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ABSTRACT
The implications of the nth-order virial equations are analyzed for concentric heterogeneous ellipsoids
with a density distribution of the form p = p_ f(m?), where m*> = Y 3_, x?/a2, 0 <m? < 1, and a; are the

semiaxes of the external ellipsoid corresponding to m? = 1. Solutions analogous to Jacobi ellipsoids (with
constant angular velocity Q, without vorticity), to Dedekind ellipsoids (with nonuniform vorticity Z and
zero angular velocity), and to Riemann ellipsoids (with constant angular velocity and nonuniform
vorticity) are explored. It is shown that only the second- and fourth-order virial equations give nontrivial
results: all the odd-order virial equations are identically satisfied for ellipsoids rotating around a prin-
cipal axis of symmetry. The even-order virial equations (sixth, eighth, etc.) are shown to be a conse-
quence of the lowest order equations. The entire family of homogeneous and heterogeneous concentric
ellipsoids allowed by the virial equations is presented, confronted, and contrasted with the known cases
in the literature.

Subject headings: stars: interiors — stars: rotation

1. INTRODUCTION

The fundamental problem of stellar dynamics is the construction of a phase-space distribution function f that satisfies the
collisionless Boltzmann equation. In general, this problem has been solved for few realistic cases (Fridman & Polyachénko
1984, pp. 246-322). In fact, the stellar motions in axisymmetric or triaxial galaxies have integrals of motion which are not
known explicitly.

Self-consistent models for gravitating collisionless systems can be studied by taking moments of the collisionless Boltzmann
equation. The first moment gives the analog of Euler’s equation for a self-gravitating isotropic fluid mass. If the fluid is not
perfect or if one deals with a stellar system, the Euler’s equation is generalized to the Jeans equation in which the term of
pressure force is substituted by a stress tensor that describes an anisotropic pressure. Various authors have applied this
method to model kinematic observations of elliptical galaxies (Binney, Davies, & Illingworth 1990; Cinzano & van der Marel
1994).

The higher moments of the Boltzmann equation originate the virial equations of various orders: tensor equations relating
global properties of stellar system, such as total kinetic energy and mean-square streaming velocity (Binney & Tremaine
1987, pp. 211-219). The fulfillment of these equations does not assure that there exists a positive definite distribution function f
describing the physical system. The tensor virial equations are integral relations, consequences of the equations of stellar
hydrodynamics, and they yield necessary conditions than can furnish useful insights for the construction of self-consistent
ellipsoidal models (Vandervoort & Welty 1981, 1982).

The virial method developed in Chandrasekhar (1987) shows that only in the case of homogeneous self-gravitating masses
having a linear velocity field are the virial equations of second order equivalent to the complete set of hydrodynamic
equations. In the general case of heterogeneous density and a nonlinear velocity field, this equivalence does not exist, and the
nth-order virial equations represent necessary global conditions to be satisfied by any equilibrium configuration.

This is the last paper (Paper IX) in a series (Papers I-VIII) devoted to the generalization of the theory of ellipsoidal figures
of equilibrium, endowed both with rotation (€2) and vorticity (Z) obtained for the homogeneous case in the classic works of
Maclaurin (see Todhunter 1873), Jacobi (1834), Dedekind (1860), Dirichlet (1860), and Riemann (1860), and treated in a
unified manner by Chandrasekhar (1987) in the virial equations formalism in his book “ Ellipsoidal Figures of Equilibrium.”

This series of papers has followed a variety of tentative approaches, consisting of successive generalizations of known
results: looking at more general density distributions, nonlinear velocity fields, selected forms of the pressure tensor, and
finally analyzing the constraints imposed by the nth-order virial equations. Clearly we have proceeded tentatively step by step.
The complete set of virial equations of the nth order is now given in the present article. As we will see in the following, only the
second- and fourth-order virial equations are independent, while those of higher even order and all odd orders are identically
satisfied. These final results limit further the ranges of possible solutions and contain as special cases all the previous results of
the series.

The first step forward in the theory of ellipsoidal figures of equilibrium was the introduction in Pacheco, Pucacco, & Ruffini
(1986a, hereafter Paper I) of (a) a heterogeneous density distribution p = p (1 — m?)" with m®> = ¥'3_, x?/a? and (b) an
anisotropic pressure. Using only the second-order virial equations, the equilibrium and stability of heterogeneous generalized
Riemann ellipsoids was analyzed for the case of a linear velocity field with a corresponding uniform vorticity. The stability
against odd modes of second harmonic perturbations of these equilibrium solutions was also analyzed. As a simple analytical
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3 application, explicit quasi-spheroidal stable configurations were given for selected values of the angular velocity © of the
i figure of the vorticity Z and of the anisotropic pressure.

In Pacheco, Pucacco, & Ruffini (1986b, hereafter Paper II), additional special solutions of the equations introduced in
Paper I were considered: some generalized Maclaurin-Dedekind spheroids with anisotropic pressure and their stability
properties were analyzed. It was shown how the presence of anisotropic pressure extends the region of stability toward greater
values of the eccentricity, which is similar to the behavior of the homogeneous case considered by Wiegandt (1980).

In Busarello, Filippi, & Ruffini (1988, hereafter Paper III), a second step was made toward the generalization of the
solutions by introducing a fully general stratified density distribution of the form p = p(m?), where p is an arbitrary function of
the equidensity surfaces. As in the previous papers, the pressure is still anisotropic and the velocity field linear. The
equilibrium and stability properties of anisotropic and heterogeneous generalized Maclaurin spheroids and Jacobi and
Dedekind ellipsoids were studied. Particularly noteworthy is the fact that the Dedekind theorem, originally proved for
homogeneous and isotropic configurations, is still valid for this more general case.

In Pacheco et al. (1989, hereafter Paper IV), several applications were presented of the previous treatment of the generalized
Riemann sequences. Special attention was given to the axial ratios of the equilibrium figures, compatible with given values of
the anisotropy. A stability analysis of the equilibrium was performed against odd modes of second harmonic perturbations.

In Busarello, Filippi, & Ruffini (1989, hereafter Paper V), the heterogeneous and anisotropic ellipsoidal Riemann configu-
rations of equilibrium, obtained in the previous paper and characterized by both nonzero angular velocity  of the figure and
vorticity Z, were used to model a class of elliptical galaxies. Their geometrical and physical properties were discussed in terms
of the anisotropy, the uniform figure rotation, and the internal streaming motion.

In Busarello, Filippi, & Ruffini (1990, hereafter Paper VI), the equilibrium, stability, and some physical properties of a
special class of oblate spheroidal configurations which rotate perpendicularly to the symmetry axis were analyzed, still within
the framework of the second-order virial equations.

In Filippi, Ruffini, & Sepulveda (1990, hereafter Paper VII), we made an additional fundamental generalization by
introducing a nonlinear velocity field with a cylindrical structure and a density distribution originally adopted in Paper I of
the form p = p,(1 — m?)". The generalized anisotropic Riemann sequences coming from second-order virial equations were
studied. Some of the results obtained in that article have been modified by the consideration of the virial equations of nth
order, especially the claim regarding the validity of the Dedekind theorem, made on the basis of an unfortunate definition of
certain coefficients.

