factor of about 1.5. 

We investigate the influence of possible errors in the correlation function. The amplitude of 
oscillations for clusters in very rich superclusters is about 3 times larger than the estimated 
error. We argue that the oscillations in the correlation function are due neither to the double- 
cone shape of the observed volume of space, nor to the inaccuracy in the selection function. 

We compare the observed cluster correlation function with similar functions derived for 
popular models of structure formation, as well as for simple geometrical models of cluster 
distribution. We find that the production of the observed cluster correlation function in any 
model with a smooth transition of the power spectrum from a Harrison-Zeldovich regime with 
positive spectral index at long wavelengths to a negative spectral index at short wavelengths is 
highly unlikely. The power spectrum must have an extra peak located at a wavelength equal to 
the period of oscillations of the correlation function. The relative amplitude of the peak over 
the smooth spectrum is probably of the order of a factor of at least 1.25. 

These quantitative tests show that high-density regions in the Universe marked by rich 
clusters of galaxies are distributed more regularly than expected. Thus our present under- 
standing of structure formation needs revision. 

Key words: galaxies: clusters: general - cosmology: observations - cosmology: theory - 
large-scale structure of Universe. 

1 INTRODUCTION 

A fundamental property of the distribution of galaxies is clustering, 
manifested by the presence of groups and clusters of galaxies and 
quantitatively measured by the correlation function. Owing to 

© 1997 RAS 

clustering, the correlation function of galaxies has a large positive 
value at small separations. At a separation of —30 h~l Mpc the 
correlation function approaches (or crosses) zero and remains 
small on larger scales. A correlation function of zero has been 
interpreted as an indication of a random distribution of galaxies. 
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This picture - clustering on small scales and a random scale-free 
distribution on larger scales - formed the classical paradigm of the 
large-scale distribution of galaxies and clusters of galaxies. 

The discovery of superclusters consisting of clusters and fila- 
ments of galaxies and huge voids between them has changed this 
classical paradigm. According to available data, superclusters 
reside in chains and walls, separated by voids of diameters of 
about 100 h~l Mpc, and form a rather regular network (Einasto et 
al. 1994; Einasto et al. 1997c, hereafter Paper I). This raises a 
question about the existence of some regularity in the distribution of 
superclusters of galaxies, and, if so, about the presence of a related 
scale in the Universe. 

The first clear demonstration of the possible presence of a 
regularity in the distribution of galaxies on very large scales came 
from a deep pencil-beam survey of galaxies by Broadhurst et 
al. (1990). This survey covers small areas near the North and 
South Galactic poles and has a depth of about 700 h~l Mpc in 
both directions. The galaxy density shows periodic peaks separated 
by —128 h~l Mpc. In total over 10 peaks have been observed. 
Bahcall (1991) explained high-density regions in the distribution of 
galaxies by the presence of superclusters. 

There has been much discussion regarding the implication of this 
result. Kaiser & Peacock (1991) have argued that a peak in the one- 
dimensional spectrum can arise without any large-scale feature in 
the three-dimensional distribution of galaxies. Dekel et al. (1992) 
investigated the problem and showed that this periodicity is barely 
compatible with Gaussian fluctuations in the framework of cold 
dark matter (CDM)-type scenarios of structure formation. Thus the 
initial reaction to the observation of Broadhurst et al. was that there 
is no need to change the classical paradigm on the distribution of 
matter on large scales. 

However, other independent data on the possible presence of 
some regularity in the distribution of matter on large scales in the 
Universe have accumulated. In the 1970s Shvarzman and Kopylov 
initiated a programme to study the large-scale distribution of matter. 
They used Abell (1958) clusters of galaxies of richness R> 2, and 
rich, compact clusters from the list of Zwicky et al. (1961-68); 
redshifts were determined for clusters up to z ^ 0.3 in a region 
around the North Galactic pole. This survey indicated the presence 
of a secondary peak in the correlation function at —125 h~l Mpc 
(Kopylov et al. 1984, 1988). Later the survey was extended to the 
Southern Galactic hemisphere, and a peak in the correlation func- 
tion on the same scale was found (Fetisova et al. 1993). Mo et al. 
(1992a,b) and Einasto & Gramann (1993) used a different method 
to analyse the cluster correlation function, and the presence of a 
feature at —130 /z-1 Mpc was confirmed. A similar scale was found 
in the distribution of clusters using other methods like the void and 
pencil-beam analysis (Einasto et al. 1994; Paper I). 

Tandy et al. (1996) derived the 2D power spectrum of the Las 
Campanas Redshift Survey and found a peak at a wavelength of 100 
h~l Mpc. The peak is due to numerous density enhancements 
located at this characteristic mutual separation. The same redshift 
survey was also analysed by Tucker et al. (1995, 1997) and 
Doroshkevich et al. (1996) who also found characteristic features 
on similar scales. An —100 /T1 Mpc scale has also been seen in the 
distribution of QSO absorption-line systems (Quashnock, Vanden 
Berk & York 1996). 

During the past few years the number of redshifts determined for 
rich clusters of galaxies has rapidly increased. This makes a new 
analysis of cluster data worthwhile, as the Abell-ACO cluster 
sample (see next section) is the deepest almost full-sky survey 
available at present. In this paper we study the correlation function 

for clusters of galaxies using a recent compilation of available data 
on clusters of galaxies by Andernach, Tago & Stengler-Larrea (1995 
and in preparation). Our study follows approaches by Bahcall & 
Soneira (1983) and more recently by Peacock & West (1992) and 
Einasto et al. (1993). However, in contrast to all previous studies we 
concentrate here on large scales, i.e. well beyond 100 /z-1 Mpc. To 
do this we consider the whole data set of clusters now available for 
both the Northern and Southern Galactic hemispheres as a single 
sample of depth —700 h~l Mpc. The same data set has been used in 
Paper I to derive a catalogue of superclusters of galaxies and to study 
the spatial distribution of clusters, by Jaaniste et al. (in preparation) 
to investigate the orientation and shape of superclusters of galaxies, 
and by Saar et al. (1995) to determine the correlation function with a 
novel method. Problems of methodology connected with the deter- 
mination and interpretation of the correlation function on large 
scales are discussed separately by Einasto et al. (1997b, hereafter 
Paper IE). The power spectrum for our cluster sample was found and 
discussed by Einasto et al. (1997a, hereafter E97). 

