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ABSTRACT 
We argue that the physical reason for the success of the Fundamental Plane and the 
D/?-a relation as distance estimators for elliptical galaxies is the existence of a relation 
between luminosity and mass with small intrinsic scatter. Therefore a better under- 
standing of the luminosity and mass variables, and of the mass-luminosity relation, is 
needed to improve distance estimation for elliptical galaxies. We propose a distance 
indicator in the form of a mass-luminosity relation and use it to derive modifications 
to the Fundamental Plane and to the Dn-o relation. Note that distances estimated 
with these modified Fundamental Plane and Z)„-a relations may, in practice, turn out 
to be less precise than those estimated with the standard relations when the added 
terms have large observational errors. 

Key words: galaxies: distances and redshifts - galaxies: elliptical and lenticular, cD - 
galaxies: fundamental parameters - galaxies: photometry - distance scale. 

1 INTRODUCTION 

Luminosities of ellipticals can be accurately predicted by 
means of two distance-independent quantities: the central 
velocity dispersion o() and the mean surface brightness SBC 

inside the effective radius Rc (Djorgovski & Davis 1987; 
Dressier et al. 1987). Put differently, ellipticals are confined 
to a surface in the L, a(), SBe space, with remarkably small 
scatter in the perpendicular direction. This is the so-called 
Fundamental Plane (FP). 

An important ingredient determining the existence and 
thickness of the FP is the mass-luminosity relation for ellipti- 
cals (Faber et al. 1987), with mass being measured by olRej 
G. The other ingredients determining the nature of the FP 
are the similarity of the radial structure of ellipticals (homol- 
ogy) and the fact that they are in equilibrium, which allows 
the use of the virial theorem. Thus the thickness of the FP is 
determined mainly by the spread in the mass-luminosity 
relation and by the degree of homology; see Faber et al. 
(1987), Bender, Burstein & Faber (1992, hereafter BBF ) and 
Section 2. 

In this paper, we focus on the connection between the FP 
and the mass-luminosity (M-L) relation for ellipticals. Our 
starting point is that the main reason why the FP, and its 
close relative, the Dn-o relation, can be used as distance 
estimators is the existence of a M-L relation for ellipticals 
with small intrinsic scatter. This is so because only the M-L 

relation contains information that can be used as a distance 
indicator (M«: distance’, L^ distance2). The other two factors 
determining the FP (similar radial structure and equilibrium) 
contain no information relevant for distance estimation. 
Thus, in order to improve distance estimation for ellipticals, 
one should first accurately determine the M-L relation 
and try to understand the sources of scatter in it. In fact, one 
may argue that there is no need to use the FP or the Dn-o 
relation for distance estimation: if feasible from the observa- 
tional point of view, one might as well use the underlying 
M-L relation directly (see Section 4, equation 5). In this 
approach, homology is no longer a requirement per se: devia- 
tions from homology can, in principle, be incorporated in the 
determination of M and L. In any case, the M-L approach 
facilitates the calibration of the D,-a relation with galaxies in 
the Local Group (Dressier 1987), because it provides a use- 
ful framework for the extension of the Dn-o relation to SO 
galaxies and bulges of spirals (see the discussion by Saglia, 
Bender & Dressier 1993, hereafter SBD). 

Several studies have found that the scatter about the FP 
can be reduced by replacing the velocity dispersion o by a 
combination of o and a rotation term V/a, and by adding a 
metallicity term (e.g. Guzmán et al. 1992; Djorgovski & 
Santiago 1993; Jorgensen, Franx & Kjærgaard 1993, here- 
after JFK; SBD). In the following, we show how these results 
can be clarified in the framework of a mass-luminosity 
relation as the basis of the FP. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

5M
N

RA
S.

27
 6

.1
2 

55
V

 

1256 T. S. van Albada, G. Berlin and M. Stiavelli 

Our discussion will concentrate on the following issues. 

(i) What is the best way to measure ‘mass’, and to what 
extent is the scatter about the FP caused by the use of an 
‘incomplete’ mass estimator like olRe/Gl 

(ii) What is the most suitable luminosity variable? Ellipti- 
cals show a range in the Mg2 index, and therefore in 
metallicity and/or age. Presumably, then, luminosities should 
be corrected for differences in the underlying stellar popula- 
tions. 