In Filippi, Ruffini, Sepulveda (1991, hereafter Paper VIII), following the theoretical approach of its precedecessor, the
nonlinear velocity field was extended to cover the most general directions of the vorticity and angular velocity. The more
general form for the density p = p(m?) was adopted. Equilibrium sequences were determined, and their stability was analyzed
against odd and even modes of second harmonic perturbations.

Finally, in the present and ninth paper of the series we consider a heterogeneous, rotating, self-gravitating fluid mass with
anisotropic pressure and internal motions that are nonlinear functions of the coordinates in an inertial frame. We present the
complete results for the virial equations of nth order, and we discuss the constraints for the equilibrium of spherical,
spheroidal, and ellipsoidal configurations imposed by the higher order virial equations. In this context, the classical results of
Hamy (1887) and Dive (1930) are also confirmed and generalized. In particular, (a) the Dedekind theorem is proved to be
invalid in this more general case: the Dedekind figure with Q@ = 0 and Z # 0 cannot be obtained by transposition of the Jacobi
figure, endowed with Q # 0 and Z = 0; (b) the considerations contained in the previous eight papers on the series, concerning
spherical or spheroidal configurations, are generalized and recovered as special cases; (c) the nth-order virial equations
severely constrain all heterogeneous ellipsoidal figures: as shown from Tables 1-3, all the heterogeneous ellipsoidal figures
cannot exist.

In § 2 the nth-order virial equations are written in a very general form, using useful and compact definitions of the
meaningful coefficients. Section 3 considers the most general velocity field possible for an ellipsoidal figure which preserves its
form, as seen from a frame of reference in which the ellipsoid is at rest (Paper VIII), producing internal fluid motions of
nonuniform vorticity. Here the set of virial equations is specialized to the case of generalized, S-type Riemann ellipsoids. In
this case it is demonstrated that all the odd-order virial equations are identically zero. In § 4 the even-order virial equations
are analyzed and applied to generalized, S-type Riemann ellipsoids. In § 5 the Dedekind’s theorem is analyzed in the most
general case. In § 6 we consider a classification of the allowed uniformly rotating equilibrium figures. In § 7 we consider a
classification of the allowed equilibrium figures having a differential rotation. In § 8 the allowed generalized Riemann figures
are classified. Conclusions are drawn in § 9. Mathematical details and useful definitions are given in the Appendix.

Besides the general solutions of the nth-order virial equations which contain all previously obtained results as special cases,
this paper opens a new fundamental question on the nonexistence of triaxial ellipsoidal figures of equilibrium. One important
question we will analyze elsewhere is the issue of whether or not such nonexistence follows from imposing strictly ellipsoidal
configurations of equilibrium, and if configurations with small departures from ellipsoidal symmetry do indeed allow triaxial
figures of equilibrium to exist. Recent work (Di Nunzio & Ruffini 1996) directly integrating the Vlasov equations numerically
for distribution functions depending both on the energy and angular momentum has shown the existence of a new family of
solutions which are ellipsoidal in the outer figure of equilibrium and toroidal in the inner region. Therefore, it appears that the
“paradigm ” pursued for almost a century of emphasizing solely the role of ellipsoidal figures should be extended further to a
new and more general class of nonellipsoidal equilibrium configurations.

This issue and the ones mentioned above will not be resolved here but will be addressed in forthcoming papers.

2. THE nTH-ORDER VIRIAL EQUATIONS
We consider an ideal self-gravitating fluid of density p(x, t) and diagonal, anisotropic pressure P, = J,; P;, rotating with a
constant angular velocity Q in an inertial frame. Here and in the following, latin indices indicate the Cartesian coordinates.
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The hydrodynamic equation governing the motions, referred to a frame of reference rotating with this angular velocity €, is
given by (Goldstein 1980)
d 1
pd—u=—V'P+va+§pV|Qxx|2+2pux.Q—prx, 1)
where 1| Q x x| and 2u x Q represent the centrifugal potential and the Coriolis acceleration, respectively. While = 0, this
equation reduces to that given in Chandrasekhar 1987, p. 24-28, [62]). In components equation (1) is expressed by

d .
d_li =—p Z €ilmempqSII!)pxq + 2p Z 6ilmuls)m - P Z eilm!)lxm - Z alPli + paiv . (2)
Ilmpq Im Im 1
As usual, the gravitational potential » satisfies the Poisson equation
Viu = —4nGp . 3)

The boundary of the configuration is defined by P,; = 0. We now generalize the form of the virial equations, given for the
second and fourth orders by Chandrasekhar (1987), to the generic nth-order case. In a rotating frame, in complete analogy
with the treatment given by Chandrasekhar (1987), the nth-order virial equations may be generated by multiplying the
hydrodynamic equation by x{~ 'x?x and integrating over the volume V. The index i appears a — 1 times, the indices j, k

appear b and c times, respectlvely, andz #j#ka>1,b>=0,c>0,anda+ b+ c = n. Thus,

du;
jpfx‘i' XxdV = - Zei’mequQIijpxa lxbxde'FZZEizQOquzx" IxbxgdV

Impq Im
=Y €um jpx“ IxXhxpdv =y JB,P,, x¢TIxExgdv + jpa ox{ T Ixhxpdv . @
Im 1

We also generalize the moments of the distribution of density, pressure, velocity, and gravitational potential to the nth
order. Then we have the following expressions for the nth moment of inertia tensor,

Ik jpx b xpdV, )
the nth moment of the kinetic energy tensor,
2T = quiujx?x?xﬁdV , (6)
the nth moment of the potential energy tensor,
W?,”,ﬁ=jp6 ox¢ T IxbxpdV )

and finally the (n — 2)th moment of the pressure tensor,
Hf]f”‘—JPx“ 2xbxqdv . ©®)
Following the previous definitions, the term on the left-hand side of equation (4) may be expressed as
Jp%x‘{ 1x")c,ch—(iitj/)u x¢IxExgdV — 2[(a — DTE 2 + bTe 0P 1 + cTo 0] . ©)
The term involving the pressure on the right-hand side of the same equation, after an integration by parts, gives
Z ja,P,, x¢TIxbxpdV = —(a—1) JP #2IxbxpdV = —(a— DITE; 2% . (10)

Finally, the virial equations of order n may therefore be written as

,b,¢
k

d
dthux“ IxbxedV =2[(a — DTG F% + bTE 00 + cT 00 7 ] + Wi + QPIEly — QPZQI, L

+22€qumjpu, ¢ IxbxpdV — Ze,,mQ 5% + (a— DI 2>, (11)
Im

with I ;‘,f,-j-;,’i" defined in equation (18). For a stationary state, both the left-hand side term and €, are equal to zero.