The paper is structured as follows. In Section 2 we describe the 
observational data used and the selection functions of the data. 
Section 3 is devoted to the analysis of the correlation function of 
clusters of galaxies on large scales. We determine the correlation 
function for the whole sample as well as for subsamples of clusters 
in the Northern and Southern Galactic hemispheres, and for cluster 
populations located in rich and poor superclusters. In Section 4 we 
discuss the influence of the smoothing length, inaccuracy of the 
selection function, and other factors on our results. In Section 5 we 
compare our results with simulations using simple geometrical 
models and results of A-body calculations for the CDM model and a 
double-power-law model. In Section 6 we derive the possible 
cluster power spectrum from models. A summary of the main 
results is given in Section 7. 

We use a Hubble constant of 7/0 = 100 h km s-1 Mpc-1. 

2 DATA 

The Abell-ACO catalogue of clusters of galaxies (Abell 1958; 
Abell, Corwin & Olowin 1989) is presently the largest available 
source of the large-scale distribution of matter in the Universe 
covering the whole sky outside the Milky Way zone of avoidance. 
We use for the present study a recent compilation of measured 
redshifts for these clusters by Andernach et al. (in preparation). This 
compilation gives redshifts for a total of about 2000 Abell-ACO 
clusters (including supplementary, or S-clusters). We used the 1995 
version of the compilation, omitted all S-clusters and used only 
clusters with measured redshifts up to z = 0.12. To this sample we 
added all clusters with photometric redshift estimates zest ^0.12. 
Our full sample contains 1304 Abell-ACO clusters of galaxies, 869 
of which have measured redshifts. 

We have included clusters of richness class 0 in our study. About 
half of all clusters in the nearby region studied are of this richness 
class, and the number of objects is crucial in the present work. Abell 
clusters of richness class 0 are X-ray emitters and hosts of cD 
galaxies with extended haloes as often as are clusters of higher 
richness. Both facts suggest that these clusters are physical objects 
which can be used to trace the large-scale structure. Possible 
projection effects discussed by Sutherland (1988), Dekel et 
al. (1989) and others are not crucial for the present study, as we 
are mostly interested in the distribution of clusters on large scales. A 
small excess of cluster pairs at small separations noted by Suther- 
land and Dekel et al. can be considered as an additional selection 
effect. 

© 1997 RAS, MNRAS 289, 801-812 
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The supercluster-void network - II 803 

This sample was used in Paper I to derive a new catalogue of 
superclusters and to study their spatial distribution. In the present 
paper we use both the cluster sample and the supercluster catalogue. 
The use of the supercluster catalogue gives us the possibility of 
analysing the distribution of clusters in different environments. 
Superclusters were determined using a ‘friends-of-friends’ tech- 
nique with neighbourhood radius 24h~l Mpc. This radius was 
chosen on the basis of the multiplicity function which shows that 
individual superclusters start to become evident at a neighbourhood 
radius of about 16 h~l Mpc; at radii larger than 30 hTl Mpc, 
superclusters begin to join into huge agglomerates with dimensions 
exceeding the characteristic scale of the supercluster-void net- 
work. Thus the neighbourhood radius must lie within these bound- 
aries. The influence of this radius on our results for the correlation 
function will be studied below (Section 4.3). 

In Paper I superclusters were divided into richness classes 
according to their multiplicity (the number of member clusters in 
superclusters). It was also shown that the overall distribution of 
superclusters of different richness is rather similar to each other: 
superclusters are located in chains that form a fairly regular net- 
work. The mean diameter of voids between superclusters is —100 
hTl Mpc. The skeleton of the supercluster-void network is formed 
by very rich superclusters. Poor and medium-rich superclusters as 
well as isolated clusters are scattered around them, leaving void 
interiors empty of rich clusters. The distribution of superclusters in 
void walls depends on the supercluster richness: the mean separa- 
tion between poor and medium-rich superclusters is small and has a 
smooth distribution, whereas the separation between very rich 
superclusters is much larger and its distribution is peaked: over 

75 per cent of very rich superclusters are located at separations of 
110-150 /z_1 Mpc on opposite sides of voids. 

This finding motivated us to study the correlation function of 
clusters of galaxies located in superclusters of different richness. As 
in Paper I we divide cluster samples into populations using the 
supercluster richness as the parameter that determines the mean 
density of the large-scale environment of clusters (see Frisch et 
al. 1995). In contrast to Paper I, we divide superclusters into only 
two richness classes with variable richness threshold. We shall use 
the following nomenclature for cluster samples. The first three 
capital letters ACO denote clusters from the Abell-ACO catalogue 
(excluding S-clusters); the following capital letter indicates 
whether we use the sample of all clusters (A) or the sample of 
clusters with measured redshifts (R); the following capital letter 
denotes cluster samples in high- or low-density environments 
(respectively H or L); the last number indicates the limiting multi- 
plicity Nc\ of superclusters used to divide the sample into high- and 
low-density populations. Clusters belonging to superclusters with 
at least Acl members are attributed to the high-density population, 
and isolated clusters as well as clusters in superclusters With fewer 
than Acl members to the low-density population. 

To calculate the correlation function of clusters of galaxies we 
generate Poisson samples of test particles with the same shape 
and selection function as the real samples. The selection effects 
depend on Galactic absorption, on the difficulty of finding lower 
richness clusters at large distances, on the decrease in the fraction 
of clusters with measured redshifts with distance, on the differ- 
ences in the mean density of clusters in the Abell and ACO 
catalogues, etc. 