(iii) What is the precise relation between luminosity and 
mass? The M-L relation underlying the FP is L^Ma, but 
perhaps a power law is too naïve, and a more accurate 
estimator would require the use of a non-power-law relation. 

The discussion is complicated by the likely presence of 
dark haloes, which causes problems with the definition of 
mass M. For most of the following discussion an ‘operational’ 
definition of mass through o2R/G (i.e., not based on any 
assumption regarding dynamical state or the presence of 
dark matter) is adequate, but, in some instances, we assume 
explicitly that the distribution of matter follows that of light. 

2 THE ORIGIN OF THE FUNDAMENTAL 
PLANE AND THE RELATION 

The following argument illustrates how the origin of the FP 
can be traced to the existence of a well-defined 
mass-luminosity relation for ellipticals, which is just what we 
need for a distance indicator. Let us postulate as a ‘standard 
candle’ for ellipticals: L =f(M) °c Ma, where M is the mass as 
measured by olRJG. Next, write L^IeRl and put 
a = 0.807. Then one recovers the equation for the FP: 

Re^o[
0
35l;0M, (l) 

as given by Faber et al. (1987); see also BBF. The Dn-o 
relation is a close approximation to the FP (Section 5). 
Therefore, the success of that relation as a distance estimator 
also relies on the close coupling of the mass and luminosity 
of ellipticals. It should be stressed that the above derivation 
of the FP assumes that ellipticals are ‘homologous’ at fixed L 
and M, i.e., that the proportionality constants in the 
expressions for L and M do not vary among ellipticals of 
similar luminosity and mass. When this condition is not met, 
or when the relation between M and L is not one-to-one, this 
will result in a thickening of the FP. (Note that we do not 
require homology for different values of L and M, since such 
non-homology would just be reflected in a change in the 
shape of the M-L relation). 

In the literature, expressions may be found for the FP 
which cannot be reduced to the form L«: Ma, or equivalently 
to ItRl^{olRQ)

a. Then a ‘second parameter’ would be 
required, e.g., L°c MaR¡!. However, given the uncertainties in 
the coefficients for the FP, we have not found convincing 
evidence for the need for a second parameter. 

3 MEASURING MASSES AND 
LUMINOSITIES 

Before the standard candle law L=f(M) can be introduced, 
the mass M of the galaxy and its luminosity L must be 
defined. Ellipticals are probably surrounded by dark haloes, 
and the stellar population may vary with radius. It is not 

obvious, therefore, what mass one should attempt to measure 
and what luminosity one should use. Below, we discuss these 
issues in some detail. 

3.1 Masses 

The mass used in the description of the FP, 

M = ßolRJG, (2) 

is simply the quantity obtained by dimensional analysis from 
a given ‘central’ velocity dispersion a0 and effective radius 
Rt. Note that for ß ~ 4.9 this is the total mass of a galaxy for 
which light traces mass, characterized by an Æ1/4-law profile 
(all the way in to the centre), and by an isotropic velocity 
distribution (Michard 1980; Bailey & MacDonald 1981). 
The main issue discussed below is whether an alternative 
mass estimator might lead to a smaller scatter in the 
mass-luminosity relation, and hence to a smaller scatter 
about the FP. If so, this would be beneficial for distance esti- 
mation. 

We first note that the likely cause of the well-defined 
mass-luminosity relation for ellipticals is the uniformity of 
the (old) stellar population in these systems, suggesting that 
the basic standard candle is L =f{M*) M%, where M* is the 
total stellar mass. The quantity of interest would then be the 
stellar mass-to-light ratio. At first sight this quantity can best 
be measured at the centre, because the likely presence of 
dark haloes will affect measurements made at larger radii. 
However, given the large variation in core properties and the 
fact that these are very difficult to measure reliably, we reject 
this approach. Clearly, a more global measurement of mass 
and luminosity is called for. However, in doing so one must 
face several complications: dark haloes, rotation, and 
departures from spherical symmetry. These can only be dealt 
with by constructing models of individual galaxies, based on 
the extended mean rotation and velocity dispersion profiles 
now becoming available for many galaxies (see, e.g., Binney, 
Davies & Illingworth 1990, hereafter BDI; Carollo 1993; 
ven der Marel & Franx 1993; Bertin et al. 1994). However, 
such a task is not easy, due to our limited knowledge of the 
intrinsic shape and dynamical state of ellipticals. 