3. THE nTH-ORDER VIRIAL EQUATIONS FOR HETEROGENEOUS ELLIPSOIDS

We now examine the nth-order virial equatlons for a class of heterogeneous ellipsoids the strata of equal density are similar
to and concentric with the bounding ellipsoid [Y ;- ; x?/a? = m* = 1, p = p, f(m?)], a; (semi-axes of the bounding ellipsoid).
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3.1. The Generalized Internal Potential of Heterogeneous Ellipsoids

The Newtonian potential at an internal point x; of a heterogeneous ellipsoid (of the kind we have been considering),
following theorem 12 in Chandrasekhar (1987), is given by

o0 o]

v = nGa,a, a, J qu FIm*u)], (12)

0

d
Ku F[m*(u)] = (nGp,)a,a, a; J

0
where A% = (a? + u)(a? + u)(a? + u),

1 2

3 Py
FIm*@)] = f plm?)dm? = p, Fim*w)] and m*(w) = ¥, —-— .

m2(u) i=1 @i +u

The gradient of » is
© du  dF[m*u)] ®  du
0iv = AnGpa,a, az x; J; A +u) dm’(w) = —2(rGp,)a,a, ay X m fIm*(w)] = —2nGp,)x; C{x); (13)
here C(x) are the elements of a diagonal matrix, explicitly
® du
Cix) = a,a, a3 L A+ 1) fIm*@W)], (14)

and C; reduces to the index symbol defined in Chandrasekhar (1987, pp. 53—55), in the homogeneous case.

3.2. The Velocity Field Describing the Internal Motions

The velocity field considered in Chandrasekhar (1987, p. 69) is a linear function of the coordinates. Following Paper VIII,
we now propose a more general form of the velocity field within a self-similar ellipsoidal figure, assuming:

1. the preservation of the ellipsoidal form,

2. the continuity equation,

3. the existence of a constant unit vector 7 fixed in the rest frame of the ellipsoid such that the velocity field circulates in
planes perpendicular to 4, and having the same direction as Q. With these conditions, the velocity field in the rotating frame
is

u=~nx(Mne .

The dimensionless function ¢ describes the character of the velocity field (linear or not), m* = r + ./r is the equation of the
ellipsoid, with .4/ = }3_, & é;M;; =Y 7_, (é,é)/al,r =Y} ,é;x;,and Ny; = Y 2_, €, n,, where n, are the components of A.
With these definitions, the components of the velocity field become

3
u; = _.ZI(NM)ijxj(béia
ij=
or equivalently

U; = ‘(I; i (AZA—I)ijxj’ (15)

the diagonal matrix A4 has the values of semi-axes g; as elements, and Z;; = C(N i/a:a) =Y i-1 €3 Z,. Here Z;; is defined in
such a way that the factor C gives to Z the same dimension as Q. N; is the dual of the vector i which determines the common
direction of Q and Z.

3.3. The Virial Equations for Heterogeneous Ellipsoids

Considering now the case of a steady state regime, and using the expressions (109), (112), (115), (117), and (118) from the
appendix for the tensors I, J, K, T, and W, it follows from equation (11) and the relation (4ZA~');; = S;; that
I

pq.i.j.k
pa=1 p=1

14

3 3
Y 0@ = DSy Sig Kgg 25 + bSip S Koo L1 + ¢Sy Suq Ko 5T 1+ WS + QU -0, Y Q

y a— c a— [4
-2 /= z EizQOSIpJp,i,i'ZZ’ = —(a— I)Hi,j,f'b' , (16)

Imp
where
Ko i = qugzxpxq x{7Axpxgdv, (17)
I = jpx,,x?‘lxﬁx;dv, a8)
Sk = inx,,x?“x’; xsdv (19

and p, g take values from the set {i, j, k} withi # j # k.
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Note first that these virial equations with odd values of n = a + b + c are identically zero. In fact, if we consider the form of
the integrals (17)—(19), and the analogous integral forms (117) and (118) in the appendix for W‘i‘;ﬁ',f and 1'[;{;_,%"”“, we see that
the function ¢ determining the velocity always appears multiplied by odd powers of each coordinate. Since every integral
containing odd powers of the coordinates is zero because of the symmetry of the integration volume, these integrals all vanish.
Note also that 9, is proportional to x; so that the kernel of W is odd. Consequently, all the terms on the right-hand side of
equation (16) are zero, so that IT¢; 2°>° must be zero. This means that the function P; appearing in the integral form of I1¢ 2-b¢

ijk
(see expression [117] in the Appendix) must contain terms like x;x,, X, X3, X, X3, X%, x3, x3 and its powers.

4. THE EVEN nTH-ORDER VIRIAL EQUATIONS AND THEIR APPLICATION TO GENERALIZED S-TYPE RIEMANN ELLIPSOIDS

We now turn our attention to the virial equations with even values of n. The analysis may be performed easily by classifying
the powers of the coordinates. In fact, there are only the following possibilities: (1) a = even, b, ¢ = odd; (2) b = even, a,
¢ = odd; (3) c = even, a, b = odd; (4) a, b, c = even. Cases (2) and (3) are equivalent because of the interchangeable positions of
Jj and k in equations (16). Cases (1) and (2) are nonequivalent owing to the privileged position of the index i. Thus, using the
Appendix, the steady state virial equations (16) can be classified as follows.

Case (1): a = even, b, ¢ = odd.—It is easy to prove that the terms containing the moments of T;; cancel out between
themselves, whereas the rest of the terms take the form

ZjZk(2a?,;£’b+1'c+l _ ai{,}z;l,c+1 _ a:.z‘,jb‘l-:l,c—l) — 0 i (20)
Case (2): b = even, a, ¢ = odd. Equivalent to case (3), with ¢ = even, a, b = odd:
Z,Z; b . o a a;
e [ttt = (4 D] - 00 T 2R 0,2, = 0. 1)

Case (4): a, b, ¢ = even. Equation (16) becomes

2 2
a; _ a; _
Zf[(a — D) S KRt - ch;}{’,f] + Z,f|:(a — 1) S K - bK;‘;}’_',f:l
k j

sJ

a a;
+(@QF + QDI + 2<Qj Z; ;" +Q.7, —f)J;‘:}’,',f + W 4+ (@ — DI =0. (22
Using the reduced (dimensionless) cylindrical coordinates X, = 7 cos 0, %, = 7 sin 0, and ¢ = ¢(m?, 72, %2), it is easy to show
that

2
ai .
(a—1) = K?‘j‘f""“”/K?;}j’kc =c+1,
ai
and

2

ai a—2,b+2,c a,b,c

@- 0% kezeee kg =b 1,
j

so that equation (22) takes the form

i,jk

(Z} + ZDKEp + (QF + QYIE + 2(Qj Z; % +Q.7, %)J:-’_'}’;,f + Wi+ (a— DI FPe =0, 23)

In this work, we extend the classical Maclaurin spheroids, Jacobi, Dedekind, and Riemann ellipsoids (Chandrasekhar
1987), to cover heterogeneous systems with nonuniform vorticity and anisotropic pressure that we denote as generalized
Maclaurin spheroids, generalized Jacobi, Dedekind, and Riemann ellipsoids.