0 50 100 150 200 250 300 350 
r [/T'Mpc] 

0 50 100 150 200 250 300 350 
r [/T'Mpc] 

Figure 1. Selection functions for clusters of galaxies. The volume density of clusters is shown as function of the sine of Galactic latitude b (upper panels) and as 
function of distance r from the observer (lower panels). In the upper panels the density is given in units of the density near the Galactic pole (i.e. sin h = 1 ); in the 
lower panels it is given in arbitrary units. In the left-hand panels only clusters with measured redshifts were used; in the right-hand panels we used all clusters. 
Dashed lines are for clusters located in low-density environments (isolated clusters and clusters in superclusters with fewer than eight members); solid lines are 
for high-density regions (clusters in superclusters with at least eight members). Dashed and solid straight lines represent linear approximations of the selection 
function. 

© 1997 RAS, MNRAS 289, 801-812 
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Table 1. Selection function parameters. 

Sample ¿o “ON “OS ■^IS 

ACO.R.H8 0.38 
ACO.R.L8 0.12 
ACO.A.H8 0.36 
ACO.A.L8 0.14 

1.00 
1.00 
1.00 
0.78 

0.80 
0.80 
0.50 
0.36 

1.00 0.80 
1.00 0.80 
1.00 0.50 
1.00 0.52 

Poisson samples must be generated with all these effects taken 
into account. We have calculated the selection function as a 
function of two variables, the Galactic latitude b, and the distance 
from the observer r, separately for the Northern and Southern 
Galactic hemispheres. We determined selection functions for 
clusters populating rich and poor superclusters, using a threshold 
richness of A^cl = 8. The influence of the choice of the threshold 
richness Afcl will be discussed in the next section. 

In Fig. 1 we show the results of the determination of the 
selection function for clusters of galaxies with measured redshifts. 
The number of clusters versus the Galactic latitude was determined 
as a function of sin b. Differences between the two hemispheres are 
small, thus in Fig. 1 we present the mean of both hemispheres. Data 
are normalized to unit density at sin = 1. We see an almost linear 
decrease of the number density of clusters with sin b. This linear 
regression, D(b) = (sin¿? — sin¿?o)/(l — sin¿>0), is given by the 
value s0 = sinZ?0 where the density of cluster reaches 0, and 
it was used to calculate Poisson samples for the correlation 
function. 

To determine the distance dependence of the selection function, 
the spatial density of clusters of galaxies was calculated in con- 
centric spherical shells of thickness 20 /z_1 Mpc, for each hemi- 
sphere separately. Fluctuations are rather large, thus for this sample 
of clusters the mean regression was derived for both hemispheres. 
The spatial density can be represented by a linear law: D(r) = d0— 
diir/ri), where d0 and di are constants, and is the outer radius of 
the sample. Values of the selection function parameters d0 and di, 
found for various subsamples of clusters, are given in Table 1. 

A similar analysis of the selection function was made for the 
sample of all 1304 clusters. Here, too, the sample was divided into 
high- and low-density populations using the same threshold 
Vcl = 8. Table 1 shows that parameters of the distance dependence 
in the Northern and Southern hemispheres (denoted with subscripts 
N and S, respectively) are identical in most cases. Only the cluster 
sample of all clusters in low-density regions is large enough to 
determine parameters of the distance dependence separately for 
both hemispheres. Here d0N is smaller than dos, which reflects the 
fact that the number density of the Northern cluster sample is lower 
than that of the Southern one. Parameters for the selection effect in 
Galactic latitude are similar for the sample of all clusters and for 
that of clusters with measured redshifts. 

3 THE CLUSTER CORRELATION FUNCTION 

3.1 Deep cluster samples 

In this section we discuss the correlation function of Abell-ACO 
clusters of galaxies in various environments. As noted above, 
clusters in high-density environments (rich superclusters) form a 
fairly regular three-dimensional network, whereas clusters in low- 
density environments (isolated clusters and clusters in poor and 
medium-rich superclusters, or simply poor superclusters) are 

located in their vicinity more irregularly (Paper I). To determine 
which limiting richness Vcl divides clusters naturally into high- and 
low-density environments, we calculated the correlation functions 
for both populations using limiting richnesses between Acl = 1 and 
8. For Acl = 1 by definition there are no clusters in the low-density 
population (since the low-density population consists of clusters in 
superclusters of multiplicity less than Acl). Results for Acl = 1,4 
and 8 are shown in Figs 2 and 3 for clusters with measured redshifts. 

These figures show that the correlation function of clusters in rich 
superclusters has a number of quasi-regularly spaced secondary 
maxima and minima (in addition to the main maximum at small 
separation). This phenomenon is the main finding of the present 
paper and we shall refer to it as the oscillation of the correlation 
function. 

In contrast to the correlation function of clusters in rich super- 
clusters, the correlation function of clusters in poor superclusters 
approaches zero smoothly after the initial maximum. The nearest 
neighbour test and void analysis show (Paper I) that clusters in poor 
superclusters are located more irregularly in void walls between 
rich superclusters, and thus secondary peaks of the correlation 
function owing to individual poor superclusters cancel each other 
out. 

Parameters of the oscillations of the correlation function for 
clusters in rich superclusters are given in Table 2: A is the number of 
clusters in the sample; rmin is the location of the first secondary 
minimum of the correlation function; rmax is the location of the first 
secondary maximum; Amax is the amplitude, which is defined as half 
of the difference of the values of the correlation function between 
the first secondary maximum and minimum; is the mean la error 
of the correlation function, which determines the width of the error 
corridor; A2i and Ä32 are distances between secondary maxima 
indicated by the respective indices; and Amean is the mean separa- 
tion of the secondary maxima, and of the secondary minima. 
Positions of the maxima and minima and differences between 
them are given in h~l Mpc. The mean error was calculated from 
equation (16) of Paper III. Essentially the error is determined by the 
cosmic variance (i.e. the variation of the correlation function in 
different volumes of space): 

(1) 

where Z? is a parameter introduced in Paper III to describe the 
dependence of the error on the character of the large-scale distribu- 
tion of clusters of galaxies. It must be determined from mock 
samples. We have done this (for details see Paper III) and found that 
Z? ~ 1.5 (see also the discussion in section 4). As we see from the 
above equation, the width of the error corridor for the cosmic 
variance is constant. 