As a compromise in this direction, consider the possibility 
of modifying equation (2). Potential shortcomings of that 
equation are (i) it assumes that ellipticals are homologous, 
and (ii) a0 is sensitive to the detailed structure of the core. A 
discussion of the former objection, i.e., the homology issue, 
falls outside the scope of this paper. The latter objection can, 
in principle, be remedied by using a velocity dispersion 
averaged over a larger area (see below), but at the cost of 
the complications mentioned above. This strategy has been 
considered by JFK, who propose to replace ol in the FP by 
the luminosity-weighted second moment of the velocity 
profile (t>2), which includes rotation if present, inside a radius 
of order 0.57?e. When averaged over the entire galaxy, {v1) 
does indeed have the advantage that its value does not 
depend on the orbital structure of the system, e.g., pressure 
or rotation support; see Appendix A. It remains to be seen 
whether this property is still present when the average is 
restricted to smaller apertures. 

To see how some of the factors that are ignored when 
using equation (2) translate into effects on distance estimates, 
we have calculated a number of equilibrium models to 
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explore how the quantity o2Re varies with viewing angle and 
with ‘dynamical state’, in particular, with the amount of 
rotation present, for galaxy models of the same mass. 
Previous work based on the tensor virial theorem (e.g. JFK; 
SBD) shows that ellipticals, when seen from different direc- 
tions, project mainly a/ongthe FP, i.e. 

/?e(7o 135/¡í84 - constant, (3) 

for a given elliptical galaxy seen from different viewing direc- 
tions. This condition can be rewritten by noting that the 
luminosity remains constant (on the assumption that internal 
obscuration is unimportant); therefore 47?^==constant- 
Inserting this in equation (3), one finds that - constant. 
In other words, projection along the FP is equivalent to the 
statement that variations in ol and in Re tend to balance each 
other when an elliptical is seen from different directions. 

Our models are oblate systems with a range in rotation 
speeds and a density distribution following a modified Jaffe 
law; details are given in Appendix A. In a broad sense they 
confirm the earlier results. We find that for our models the 
value of (v2)()5ReRQ is remarkably constant when the viewing 
direction is varied; the subscript indicates an average over an 
aperture with radius 0.5RQ. This is shown in Fig. 1, where we 
plot (t'2)().5/^ versus Rc. The prediction by the virial theorem 
(VT), on the other hand, deviates considerably from the 

Figure 1. Behaviour of (v2)Re for an E5 oblate galaxy model when 
the viewing direction is altered. Motion along the Fundamental 
Plane does not affect the estimated distance; this requires 
(*;2)= constant. {v2){),5Hc represents the second moment of the 
velocity profile, averaged over a circular aperture with radius 0.5 Re 
(luminosity-weighted); by definition, it includes rotational motion 
when present. Rc has been obtained by fitting an Rl/4 law to the 
luminosity profile; for details, see Appendix A. Open squares: non- 
rotating models. Solid triangles; Isotropic rotators. Thick solid line: 
virial theorem, using the equations given in Appendix A, scaled to 
our face-on model. Thin lines: curves of constant {v2)Rc (corre- 
sponding to Mlace_on and 1.1 Mtacc_on). Note that for our models the 
value of (v2)Rc is conserved much better when the viewing angle is 
varied than anticipated from the application of the virial theorem. 
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curve (^2)7?e = constant. Note that the models approach the 
VT prediction when the aperture is increased; see Appendix 
A. By adding a massive, extended dark halo (either spherical 
or flattened) to our Jeans models, we have verified that the 
derived dependence of (f2)05/<eÆe on viewing angle is 
maintained. 