We examine in the following the generalized S-type Riemann ellipsoids (homogeneous and heterogeneous systems with
uniform figure rotation € parallel to the vorticity Z, and isotropic or anisotropic pressure). These configurations encompass
as special cases the generalized Dedekind ellipsoids (homogeneous and heterogeneous systems with Q = 0, Z # 0, and
isotropic or anisotropic pressure), the generalized Maclaurin spheroids and the generalized Jacobi ellipsoids (homogeneous
and heterogeneous axisymmetric or ellipsoidal systems, respectively, having Q # 0, Z = 0, with isotropic or anisotropic
pressure). It is interesting to note that the usual Dedekind theorem, which transforms Dedekind ellipsoids into Jacobi
ellipsoids and vice versa, no longer applies in the nonlinear velocity regime (see § 5). These two families will therefore be
treated independently.

For generalized S-type Riemann ellipsoids, /i = (0, 0, 1), Q = (0, 0, ), Z = (0, 0, Z). With this choice, the virial equations
(20) and (21) vanish identically. Only equations (23) of case (4) are different from zero. We have explicitly

a
Z7K355 + QTS + 207 22 4+ U85 + Wikh + (@ — DY =0, (24)
1
a
ZPKglils + QU5 + 207 2 + 505G + WEES + (a— DI 29 =0, (25)
2
3% + (@ — DG =0, (26)
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It is easy to show that only in the linear and homogeneous case [¢ = f = 1, P; = P, (1 — m?)], this infinite set reduc_es to jl}st
three equations which coincide with the hydrodynamic equations (Chandrasekhar 1987, pp. 74-75). In fact, in this special
case, using the integrals (127) and (128), we have K@Py¢ = I¢0¢ = J&b¢ | C; = A;,and

i,j,k — Yijk >
Wb +(a— DT 20 P,
S = 2nGp)A; + 2 5,
i,j,k c i

so that equation (22) becomes
Pic

Z2+ZE+ QP+ QF 4 2<Q,.z,. % +QZ, %) + 2AnGp A, + 2

i i

=0, (27

c“i

and this set coincides with the hydrodynamic equations for the linear and homogeneous case.
5. DEDEKIND’S THEOREM

In the linear and homogeneous case, it is well known that Dedekind’s theorem establishes, for any state of motion that
preserves a constant ellipsoidal figure, the existence of an “ adjoint ” state of motion that preserves the same ellipsoidal figure.
This can be maintained by uniform rotation or by internal motion of uniform vorticity, the geometry being determined by the
same second-order virial equations (Chandrasekhar 1987, pp. 71-73). Here we try to generalize the Dedekind’s theorem and
the two adjoint sequences of Jacobi (“pure” rotating systems) and Dedekind ellipsoids (nonrotating systems, maintaining
their figure by internal streaming only) to the case of heterogeneous density. In terms of «, 1, y (see the Appendix), equation
(23) may be expressed as

i,j,k i,j,k

%a,B,c abc [ G a;
——y;j; (Z}+Z,f)+Qf+Qf+2”y"" <;’fQij+—’Qka

i

=0. (28)

Wb + (@ — DI 20
(n) +

a,b,c
Ii,j.k

a

An important class of equilibrium solutions are the self-adjoint (Dedekind’s theorem): Qt = Z, Zt = Q; (f indicates
Dedekind conjugation: matrix transposition and interchange of Q and Z). This operation does not change the form of
equations (28) so that they are self-adjoint if «5}% /y™ = 1. According to the definitions given in the Appendix, we conclude
that this condition is valid just in the linear case.

As a consequence, Dedekind’s theorem about the existence of a generalized Dedekind ellipsoid, corresponding to a generalized
Jacobi ellipsoid or, in general, the existence of self-adjoint configurations, is limited to the linear case. The density may be
inhomogeneous, and the pressure may be anisotropic.

This result was obtained independently by Chambat (1994) by means of the hydrodynamic equations. In Paper VIII the
validity of Dedekind’s theorem in the nonlinear case was asserted using only the second-order virial equations. Now it has
been demonstrated that the validity of the theorem is limited solely to the linear case, for any order of the virial equations.

6. GENERALIZED MACLAURIN SPHEROIDS AND JACOBI ELLIPSOIDS

We further specialize our analysis to the homogeneous and heterogeneous figures of S-type, spherically, spheroidally, and
ellipsoidally stratified, in the case of uniform rotation ( = const, Z = 0). We include here as particular cases the classical
Maclaurin spheroids and Jacobi ellipsoids (Chandrasekhar 1987). We generalize these equilibrum sequences to heterogeneous
density and anisotropic pressure. The virial equations of nth order are, from equations (24)—(26),

QTS + Wik + (@ — DT =0, (29)
Q3% + WS + (@ — DS =0, (30)
W% + (@ — DI =0, (31)

where a > 2, b, ¢ > 0. We will consider the second- and fourth-order virial equations; the higher orders give the same
information.

Explicitly, the second- and fourth-order virial equations are

QI + W, + 11, =0, (32)
Q% + Wy + 15, =0, (33)
9211111+W1111+3H1111=0, (34)
Q%150+ Winao + T35, =0, (35)
Qyp11 + Wazyy + 55, =0, (36)
Q%1555 + Wagsp + 3M55,, =0, 37
Q% 133 + Winas + T3, =0, (38)
Q%1333 + Wazas + T5533, =0, (39)
Wizt + 334, =0, (40)
Wizzs + 335, =0, (41)
Wizzz + 3333 =0, (42)

Wiz + 133 =0. (43)
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By eliminating Q2 from the previous equations and using the Appendix, we obtain

J|:(27szc) f(—C, %3 + C,5%3) + (5 - &ﬂdt‘/’ =0, (44)
H(znGpc)fCI(—ii‘ + 3%1%X3) + 3 % (% 1;)} av = 45)
J |:(21tGpc) f(—C %%+ 3C,%2%) + 3( — - P—j)xf]dv =0, (46)
ay; a;
f |:(27tGpc) fC(—X3x2+ %23+ — Py 2% - xg)]dv =0, 47
1
J |:(27tGpc) fC(—%5 +3%2%3) + 3 % %2 — fcg)]dﬁ =0, (48)
2
J |:(2“Gpc)fcz( %2+ B + 3 % (2 — ~2)] 7 (49)
j [(2nGpc)fCZ(—fc‘1‘ 3%1%3) +3 —2 (% — x%)] (50)
”@nGm)sz( X3+ 3%§%3) + 3 2 ] (51)

=2
A,

From equations (40)—(42), we have

J‘fc < X3 31 3~%>£§ dI7 = 0 s (53)
J fc3<>z§ _ % “—j i%)i%dv =0, (54)
32 41

For the fourth-order virial equations, the coefficients of anisotropic pressure B;; are defined by B;; = I1;;;;/T15335, with i # j,
corresponding for the second-order virial equations to §; = IT;;/T155.