We see from Table 2 that the amplitude of oscillations increases 
with the increase of the minimum supercluster richness Acl. This 
leads us to the conclusions that, for low values of Acl, we actually 
have a mixture of populations in the high-density population, and 
that the proper division of populations occurs at the highest 
minimum richness, Acl = 8. To check this result we have calculated 
the correlation function separately for clusters located in super- 
clusters of medium-richness, from Acl = 4 to 7. The correlation 
function of this subpopulation shows only marginal signs of 
oscillations. Thus we can accept Acl = 8 as the limiting richness 
to select the regularly distributed population of clusters in rich 
superclusters. This analysis confirms results found in Papers I and 
III: a smooth distribution in void walls leads to a non-oscillating 
correlation function in the case of clusters in poor superclusters; 

© 1997 RAS, MNRAS 289, 801-812 
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The supercluster-void network - II 805 

Figure 2. The correlation function of clusters of galaxies with measured redshifts. The left-hand panel is for the sample of all clusters (ACO.R.H1). In the right- 
hand panel, data on high- and low-density populations are given separately. Solid lines show the correlation function; the error corridor for high- (ACO.R.H4) and 
low-density (ACO.R.L4) cluster populations is marked with short and long-dashed lines, respectively. The overall curved shape of the correlation function is due 
to cosmic variance (compare with fig. 7 of Paper HI). 

Figure 3. The correlation function for all clusters (samples ACO. A.H8 and ACO. A.L8 in the left-hand panel), and for clusters with measured redshifts (samples 
ACO.R.H8 and ACO.R.L8 in the right-hand panel). Solid, long-dashed and short-dashed lines have the same meaning as in Fig. 2. 

oscillations occur only in the case of rich superclusters located in a 
quasi-regular rectangular lattice. 

In Table 2 we give parameters of the oscillating correlation 
function for the cluster population with measured redshifts. The 
sample of all clusters was also divided into high- and low-density 
populations, and parameters of the correlation function were 
determined. Results for samples with measured redshifts and for 
all clusters are given in Fig. 3. In this case we see that, on large 
scales, clusters in rich superclusters have an oscillating correlation 
function and clusters in poor superclusters have a zero correlation. 
Parameters of the oscillations of clusters in rich superclusters have 
values very close to those for the sample of clusters with measured 
redshifts; only the amplitude of oscillations is smaller by a factor of 
about 1.5. A smaller amplitude for the sample of all clusters is likely, 
owing to the larger observational errors in the photometric redshifts, 
which smooth out features slightly in the correlation function. 

Now we compare the errors in the correlation function for 
subsamples with various limiting richnesses NcV We see that the 

© 1997 RAS, MNRAS 289, 801-812 

amplitude of oscillations for the sample ACO.R.H8 is approxi- 
mately three times larger than the error: i.e. we are able to establish 
the presence of oscillations at the 3a level. For the sample of 
clusters of all richness classes taken together (ACO.R.H1) the error 
is approximately equal to the amplitude of oscillations. This shows 
that the division of clusters into high- and low-density populations 
is crucial to demonstrate the presence of oscillations. (We note, 
however, that the power spectrum of the cluster population in rich 
superclusters is almost identical in shape to the spectrum of the 
whole cluster population.) 

3.2 Cluster samples in the Northern and Southern 
hemispheres 

Now we determine the cluster correlation function separately for 
the Northern and Southern Galactic hemispheres. To increase the 
number of clusters we use the sample of all clusters, and divide this 
sample again into rich and poor superclusters using the limiting 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 
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Table 2. Parameters of the correlation function for various cluster samples. 

Sample N 

ACO.R.H1 
ACO.R.H2 624 
ACO.R.H4 433 
ACO.R.H6 331 
ACO.R.H8 261 

869 78 
79 
78 
83 
88 

144 
131 
136 
140 
138 

0.056 0.051 
0.056 0.060 
0.134 0.072 
0.200 0.082 
0.279 0.093 

126 
137 
134 
132 
133 

116 
117 
108 
108 
104 

122 
122 
123 
120 
116 

ACO.A.H8n 152 94 133 
ACO.A.H8s 167 97 143 

0.069 0.130 132 103 118 
0.275 0.124 140 105 118 

richness Afcl = 8. Fig. 4 shows the correlation function of clusters 
located in rich superclusters separately for both Galactic hemi- 
spheres. We see that there are some differences between the 
correlation functions. 

The oscillatory behaviour is very clear in both cases, and the 
periods of oscillation are identical (see Table 2). The basic differ- 
ence lies in the amplitude, which is smaller for the Northern 
hemisphere. This suggests that the supercluster-void network is 
less regular in the Northern hemisphere. It is interesting to note that 
Landy et al. (1996) have determined the power spectrum of galaxies 
in the deep Las Campanas Redshift Survey separately for the 
Northern and Southern Galactic hemispheres. The Southern sam- 
ples have a strong peak at a wavelength ~ 100 h~l Mpc, whereas in 
Northern samples this feature is much weaker. The similarity of 
these independent measures of the regularity of the structure 
suggests, first of all, that both methods (the correlation and spectral 
analyses) work and that they measure the large-scale regularity of 
the structure. Secondly, these results indicate that there are small but 
definite differences in the large-scale distribution of high-density 
regions in the nearby Universe. In other words, Northern and 
Southern samples, taken separately, do not form fair samples of 
the Universe. 

3.3 Mean parameters of oscillations 

The grid size or step of the supercluster-void network can be 
determined from data given in Table 2 using relations between the 

step and parameters given in Paper III. All scaling parameters 
depend on the period P which is equal to the step of the super- 
cluster-void network (see section 4.4 of Paper El). The most 
accurate value of the period comes from the relation 
P = Amean/1.01; here Amean is the mean separation between 
maxima and between minima. We obtain 

P= 115 ± 15/î_IMpc. (2) 

The variance of the mean period is given mainly by the error of the 
positions of the last maximum and minimum. The error in the 
location of the outermost extrema is 25 h~x Mpc, which contributes 
an error of 5 /U1 Mpc in P. The actual error is larger, as we must take 
into account also possible cosmic scatter of the step in different 
volumes. Comparison of different subsamples yields the error 
estimate given in (2). We note that the value of the period of 
oscillations is very close to the mean separation between rich 
superclusters located on opposite sides of voids. The latter separa- 
tion was found to be 120 /U1 Mpc in Paper I. 