In conclusion, the virial mass estimator M = ^(t'2)7?e/G, 
where is a constant and (v2) represents an average over the 
entire galaxy, has the nice property that M does not depend 
on the orbital structure of the system. A drawback, however, 
is that, for a given mass, (v2)Re depends considerably on 
viewing angle for flattened systems (see equation All and 
Fig. 1), and for that reason it is not to be recommended as a 
mass estimator. We find that by using circular apertures of 
small size, with radius 0.5 Re, the ‘mass’ estimated by 
(^2)o.5 Re Rq is only weakly dependent on viewing angle, but at 
the cost of introducing a small dependence on the detailed 
dynamical structure of the system. 

3.2 Luminosities 

Elliptical galaxies show a large range in ‘metallicity’, as 
measured for instance by the Mg2 index, and their stellar 
populations will therefore differ (see, e.g., Burstein et al. 
1988; de Carvalho & Djorgovski 1992; Guzmán et al. 1992). 
Such variations in the stellar populations among ellipticals 
will lead to variations in luminosity at fixed (stellar) mass M*, 
and this may be a source of error for distance determina- 
tions. Therefore it would be best to use population-corrected 
luminosities (see, e.g., Guzmán & Lucey 1993), but, as will be 
discussed below, it is not clear whether this is feasible in 
practice. 

Attempts to find a possible dependence of the FP on 
metallicity give contradicting results. Lynden-Bell et al. 
(1988) and Burstein, Faber & Dressier (1990) find no 
evidence for an Mg2 dependence in the sample of cluster and 
field galaxies of Faber et al. (1989) (see, however, Appendix 
B). On the other hand, Guzmán & Lucey (1993) do find an 
Mg2 effect in Coma. 

Population synthesis studies show that the effects of age 
and metallicity on the integrated mass-luminosity ratio are 
difficult to separate (Worthey 1994), even with carefully 
selected indices. For our discussion the cause of a spread in 
L/M* (i.e. age, Z or IMF) does not really matter. The 
important point is that, when the variation in L/M* is linked 
to a spread in the strength of the Mg2 feature, in principle, it 
is possible to define a population-corrected luminosity 
empirically, e.g., 

log Lpc = log Loh5 + constant x ÔMg,. (4) 

Results of population synthesis models give some support for 
such an approach. For single-burst models, for example, 
Worthey (1994) finds, in the neighbourhood of age = 
12 x 109 yr and [Fe/H]= -0.5, that M*/LB increases with 
increasing Mg2 index, for constant-age sequences as well as 
for constant-[Fe/H] sequences. The coefficients are, however, 
very different for these two cases: ô \og(M*/LB)/ôMg2 - 1.8 
for a constant-age sequence, and 12 for a constant-[Fe/H] 
sequence. In view of the marginal observational evidence for 
a metallicity term in the FP, and the uncertainty in the 
theoretical coefficient, a proposal to apply a correction of 
this type seems premature. 
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4 THE MASS-LUMINOSITY RELATION FOR 
ELLIPTICAL GALAXIES 

Let us now proceed to investigate the shape of the M-L 
relation for ellipticals. In particular, we want to investigate 
whether the power law Ma underlying the equation for 
the FP (see Section 2) is adequate. For such an analysis one 
should, ideally, use masses obtained from a detailed mass- 
modelling procedure and luminosities that have been 
corrected for variations in the stellar content among ellipti- 
cals. However, such data are not yet generally available. Fur- 
thermore, one should use distances that conform to a fairly 
sophisticated model of the flow of galaxies in the nearby Uni- 
verse. Velocity-field models, however, are themselves based 
on distance estimators like the Dn-o relation. Therefore a 
proper analysis of the M-L relation is a complex undertaking 
that requires an iterative procedure. 

In the discussion below we use data for the ellipticals in 
the so-called 7S sample (Faber et al. 1989). We consider 
three assumptions for deriving distances to individual ellipti- 
cals. (i) Galactocentric distances. These are based on a 
smooth Hubble flow with //0 = 50 km s-1 Mpc-1, using 
heliocentric velocities listed by Faber et al. and corrected to 
the Galactic standard of rest following RC3 (de Vaucouleurs 
et al. 1991). (ii) Virgocentric distances. These have been 
calculated following Kraan-Korteweg (1986), using the 
middle distance for cases with triple solutions, (iii) CMB dis- 
tances. For these the recession velocities in the CMB rest 
frame, as given by Faber et al., have been used. To avoid 
circular reasoning we do not consider a Great Attractor flow 
model. Masses have been calculated using equation (2) with 
ß = 5, and we use total ^ luminosities corrected for various 
effects as given by Faber et al. (1989). No correction for 
Malmquist bias has been applied. 