6.1. Sphere

We can perform the analysis beginning with the sphere. In this case a; = a, = a5 and consequently C, = C, = C; = C(r).
In both the homogeneous and heterogeneous cases, from equations (44)—(51), since the first term in each of the integrals is
zero, we conclude that P, = P, and that P, must be barotropic (spherically stratified) because it is invariant under the
interchange of if and X2, of X2 and %2, of X3 and %?. Moreover, equations (53) and (54) require P5 to be barotropic. We
empha51ze that in the homogeneous case, when 1mproperly used, the term “barotropic” means “stratified as the boundary
surface.” It is important to note that from equation (52), in the homogeneous case [y = y = 1], since the first term in the
integral is zero, we obtain jP (7%2 — 1)dV = 0. Since the pressure is spherically stratified and vanishes at the boundary,
we can write P, = P, (1 — 7#?)X, and substituting this into the previous equation, it follows necessarily that k = 1.

If we next make use of equations (32) and (43), using the definition of f§,, we have

QL + By — D Wa3| =0, (39

consequently B, < 1, so that P, < P5. The conclusion is that the uniformly rotating sphere, homogeneous or heterogeneous,
must be anisotropic, and the pressure must be spherically stratified. The same results come from the fourth-order virial
equations:

Q44 + | Wazas | (B — 1) =0, (56)

Q2,33+ | Wazy( [(B13— 1) =0, (57
B

Qa0+ Winas — B1z Wi311 =0, (58)

3W3311 - ﬂ31 Wss33 =0, (59)

from which 8,, < 1, ;5 < 1, B;, < B34, B31 = 1; the pressure must be stratified spherically, and P, < P;.
The higher order virial equations are identically satisfied and do not add any new information.
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6.2. Spheroids
In this case, f = f(F* + X3), C; = C, = C,(7? £3). Using reduced cylindrical coordinates (X, = 7 cos 6, X, = ¥ sin 6), we can
demonstrate that
JfCl(—il +%2dV =0, (60)
ij —x% 4+ 3x2%%)dV =0, (61)
from which using the equations (44)—(51), it follows that P, = P, and
f[(zﬂ(;ﬂc)fcd—ilt 3x1%3) + 3 2 > (% — x§):| av =0, (62)
ay
~222 n, Pu =2 |1
(2nGp,)fC (—X1%5 + X1X3) + — 2 (& %) |dV =0, (63)
1
jﬂ(ﬁ —33)dV =0, (64)

Consequently the pressure component P, must contain #* and in the homogeneous case (since the first term in each of the
integrals [62] and [63] is zero) the component P, must be spheroidally stratified. From equation (53), it follows that
B31 = P32 = ai/a3 so that Py must be spheroidally stratified. Equation (52) requires further that P, = P, (1 — #* — %2). To
complete the analysis in the homogeneous case, considering equations (32) and (43) we have

Q%+ Wy — BWa3 =0, (65)
from which it follows that
11— BiWs3 <0, (66)
or
ff(_clxl + B,C3%2)dV <0, (67)
and since 4; = C;, we obtain
—Ajal + B1A3a5<0. (68)

Then using the properties of the index symbols in Chandrasekhar (1987), 42a? — A; a3 = (a? — a)B,;, equation (68)
becomes

(a3 — at)By3 + A3(fy — a3 < 0. (69)

1. In the case of homogeneous oblate spheroids (a; > as), the term 8, — 1 can be greater than, less than or equal to zero:
homogeneous, oblate Maclaurin spheroids exist and can be isotropic (P, = P, = P3) or anisotropic (P, = P, # P3), with the
pressure spheroidally stratified. This last result generalizes the solution of Chandrasekhar (1987, pp. 77-80).

2. In the case of homogeneous prolate spheroids (a; > a,), the anisotropy coefficient must be f§, < 1, namely, P; < P5;
then, homogeneous, prolate Maclaurin spheroids exist and must be anisotropic (Py > P,) and the pressure spheroidally stratified.

Finally, we consider the heterogeneous case; equations (53) and (54) are compatible with a baroclinic form of P4 (85, =
B32)- The equations (62) and (63) do not permit P, to be barotropic; in fact, from equation (64) it must be baroclinic. Thus
heterogeneous, isotropic or anisotropic, barotropic Maclaurin spheroids cannot exist. This conclusion generalizes Dive’s results
(Dive 1930) to the anisotropic case. Instead, heterogeneous, baroclinic M aclaurin spheroids are allowed.

6.3. Ellipsoids

From equations (44)—(51) we conclude that heterogenous, barotropic ellipsoids are nonexistent. Instead, these equations
are satisfied in the homogeneous case with ellipsoidal stratifications of the isotropic pressure (the Jacobi ellipsoids in
Chandrasekhar 1987, pp. 101-103). In addition, there exist homogeneous ellipsoids having the pressure ellipsoidally stratified
and anisotropic (P, # P, # P3). From equations (53) and (54) we find that Pj is ellipsoidally stratified and from equation
(52), P, and P; must have the form P = P(1 — %3 — %3 — %2). From equations (32)—(43), we demonstrate the existence of
oblate ellipsoids with a; > a, > a; and a; > a3 > a,; for the prolate ellipsoids, we observe that a; > a, > a,, and the
pressure must be anisotropic with P, < P; and P, < P5. In both the homogeneous and heterogeneous cases, not all the
equations (44)—(51) can be satisfied if the pressure is baroclinic; thus, the generalized Jacobi ellipsoids cannot exist with
baroclinic form of the pressure, in both the homogeneous and heterogeneous cases, isotropic or not.

7. GENERALIZED DEDEKIND ELLIPSOIDS

We study now the heterogeneous figures of S-type, spherically, spheroidally, and ellipsoidally stratified, in the case of
nonuniform vorticity (Z # 0) (differential rotation), without figure rotation (Q = 0). The nth-order virial equations are in this
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case
Z2K9YS + Wihe + (a — DI 29 =0, (70)
ZZK3N5 + WEhS + (a— DI 2 =0, (71
Wsih +@— D52 =0. (72)

As in the previous case, we will consider only the second- and fourth-order virial equations. The higher order virial equations
are identically satisfied and do not give any new information. S

In the following we consider two 1ndependent cases in which the form of velocity field is respectively d) = ¢(m?) and § = ¢*
1ndlcat1ng the general forms @(m?, #, %3), d(m?, ), dm?, %3), G, %2), (&I, $(F?), with m?> =7 + %2, P = x¥/a?
+ x2/a

(a) ¢ P(m?*)—Equations (70)—(72) are formally the same as the analogues ones, in the case of uniformly rotating
generalized Maclaurin spheroids and Jacobi e111p501ds (egs. [29] [31]). We have just replaced If; J” % by K:‘ "7 . Consequently
the conclusions of the Dedekind case with ¢(m?), valid also in the linear case ¢ = 1, are the same as in the Jacobi case.
Summarizing:

1. A sphere having nonuniform vorticity (differential rotation), homogeneous or heterogeneous, must be anisotropic with
P;>P,.

2. There exists a homogeneous or heterogeneous sphere having & = @(7?) and the pressure radially stratified, P,(r) # P(r).

3. There exist homogeneous spheroids having ¢ = ¢(m?): the oblate ones can be isotropic or anisotropic, and the prolate ones
must be anisotropic with Py < P, the pressure being spheroidally stratified.