The amplitude of oscillations is given by the amplitude of the first 
secondary maximum for clusters with measured redshifts located in 
rich superclusters: 
A = 0.28 ± 0.05. (3) 

The error of the amplitude is estimated on the basis of the scatter of 
estimates of the amplitude for different subsamples and of the 
Poisson error of the data. 

3.4 The parameters of the correlation function 

Here we determine the numerical relations between various para- 
meters of the correlation function. As demonstrated in Paper IE, the 
separation of the first secondary maximum of the correlation 
function from zero is always larger than the period of oscillations, 
and the difference between the second and first secondary maxima 
is always larger than the difference between the third and second 
secondary maxima. 

Using the observed correlation function parameters in Table 2 we 
have found the following relations: fx = rmax/P = 1.20; 
fn = A2i/P = 1.16; and/32 = A32/P = 0.84; where A2i and A32 
are mean separations of respective maxima of the correlation 
function. A comparison of numerical values for these parameters 

Figure 4. The correlation function calculated separately for the Northern (left-hand panel) and Southern (right-hand panel) Galactic hemispheres for all clusters 
located in rich superclusters. Error corridors are also given. 

© 1997 RAS, MNRAS 289, 801-812 
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The supercluster-void network - II 807 

with respective values found for model samples in Paper III shows a 
rather close agreement. This agreement is an additional argument 
indicating the reality of our results. 

3.5 The correlation length 

In this paper the major emphasis is on the study of the correlation 
function of clusters of galaxies on large scales. Our data contain 
information also on the correlation function on small scales, and in 
this section we discuss our results for the determination of the 
correlation length. This parameter is defined as the value of the 
separation r = r0 at which the correlation function £(r0) = 1. 
This parameter depends critically on the characteristic size of 
superclusters. 

We determined the correlation length using non-smoothed cor- 
relation functions, since smoothing increases it. As for other 
parameters, the correlation length was found separately for cluster 
samples in rich and poor superclusters. The results are interesting: 
for clusters in rich superclusters the correlation length is 

r0 = 46±5/r1Mpc, (4) 

and for clusters in poor superclusters it is 

To = 17 ± 3/r'Mpc. (5) 

The errors are estimated on the basis of the scatter from samples for 
various minimum multiplicity values. Differences in the correlation 
function at small scales are also seen in Figs 2 and 3, although the 
smoothing makes the correlation length appear larger. 

These differences are expected when we take into account the 
geometric meaning of the correlation length - it is close to the mean 
minor diameter of systems of clusters. Poor superclusters are small, 
but rich ones have much larger diameters (Jaaniste et al, in 
preparation). Similar differences are found also for clusters in 
rich and poor superclusters in models (Paper III). These calculations 
show that there exists no unique correlation length for clusters; it is 
in fact a function of cluster environment (the size of superclusters). 

4 TESTING THE REALITY OF 
OSCILLATIONS 

The presence of oscillations in the cluster correlation function was 
first established by one of us (VS) in 1994 December and presented 
in a preprint by Saar et al. (1995). Since then we have discussed this 
result at several conferences and seminars. During these discussions 
a number of questions were raised. Perhaps the local minima and 
maxima of the correlation function are just a random noise or due to 
selection effects, supercluster definition, smoothing, or some other 
disturbing effect? And if oscillations are real, can they be repro- 
duced in the framework of conventional CDM cosmogony with 
Gaussian initial fluctuations, or do they demand a radical change of 
our paradigms on the formation of structure in the Universe? To 
answer these questions we have performed a number of tests. In this 
section we discuss the reality of oscillations. 

4.1 Errors in the correlation function 

The most serious question is related to errors in the correlation 
function. Often the errors in the correlation function are calculated 
from Poisson statistics. Mo, Jing, & Borner (1992c) have shown that 
the cosmic variance is much larger than the Poisson noise, and our 
results have confirmed this. Einasto & Gramann (1993) determined 
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the error corridor by a bootstrap procedure. This method is also not 
very accurate since it cannot handle real variance of samples in 
different volumes of space. The only way to get an idea of the 
possible effect of this cosmic variance is to study various models of 
the cluster distribution. 

Results of this study are presented in detail in Paper III. It is 
shown that the error corridor of the correlation function due to 
cosmic variance depends on the size of the sample (the number of 
particles N) and the nature of the distribution of particles, and can be 
parametrized by equation (1) presented above. The parameter b of 
this equation has a value of ~ 1.5 in models that have a large-scale 
distribution of clusters similar to the observed distribution. In our 
calculations we have used this value of the error parameter. The 
amplitude of oscillations of the correlation function for the sub- 
sample of clusters in rich superclusters, ACO.R.H8, is about 3 times 
larger than the error; thus cosmic errors do not play an important 
role. If we use the sample of all clusters with redshifts (ACO.R.H1) 
then the amplitude of the correlation function is approximately 
equal to the cosmic variance (cf. Fig. 2). Thus it is essential to divide 
the cluster sample into two populations with different properties of 
the spatial distribution to establish the oscillatory behaviour of the 
cluster correlation function. 

4.2 Sample shape 

Since the sample volume has the form of a double cone and is 
restricted to a limiting distance, we will now check whether the 
curious shape of the sample can artificially generate oscillations in 
the correlation function. 

The strongest evidence against such an effect comes from the 
comparison of samples in rich and poor superclusters (cf. Figs 2 and 
3). Both samples occupy an identical double-cone-shaped volume. 
The only difference lies in the spatial distribution of clusters within 
the double-conical volume. It is very difficult to assume a selective 
influence of the sample volume shape, so that in the case of clusters 
in rich superclusters the shape generates oscillations in the corre- 
lation function, and in the case of clusters in poor superclusters it 
produces a smooth correlation function near zero. The difference 
must be intrinsic. 