4. The heterogeneous spheroids must be baroclinic (see Dive 1930).

5. The homogeneous Dedekind’s ellipsoids with pressure ellipsoidally stratified isotropic or anisotropic are classifiable as
oblate, isotropic and anisotropic, or prolate and anisotropic with P, < P;, P, < P,. These results generalize the oblate,
isotropic configurations given in Chandrasekhar (1987, pp. 124-125).

6. Generalized heterogeneous Dedekind ellipsoids cannot exist. This conclusion agrees with the recent results obtained by
Chambat (1994), using the hydrodynamic equations.

(b) We now assume the others forms of ¢, denoted as ¢*: from equations (70) and (71), we have

Wi + 11, Wy, + 105, _ Witit + 31001 - Winao + Tyian - Winss + Tiyss - Wapss + pys;

Ky, K3, Ki111 Kii22 B Ki133 - K333
_ Wazi1 + sy _ Wiz22 + 311555, (73)
K311 K3222
We define the coefficient A as a relation between the denominators of equation (73) so that
K
1111 a1 /{ (74)
K1133 ‘13
Kii11 a1
—— =3, (75)
K122 a%
and so on, with
[ f$%° drdx3 76)

jfd)zr $3dFdxy
As a consequence of equation (73),

a? azl
W, +11,) Kuu = Wit + 3440 = (Wi + H1122)3 = Wiiss + H1133)3 py
Ky, 3

4 2

atl at
= (Wy233 + I1,,33)3 21"2 = (W11 + My, 1)3 — = (W22, + 3I;3,,) 1 (77)
az as a;

from which we obtain the following equations:

[ P, P .
f (2nGp)f(—C %% + 3C, %252 + 3<a—2‘ — a—f)i%]dv =0, (78)
L 1 2
[(ZnGpc)fcl(-il +3%1%3) + 3 (~2 iﬁ)]dV =0, (79
o
[ P
[(2nGpc)sz( X3+ 3%1%3) + 3 ;172 (%3 - if)]dV =0, (80)
J 2
Pl PZ 22 117V =
(2nGp)f(—C, %2 + C, %) + 2 B =0, (81)
1 2
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N 7 AW
@ j |:(2nGpc) fC1< 3 ;j) + %) + a% (7 o >:‘dV =0, (82)

1+ The equations involving the 4 term are identically satisfied. Equations (78)—(81) are identically satisfied for a homogeneous
f%: and heterogeneous sphere, with P, baroclinic or barotropic. According to equations (53) and (54), P; is barotropic. From the
o second-order virial equations ; < 1, namely, P, < P;, we conclude that there exist homogeneous and heterogeneous aniso-
€, tropic spheres with nonuniform vorticity (differential rotation) of the form P*.

“*  We consider now the spheroidal case. Equations (78)—(81) allow homogeneous and heterogeneous barotropic and baroclin-
ic spheroids, but equations (53) and (54) allow these configurations only for the homogeneous case and P barotropic, or for
the heterogeneous case and P; baroclinic. Equation (82) imposes that in the homogeneous and linear case one must
P, = Plc(l — # — x2). In the isotropic case, the heterogeneous spheroid has a baroclinic pressure or the homogeneous
spheroid is barotropic. Therefore, we recover the spec1al case considered by Lebovitz (1979), who gives a solution of the
hydrodynamic equations with a density f =1 — #* + %3, which is isotropic and baroclinic. In conclusion, the homogeneous
spheroids with nonuniform vorticity (differential rotation) of the form @* exist, and their pressure is spheroidally stratified; the
heterogeneous spheroids with differential rotation of the form ¢* exist and must be baroclinic. These results generalize the
conclusions obtained by Dive (1930).

_In the case of the ellipsoids, equations (79), (80), (53), and (54) allow only homogeneous and barotropic solutions with
¢ = ¢*, both isotropic or anisotropic. These figures are classifiable using the same procedure as in the previous case of
uniform rotation. Thus the heterogeneous ellipsoids with ¢ = ¢* do not exist, and this is again in agreement with Chambat
(1994).

8. GENERALIZED RIEMANN ELLIPSOIDS

We now turn to the case of the generalized S-type Riemann ellipsoids, with uniform figure rotation (2 # 0) and nonuniform
vorticity (Z # 0). The virial equations of nth order are

a

Z2KhG + QUL + 207 a—z JehGs + WeES +(a— D79 =0, (83)
1
a

ZAKEY5 + QUSRS + 207 3G + Wil + (@ — D52 =0, (84)
2

Wehs + (= DIIE2 =0, (85)

with A defined in equations (74)—(76). Taking into account that K,,,/K;;; = a3/3aZ, Ky,33/K111; = a}/3aiA, and intro-
ducing the dimensionless coefficient p in the form

Jllll — 3azlu' , (86)
K133 as
where
drd
po LLIT Y (87)
| f735%3 dF d%,
the second- and fourth-order virial equations are
Z°K,, +Q? 111+ZQZ J11+W11+H11—0 (88)
Z’K 1 + @ I1111+ZQZ J1111+W1111+3H1111—0 (89)
a?
Z’Ky111 + @ I1111+2QZ J1111+(W1122+H1122) =0, (90)
a; a3
2 as J1111 3“1 _
7 Ky + Qg +2Q7 = + (Wi1as + i133) —5 =0, o1
a, Hu as
_2 2 ay Jiia 3“1
1 K1111 +Q 11111 +2Q7 — + ("szss + szas) =0, (92)
a u a3 a3
2 a; J 3a?
T King + Qs 207 2= 4 (Wayy + Tapy) — =0, 93)
a H a3
z? 2 a; Jiin ay
7 Kii1g + Q%114 +2QZ — 2 + (Wr222 + 3n2222) . (94)
2

The higher order virial equations are identically satisfied.
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[
E: In the case ¢ = @(m?), then 1 = 1, so that for spheres and spheroids
Py
: 3a? 3a2
:@;: Witir + 3000 = Wi + Iyyps) — P =(Wiiss + H1133) —~
[} 2
B = (Whas + 11 )3"1 — Waans + ) 25— Wy + 310000
| - - 4
P 2233 2233) 73 3 2211 2211 = (W2222 2222 95)
& azas a3 a
L
For ellipsoids
3a? 3a?
Wit + 3110 = (W22 + 1112)) 7 = (Wi133 + I11133) 7 , (96)
3a2 3a2
Wazzz + 3522 = W1y + Magyy) —5 = Waass + szss) 97
a}
and including equations (85), we have
f [(mpc)fcl(—i;‘ 398 +3 1 (3 - 8 ]dV 0, 98)
J[(ZﬂGPc)fcl(—ix + 3%1X3) + 3 a_21 (% —xlav =0, 99)
1
[2rGp) fCo—%5 + 331 %) + 3 — e (%3 —xPldV =0, (100)
a2
22 22 Py oo oo oo
2nGp ) fCo(—X3 + 3%3%3) + 3 2 (X3 —x3)|dV =0, (101)
2
2 ~
ffc <3x1 — %3y, 2) av =0, (102
ai
J fc3<>zf — 52 §31 “2>~2dV 0. (103)
324

These equations are satisfied for homogeneous ellipsoids and with P,, P,, P barotropic. According to equation (88) with
and Z parallel, we have W, + I1;; <0, namely, W,, — ;W;; <0, from which if a, < as, §; <1, P; < P5, and 8, <1,
P, < P;. If a; > as, then P, can be greater than, less than, or equal to P;. We have proved that the homogeneous prolate
ellipsoids with Q and Z parallel must be anisotropic: Py < Py, P, < P5. If Q and Z are antiparallel, the ellipsoids can be
isotropic or anisotropic.

According to equations (98)-(103), the heterogeneous ellipsoids cannot be barotropic or baroclinic: there do not exist
heterogeneous generalized Riemann ellipsoids with ¢ = H(m?). This is a generalization of the result obtained by Chambat (1994)
in the linear case (¢ = 1).

For spheres and spheroids, since the system of equations (95) is the same as equations (44)—(52), and taking into account
equations (53) and (54), we have the result that a homogeneous or heterogeneous sphere must be anisotropic if Q and Z are
parallel, with P, P; spherically stratified. If Q and Z are antiparallel, the sphere can be isotropic. A homogeneous spheroid with
$ = P(m?) must be barotropic. If Q and Z are parallel, then one must have P, < P5. If Q and Z are antiparallel, the spheroid can
be isotropic or anisotropic. A heterogeneous spheroid must be baroclinic and can be isotropic or anisotropic.

The case ¢ = @* gives for spheres and spheroids

Wit + 3114 = 3(Wiia2 + Ti152) . (104)
For ellipsoids, we have
3a?
Wit + 3144 =(W1122+H1122)a_21, (105)
3a2
Wizzs + 35555 = (Wapyy + Myayy) — prat (106)
1
J[(27!Gﬂc)fc1( 3%i%3) + 3 —2 (%t — x3 :ldV =0, (107)
f[(ZnGpc)fCZ( )‘Eliz) + 3 (x2 —_ xl :ldV 0 (108)

For spheres and spheroids, equation (107) is valid, and it is identically satisfied in the homogeneous and heterogeneous cases.
Therefore, homogeneous and heterogeneous spheres and spheroids exist, with Q and Z parallel or antiparallel.
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TABLE 1
EquiLiBRIUM CONFIGURATIONS WITH £ # 0 AND Z = (?
Configurations Density Shape Pressure
Spheres ........cooviiiiii Homogeneous P, <P;,B
Heterogeneous P,<P,,B
Generalized Maclaurin spheroids...... Homogeneous Oblate isotropic (P, = P, = P,), B

anisotropic (P, = P, # P,), B
Prolate  anisotropic (P, < P5), B

Heterogeneous . isotropic, BC
anisotropic (P, = P, # P;), BC
Generalized Jacobi ellipsoids........... Homogeneous Oblate isotropic P, = P, = P;), B

anisotropic (P, # P, # P;, B
Prolate anisotropic (P, < P;; P, < P;), B
Heterogeneous ...

* Homogeneous and heterogeneous figures of equilibrium having a uniform angular velocity £, with isotropic
or anisotropic pressure (the different components P,, P,, and P, can be barotropic or stratified as the density
[denoted by B], or baroclinic, P; = P(%2 + %2, X2) [denoted by BC]).

As in the previous case, the spheroids are classifiable as oblate and prolate and are barotropic. Finally, let us consider the
case of ellipsoids: the homogeneous, isotropic or anisotropic Riemann ellipsoids exist and can be barotropic and baroclinic in P,
P, , but P, must be barotropic. The heterogeneous, generalized Riemann ellipsoids having ¢* cannot exist.

9. CONCLUSIONS

The tensor virial equations for a self-gravitating, rotating fluid mass are generalized to the nth order using useful and
compact definitions of the meaningful coefficients. The only hypothesis on the density distribution is that the equidensity
surfaces are similar concentric ellipsoids. The most general velocity field within an ellipsoidal figure, preserving its form as
seen from a frame of reference in which the ellipsoid is at rest and producing internal fluid motions of nonuniform vorticity,
has been considered, following the treatment of Paper VIII. The assumption that the velocity is tangent to the equidensity
surfaces is equivalent to assuming an incompressible flow (justified by the discussion of Ipser & Managan 1981). The
necessary equilibrium conditions coming from the second- and fourth-order virial equations have been obtained for the case
of generalized S-type Riemann ellipsoids. In all cases, the higher order virial equations do not produce new information with
respect to that gained from only the second- and fourth-order virial equations. The main results concerning (a) the generalized
Maclaurin spheroids and Jacobi ellipsoids, (b) the generalized Dedekind ellipsoids, and (c) the generalized Riemann ellipsoids are
summarized in Tables 1-3, respectively.

In this work we have recovered some classical results obtained by Dive (1930) (a stratified heterogeneous spheroid, rotating
and without differential rotation, cannot be a barotrope) and generalized to ellipsoidal, anisotropic configurations. The Hamy
theorem (a mass ellipsoidally stratified cannot have a uniform rotation) is confirmed also for the anisotropic case. All the
results in Chandrasekhar (1987) for homogeneous configurations are generalized to the anisotropic case.

The virial equations of nth order prove the nonexistence of triaxial, stratified, heterogeneous equilibrium ellipsoids. Only a
certain class of axisymmetric equilibrium figures with differential rotation (having or not) rigid rotation can exist.

TABLE 2
EQUILIBRIUM CONFIGURATIONS WITH £ = 0 AND Z # 0?

Configuration Density Shape Pressure Velocity
Spheres ...........ooiiiiiii, Homogeneous anisotropic, P, < P;, B q§
anisotropic, P, (B, BC) < P, (B) o*
Heterogeneous P,<P,;,B ¢
P, <P;,B o*
Spheroids...........ooooiiiiiiiiil. Homogeneous Oblate isotropic, B ¢
anisotropic (P, # P;), B ¢
Prolate P, =P,<P,(B) ]
Oblate isotropic, B o*
anisotropic P, = P,, (B, BC), P, (B) o*
Prolate P,=P,,(B,BC)< P, (B) o*
Heterogeneous isotropic (BC) ¢
anisotropic (P, = P, # P,), BC ¢
isotropic, BC o*
anisotropic P, = P, (B, BC), P, (BC) o*
Generalized Dedekind ellipsoids...... Homogeneous Oblate isotropic and anisotropic, B ¢
Prolate anisotropic (P, < P;), B ]
Oblate isotropic and anisotropic, B 'S
¢t

Prolate anisotropic (P, < P;), B
Heterogeneous .