To investigate this problem we have studied in Paper III the 
influence of the sample shape on the correlation function. Results 
show that the double-conical sample has about a factor of 4 fewer 
particles than the whole cubical sample, and thus cosmic variance is 
larger, but the value of the error parameter b is almost the same as 
for the whole cubical sample. In the cases in which structural 
elements (clusters in high-density regions) led to an oscillatory 
behaviour of the correlation function, these were present in suf- 
ficient quantity also when restricting the sample volume to a double 
cone. If the size of the conical sample is very small, then character- 
istic elements that determine the oscillating properties of the 
correlation function are not present in sufficient quantities and the 
correlation function becomes irregular. 

4.3 Supercluster selection 

The supercluster catalogue used in this study was compiled in Paper 
I using a neighbourhood radius of 24 /z-1 Mpc. Is this radius crucial 
for the oscillatory behaviour of the correlation function? 

The dependence of the supercluster catalogue on the neighbour- 
hood radius was investigated by Einasto et al. (1994). For neigh- 
bourhood radii >32 /z-1 Mpc, almost all clusters join to form one 
huge percolating system. Thus it is clear that a meaningful neigh- 
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808 J. Einasto et al. 

Figure 5. The influence of procedural artefacts on the correlation function. In the left-hand panel, for the sample with redshifts in rich superclusters, dots show the 
unsmoothed correlation function; short-dashed, solid and long-dashed lines show the correlation function smoothed with Gaussian dispersions 6.5, 13 and 20 
hTl Mpc, respectively. In the right-hand panel the influence of the selection function in the correlation function is given. The short-dashed Une is for the selection 
function with parameters 50 = 0.14, d0 = l,di = 0.50; the solid line is for the selection function with s0 = 0.38, d0 — 1, <ii = 0.80 (correct values); and the 
long-dashed line is for the selection function with s0 = 0.38, = 1, ^ = 0.90. 

bourhood radius must be smaller than this value. If the radius is very 
small then we select as superclusters only the highest density peaks 
of the distribution of clusters, and the number of clusters in super- 
clusters becomes too small for the determination of the correlation 
function. To determine the influence of this parameter, we compiled 
superclusters using a series of values of the neighbourhood radius: 
12, 16 and 20 h~l Mpc. For all cases the correlation function for 
clusters was calculated. The results indicate that with decreasing 
neighbourhood radius the amplitude of oscillations of the correla- 
tion function increases, since only very compact superclusters will 
be selected. However, the positions of the maxima are practically 
the same as for the adopted neighbourhood radius (24 /z-1 Mpc). 
This test shows that the oscillating behaviour and parameters of 
oscillations are quite stable and do not depend on the choice of the 
neighbourhood radius. 

4.4 Smoothing scale 

To investigate the influence of the smoothing length on our results 
we calculated the correlation function for one sample with various 
values of the dispersion as. Results are shown in Fig. 5. This 
calculation shows that there is no principal difference between 
results for different smoothing lengths. The main parameters of the 
correlation function (the period and positions of the maxima and 
minima) change only by a few per cent. The largest change is in the 
amplitude of oscillations, which decreases considerably with the 
increase of the smoothing length. To avoid the influence of the 
smoothing, we determined the amplitude from non-smoothed data. 
In all figures we have used a smoothing length of <ts = 13- 
15h~l Mpc. This almost completely removes the Poisson noise, 
and is sufficient to investigate details of the correlation function 
above a scale of 30 h~l Mpc. 

4.5 Selection function 

One frequently asked question concerns the influence of the selec- 
tion function. If the feature investigated is of the same scale as the 

depth of the sample, then small errors in the selection function can 
seriously influence the results. To investigate the influence of the 
selection function in our case we calculated the correlation function 
of one sample for a number of different selection function para- 
meters used in the calculation of comparison Poisson samples. 
Results are presented in Fig. 5. In all cases the same procedure was 
applied to calculate the selection function (discussed in Section 2 
above). Only the parameters of the selection function were changed. 
As test sample, we chose clusters in rich superclusters (ACO.R.H8). 
In this case the number density of clusters decreases very rapidly 
with increasing distance from the Galactic pole (cf. Fig. 1). If we 
ignore this rapid decrease and adopt a standard value for the 
selection parameter (as for all clusters), Sq = 0.14, then the overall 
mean slope of the correlation function changes. If we change the 
parameter that determines the decrease of the number density of the 
sample with distance and adopt too low a value for the number 
density on the far side of the sample (d^ = 0.9 instead of the correct 
value di = 0.8), then the whole correlation function on large scales 
increases. Both changes of selection function parameters have, 
however, little effect on the main parameters of the correlation 
function: none of the parameters quoted in Table 2 changes by more 
than a few per cent. Thus we can say that small errors of the 
selection function do not influence our main results. This insensi- 
tivity is due to the fact that the size of our sample is much larger than 
the scale of interest. 

5 COMPARISON WITH MODELS 

In this section we compare our empirical correlation function of 
clusters of galaxies with correlation functions calculated for several 
models. We use CDM models of structure evolution, and models 
with a double-power-law spectrum, as well as geometrical models 
with randomly and regularly located superclusters. Our main 
questions are: Can the observed correlation function of clusters of 
galaxies be reproduced by conventional models of structure evolu- 
tion? If not, what changes in models are needed to reproduce the 
observed function? 
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5.1 Comparison with CDM models 

We have calculated several N-body models of structure evolution. 
One model is based on the standard CDM scenario of structure 
formation. It has a structure parameter F = Q/z = 0.5, with the 
Hubble parameter h = 0.5, and the density parameter Q = l. The 
second model was calculated with a double-power-law perturbation 
spectrum, with spectral index n = \ on large scales (wavenumber 
k < k0), index rc = —1.5 on small scales (wavenumber k > k0), and 
the transition at wavelength Xq = lir/kQ = 115 h~l Mpc. Models 
were calculated using a particle-mesh code with 1283 particles and 
2563 cells in a cube of size L = 100 h~l Mpc. Clusters of galaxies 
were searched with a method similar to the ‘friends-of-friends’ 
algorithm. The mass of clusters is determined from the number of 
particles in volumes of enhanced density. The lower limit of the 
mass of clusters was chosen so that the total number of clusters in 
the sample was in agreement with the mean spatial density of 
Abell-ACO clusters. 