2 Homogeneous and heterogeneous figures of equilibrium, isotropic or anisotropic cases are shown, and the different com-
ponents of the pressure, barotroplc (B) or baroclinic (BC) are noted, with dlﬁerenua] rotation Z, and a velocity field defined by
the functional form ¢ = §(m?); $* includes F(m?, 2), f(m?, 72, X2), $(72, X2), $(7?), P(%2
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TABLE 3
EquiLiBRIUM CONFIGURATIONS WITH Q # Z # (*
Configuration Density Shape Pressure Velocity QZ
Spheres .........cocoovviiiiiiiiiin.n. Homogeneous anisotropic P, < P,, B 8, ¢* "1
isotropic and anisotropic, B ¢, o* Tl
Heterogeneous anisotropic P, < P;, B ¢, 43* "
isotropic and anisotropic, B ¢, o* i
Spheroids ... Homogeneous Oblate isotropic, anisotropic, B o, o* T
Prolate anisotropic, P, < Py, B o, P* N
Heterogeneous Oblate isotropic (BC) and anisotropic ¢ ™
Prolate e T
Oblate isotropic (BC) and anisotropic o* "
Prolate P, = P,(B, BC), P4(BC) e T
Generalized Riemann ellipsoids....... Homogeneous Prolate anisotropic (P, < Py, P, < P,), B o, &* "
Oblate isotropic, B o, o* Tl
o* Tl

Oblate anisotropic, P,(B), P,(BC), P,4(B)
Heterogeneous e .

* Homogeneous and heterogeneous figures of equilibrium in which the direction € and Z are parallel or antiparallel and lie along
the rotation axis x; (Q, Z parallel = 11, Q, Z antiparallel = 1}); isotropic and anisotropic cases are noted, and the different
components of the pressure, barotropic (B) or baroclinic (BC), are shown. The various forms of the velocity field ¢, ¢* are considered.

The approximate hydrostatic equilibrium solutions for rotating polytropes (Lai, Rasio, & Shapiro 1993) can be reconsi-
dered in the framework of our results, recovering the same conclusions given in Chambat (1994).

Tensor virial equations of higher orders can be used for the construction of equilibrium configurations for the description of
stellar systems or galaxies in the oblate or prolate cases. Methods recently formulated by various authors require that the
conditions of mechanical equilibrium be satisfied in the average sense of the virial equations (Nelson & Papaloizou 1993). All
the above conditions obtained from the virial equations are necessary but not sufficient for the determination of the
equilibrium configurations. It will now be important to implement these global averaged conditions for specific distribution
functions in order to obtain the result that the dynamic equations are satisfied pointwise by any configuration of equilibrium.

We are grateful to the European Commission for the financial support of the ISC Programme (contract CI1*-CT92-0013
CO). A. S. is grateful to the Specola Vaticana for the hospitality.

APPENDIX

Here we calculate explicitly the nth-order tensors, using the general forms for the velocity field ¢ = ¢(m?) and ¢* as
specified in § 7 and the density dlstrlbutxon f f(m?). In this paper o>, n#hi¢, y™ f, g; and all the symbols defined with « ~ ”
are dimensionless. Also, «® = a, #'® = y,y® = y. We introduce the following deﬁmtlons

1. The n-order tensor of inertia I{ J” %, where the indices i, j, k appear a, b, ¢ times, respectively:

dnfa — DI — Dl —
o+ 3N [

where p = p f(m?), X; = x;/a;,dV = d%, dX,d%;;i #j # k;n = a + b + c. In order to have nonzero integrals, a, b, and ¢ must
be even, so that nis even. We have defined

y (n + 3N .y
y()—4n(a— DB — DI — DN Jf % (110)

where y™ is normalized to 1 for homogeneous ellipsoids. By transformation to reduced (dimensionless) spherical coordinates
Xy =msin 6 cos ¢, X, = m sin 0 sin ¢, X3 = m cos 0 and taking into account the ellipsoidal symmetry in X,, X,, X3, we
obtain

Itlz]bkc jpx“x"xidV p.a a+1 b+1 c+1 J‘f"a "'bxde p.a :1+1 b+lai+1 (109)

y‘"’=(n+3)Jlfm"+2dm. (111)
0

This expression depends only on the value of n, and not on the individual values of a, b, ¢, so it is valid just for ellipsoidal
profiles of density.
2. The nth-order Coriolis tensor is

- ~ dn(a — DB — D! — D!
Jebe = qubx;‘xfxidV =p.af"tal ait! ijﬁfc“i"iidV =p.aittai gt uC )(rf+ 3)!)! =1 nehe . (112)
With the definition
(n + 3)!! e
a,b,c _ agh gc Ay 113
M5 = dnta — Db — Die — 111 |7 PXxi%dV (113)
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. where ¢ depends on the specific values of a, b, c and is normalized to 1 in the linear homogeneous case, the integral may be
calculated explicitly once we know the functional form of .
3. The (n + 2)th- and nth-order tensors associated with the kinetic term are, respectively,

2T¢ 0 qu ixxpdV =Y (AZA™ ")y (AZA™Y),, Jpq@zx,xmx‘,-’x? xcdV , (114)
Im
and
_ 3 dn(a — YN — DN(e — D!
Koby fp¢2x bxedV = p,attlag*! fqu%z?szx;dv=pca4;+1a;e+1a;+1 ma )('fb+ 3)')' =Dt abe - (115)
where we introduce the definition
a,b,c __ (n + 3)” 2z
= Gma — T = Dl = |/ O R (116)

with o’ normalized to 1 in the linear homogeneous case.
4. The (n — 2)th-order diagonal tensor, associated with the kinetic energy of the internal streaming motion (pressure tensor),
is
Mg 2he = JP x{2xhxgdV = af " 'abt et J‘P X2 xedv (117)

J

where for the linear homogeneous case P; = P, (1 — m?).
5. The nth-order tensor associated with the potential is

Wb Jpa vx{ T xbxp dV = —2(nGp?) Jf m?)C;(x)x¢ Xt xg dV = —2(nGp2)xe* ! xb* 1 xg*! ff(mz)C,(x)”“" ¢ d
(118)

In the following, we consider generalized S- type Riemann ellipsoids were ¢ = ¢*. As follows from equation (109), a, b, ¢ in
I )¢ must be even. Owing to the presence of x3 in $, the tensors J, K, TT, W must also have a, b, ¢ even.
For the second- and fourth-order virial equations, we have

up =2 Jf¢*2 w2av, (119)

nif)—gijﬁ*i? av (120)

9P =5 J fm*dm . (121)
0

The parameters of «, 7, y as defined here do not coincide with o, f, y in Paper VIII, where ¢ was of the form @(m?).
According to the definitions (116), for fourth-order virial equations one has

af3:8 = Jf *253x3dV (122)
T oo

a%;2:§=gff *2%1%3dV (123)
M

w38 =15 f fe*2x44V (124)

and anaogous definitions for #.
The simplest forms may be obtained if ¢ = @(m?). Also in this case a, b, ¢ = even. From equations (113) and (116), we have
for the nth-order virial equations

ithi = =0+ 3) | e am, (125)

oaf i = o =(n+3) L fEmPm+2 dm . (126)

We note that o™ and #™ depend only on n.
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It is useful to introduce the two integrals

dn(a — DB — D!(c — DN

I, = fi?iji;dV =

and

I, = f(1 — mA)x¢ 2R %L dV =

8m(a — 3)1(b — 1)!(c — !

(n+ 3! (127)

(n+3)! (128)
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