We calculated the correlation function of model clusters for the 
whole box using all clusters and also for double-conical subsamples 
of clusters in rich and poor superclusters. We applied a supercluster 
search algorithm identical to the one used for the search of real 
superclusters with neighbourhood radius 24 h~l Mpc. In each of our 
simulations we constructed three double-conical volumes (cone 
axes directed along the three axes) and searched clusters in these 
volumes. Clusters were divided into two populations - one in rich 
superclusters and the other in poor ones, with limiting richness 
Nc] = 8 as in the real case. Correlation functions found for the CDM 
model are plotted in Fig. 6. 

There are no regular oscillations in the correlation function in 
rich superclusters, either in the whole cubical sample or in the 
double-conical volumes. The correlation functions of simulated 
clusters in the double-conical volumes and located in rich 
superclusters have several peaks and valleys on large scales, 
but the location and amplitude of these peaks are random (for 
details see the next subsection). Model clusters in poor super- 
clusters have a smooth correlation function close to zero at large 
scales. 

This result is expected, as the power spectrum of CDM models is 
a smooth function of wavenumber, with a continuous change in the 
slope of the spectrum. For such spectra, oscillations of the corre- 
lation function are not expected, since oscillations occur only in the 
case when the spectrum has a peak and the slope near the peak 
changes suddenly (Frisch et al. 1995; Paper III). 

This does not exclude the possibility that, in some realizations of 
a model with a CDM-type perturbation spectrum, peaks and valleys 
in the correlation function of clusters in rich superclusters are 
located more regularly. This occurs when the perturbation spectrum 
accidently has an extra peak near its maximum. In the next 
subsection we study more closely the possibility of how frequently 
such a peak can occur. 

5.2 Comparison with random supercluster samples 

To investigate the possible generation of regular oscillations in the 
correlation function for double-conical volumes of clusters in rich 
superclusters, we must generate a large number of realizations of 
models. The distribution of clusters in models is determined 
essentially by medium-scale perturbations which are still in the 
linear stage of evolution. Thus it is not necessary to use con- 
ventional A-body calculations of structure evolution. Borgani 
et al. (1995) have used the Zeldovich approximation for a 
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Figure 6. The correlation functions of clusters for CDM models. Solid lines 
are for clusters in double-conical subsamples located in poor superclusters 
(with fewer than eight members), and dashed lines are for clusters in double- 
conical volumes in rich superclusters (with at least eight members). 

similar task. In this paper we shall apply an even simpler 
procedure to investigate the regularity of the large-scale distribution 
of clusters. 

In the present problem it is not essential to use exactly the CDM 
spectrum. What is important is to apply a broad-band spectrum with 
a smooth transition between regions at large and short wavelengths. 
As demonstrated in Paper III, the power spectrum of the random 
supercluster model is rather similar to the power spectrum of CDM 
models, in particular in the medium-wavelength region of interest 
for the present study. Correlation functions of these models are also 
very similar. We make use of this similarity and generate a large 
number of realizations for the random supercluster model to see 
how frequently such a model can reproduce properties of the real 
correlation function. 

In this model (for details, see Paper III) superclusters are located 
randomly in space. They contain clusters of galaxies in numbers 
that are in agreement with the observed multiplicity function of 
superclusters. To imitate the observations, we choose a double- 
conical sub-volume from the whole cubical sample and select 
clusters that belong to rich superclusters with at least eight 
member clusters. The full side length of the cube is taken to be 
L = 700 h~l Mpc. The number of superclusters in models is taken 
to be approximately equal to 650; in this case the number of clusters 
in rich superclusters of double-conical subsamples is about 300 as 
in the observed cluster sample in rich superclusters. Our calcula- 
tions show that the correlation function of this model also has 
maxima and minima, but they are located randomly, similar to the 
cluster correlation function of CDM models. We can characterize 
oscillations and their regularity by the following parameters: the 
mean period of oscillations, its rms scatter, the mean amplitude of 
oscillations, and its rms scatter. 

Results of our calculations for 1000 realizations of the random 
supercluster model are shown in Fig. 7, separately for the amplitude 
versus period and for the scatter of the amplitude versus the scatter 
of the period. If a point lies outside the 1 per cent contour, it has a 
probability of occurrence of <1 per cent. We see that for both 
variable parameter pairs the observational point lies just outside the 
1 per cent contour. In other words, the probability that our observed 
sample is taken from the same model is approximately 1 per cent for 
both variable pairs. 
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Period (h'1 Mpc) D Period (h"1 Mpc) 

Figure 7. Parameters of oscillations of the correlation function: period, amplitude (left-hand panel), and their scatters, £>Period> ^Amplitude (right-hand panel). The 
large filled circle shows the observed values for clusters in rich superclusters (sample ACO.R.H8); dots are respective values for 1000 realizations of the random 
supercluster model, crosses are for the standard CDM model, and stars are for a low-density CDM model with cosmological constant (see Paper III for details). 
Contours indicate the probability level for random superclusters outside which 1 per cent of periods and amphtudes are found. To calculate parameters of 
oscillations for this figure we used smoothed correlation functions. In this case the amplitude of oscillations from observations is A = 0.186 (the value given in 
Table 2 corresponds to the amplitude of the unsmoothed correlation function). 

Figure 8. The integrated frequency distribution of the correlation function 
variance parameter \¡/. The observed value of \j/ is noted by a vertical bar. 

We applied a further test using the fine details of the correlation 
function. As noted above, the position of the first secondary 
maximum of the correlation function, as well as mean differences 
between the second and first, and between the third and second 
maxima, is in certain fixed relations with the period of oscillation. 
We can define a correlation function variance parameter as follows: 

V'2 = (fo -/oo)2 + (fi -/io)2 + (fl -/20)2. (6) 
where/0,/i and/2 are values of parameters defined by equations 
(12)-(14) of Paper III and found for the test model;/o^/io and/2o 
are respective values calculated for the geometric model with 
regular structure. As demonstrated in Paper m, these parameters 
are rather stable and depend only little on models with different 
details of the structure. Essential is the presence of a regular 
network of superclusters and voids. Thus we have calculated the 
correlation function variance parameter \¡/ for all our 1000 test 
models (see Fig. 8). 

This calculation shows that the mean value of the parameter is 
i/' = 1.4. The distribution is very asymmetric with a long tail 
towards large i/'-values. The lowest value for these 1000 realizations 
is 0.1. The observed value is i/' ~ 0.14. We see that the probability 
that the observed case is taken randomly from the family of random 
supercluster models is also about 1 per cent. All our variables used 
in these tests are independent of each other, and thus the probability 
of obtaining all five parameters fitted once by the random super- 
cluster model simultaneously is much smaller than 1 per cent. 

Even if using the random supercluster model were a fast but not 
ideal procedure for calculating these probabilities, the main result 
would be hardly changed by more ingenious simulations: the 
probability is very small. Thus we conclude that within standard 
cosmological models it is difficult to generate the observed correla- 
tion function. 

6 POWER SPECTRUM 

Which perturbation spectrum can produce the observed correlation 
function of clusters in rich superclusters? Analytic calculations 
made in Paper El show that the correlation function has an 
oscillatory behaviour only if the power spectrum has a peak at the 
corresponding wavenumber. In this paper it was also demonstrated 
that the sharpness and height of the peak in the spectrum determine 
the character of oscillations of the correlation function. 

Here we estimate the possible shape of the spectrum on scales of 
interest using comparison with models with known spectra. We 
shall compare the spectra and correlation functions of three models: 
the standard CDM model, the double-power-law model, and a 
mixed geometrical model consisting of two populations, one with 
superclusters located randomly along regularly spaced rods and the 
other with irregularly spaced superclusters (see Paper IE for 
details). Power spectra of these three models are shown in Fig. 9. 

We see that the double-power-law model and the mixed model 
have rather similar spectra near the maximum. Both models also 
have similar correlation functions with weak oscillations (see fig. 4 
of Paper III). The oscillations are more regular in the geometrical 
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Figure 9. Power spectra for the CDM model, the double-power-law model, 
and the mixed geometrical model, plotted with solid, short-dashed, and 
long-dashed lines, respectively. 

model, as expected. However, the differences between models are 
not large. The maximal deviation of the spectrum near the max- 
imum from the corresponding CDM-type spectrum is —0.2 dex, i.e. 
about a factor of 1.25 in amplitude. 

These models show that already a modest deviation from the 
standard CDM spectrum produces an oscillating correlation func- 
tion for clusters in rich superclusters. 

The actual power spectrum of our cluster sample has a peak of 
even higher amplitude (see E97). 

7 CONCLUSIONS 

We have determined the correlation function for clusters of galaxies 
separately for all clusters and for clusters located in rich and in poor 
superclusters. The correlation function of clusters in rich super- 
clusters that form the skeleton of the supercluster-void network has 
an oscillatory behaviour with a period of 115 ± 15 h~l Mpc. Within 
an interval of —650 h~l Mpc over which observational data are 
available, five secondary maxima and minima of the correlation 
function are seen. The amplitude of oscillations is larger for clusters 
located in very rich superclusters. 

The scale of the supercluster-void network found here on the 
basis of the cluster correlation function is rather close to the scale 
found using other methods, such as void diameter analysis, 
pencil-beam studies, or absorbers in the line of sight to QSOs 
(Quashnock et al. 1996), although the latter apply to higher 
redshifts. 

The reality of oscillations of the cluster correlation function is 
supported by the following arguments. (1) The error corridor of the 
correlation function determined for clusters in rich superclusters is 
much smaller than the amplitude of oscillations. (2) Oscillations are 
seen in cluster samples located in both Galactic hemispheres. (3) 
Similar oscillations with lower amplitude are observed in the Las 
Campanas Redshift Survey of galaxies by Tucker et al. (1995, 
1997). (4) In all samples the shape of the oscillating correlation 
function follows almost exactly the expected shape for a quasi- 
regular network of superclusters and voids. (5) The double-conical 
shape of the volume sampled by clusters cannot influence the 
results. (6) Parameters of the oscillations practically do not 
depend on the smoothing length of the correlation function, or on 
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the neighbourhood radius used in supercluster definition, or on 
errors of the selection function used to calculate the correlation 
function. 

The correlation length of clusters of galaxies depends on the 
cluster population: for clusters in poor superclusters it is about 
11 h~l Mpc; for clusters in rich superclusters it is about 45 
/r1 Mpc. 

We have compared the observed correlation function with 
correlation functions calculated for clusters in CDM models and 
for models with randomly distributed superclusters. These models 
have a broad-band power spectrum with a smooth transition 
between the positive spectral index at long wavelengths and a 
negative index at small wavelengths. In these models the correlation 
function of clusters in rich superclusters located in double-conical 
volumes also has peaks and valleys, but these peaks and valleys are 
distributed randomly and have random amplitudes. The probability 
that a model with a broad-band power spectrum has parameters of 
oscillations of the correlation function similar to observed para- 
meters is very low (Cl per cent). 

Analytical calculations show that oscillations of the correlation 
function appear only in the case that the power spectrum has a peak 
at the wavelength equal to the period of oscillations. We have 
compared spectra and correlation functions of models with various 
heights of the peak in the spectrum. These calculations show that it 
is possible to generate an oscillating correlation function for 
clusters in rich superclusters if the height of the peak is of the 
order of a factor of at least 1.25 in amplitude over the conventional 
smooth spectrum. 

The fact that the amplitude of oscillations near the last maximum 
is still rather large suggests that the coherence of positions of high- 
density regions extends over very large separations (at least 10 per 
cent of the diameter of the observable Universe). 
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