The resulting mass-luminosity relations are shown in Fig. 
2 (upper panels) for ellipticals from Faber et al. (1989) with 
data-quality parameters 1 and 2. The straight lines are 
‘impartial’ least-squares fits. The plots show that the relation 

between log L and log M is not strictly linear. There is 
evidence for changes in slope near log M« 11, 11.5 and 12. 
The wiggles are shown more clearly in the lower panels of 
Fig. 2, where we plot the deviations d log L from the power 
laws drawn in the upper panels. 

Clearly, the shape, as well as the scatter, of the M-L 
relation that we derive is affected not only by the flow model 
adopted, but also by the choice of the sample and by the 
estimators of M and L. Yet similar smaller scale features are 
present for all three flow models, indicating that deviations of 
the M-L relation from a simple power law may be important. 

We have also applied a Kolmogorov-Smirnov test to the 
distributions of log M values of the points above and below 
the lines in Fig. 2, and find them to be different at the 99.9 
per cent level or higher for all three distance models. 

The underlying cause for a mass-luminosity relation as 
given in Fig. 2 is not clear. A combination of several factors 
may be responsible. Note that masses have been calculated 
with equation (2), and thus are subject to the comments and 
cautionary remarks given earlier (Section 3). Indeed, the 
masses represent an unknown mixture of luminous and dark 
matter that may well vary in a systematic way along the 
sequence of elliptical galaxies (see also BBF and Guzmán, 
Lucey & Bower 1993). Note also that the shape of the initial 
mass function above and below the main-sequence turn-off, 
affecting the amount of matter locked up in stellar remnants 
and low-mass stars, might correlate with the mass of the 
system (cf. Renzini & Ciotti 1993). In any case, there is no 
reason to expect a ‘simple’ mathematical relation between M 
and L. We stress that these unresolved questions do not 
hamper the use of the M-L relation for distance estimation. 

The mass-luminosity relation L = q(M)Ma can be used as 
a distance estimator by interpreting it as the locus in M-L 
space upon which all ellipticals must lie. Application of this 
relation in practice proceeds as follows. Let (MH, LH) be 
mass and luminosity using the Hubble distance Z)H, and let 
the true distance be D. Then M = (D/DH)MU and L = (D/ 
Dh)2Lh. Inserting these expressions for Maná L in the M-L 

10 11 12 
log M/M0 

10 11 12 
log M/M0 

10 11 12 
log M/M0 

Figure 2. Upper panels: mass-luminosity relations for a sample of 321 elliptical galaxies from Faber et al. (1989), using three flow models, 
indicated in the panels; see text. In the lower panels residuals with respect to the power laws drawn in the upper panels are plotted. 
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relation and solving the resulting expression for D/Z)H, one 
finds, with a = 0.82, 

log(/)/DH) = 0.85 log ^(Mh) + 0.69 MMh/Lh) (5) 

-0.16 log Lh, 

where we have approximated the factor q{M) by ^(MH). This 
expression shows that the main sources of uncertainty in the 
distance are the intrinsic dispersion and the observational 
error in the mass-to-light ratio. In Section 3.1, we found a 
dispersion in M for oblate models, with different amounts of 
rotation and seen from different directions, of order 5 per 
cent due to the use of an approximate mass estimator. 
Equation (5) shows that 70 per cent of this dispersion will be 
found back in the derived distances. Fig. 2 shows that the 
variation in the factor log ^(MH) is about 0.1 dex. Neglect of 
the difference between the ‘true’ mass-luminosity relation 
and a power law can therefore lead to large systematic 
effects, up to 20 per cent in the distances for certain mass 
intervals. 

5 GENERALIZED FUNDAMENTAL PLANE 
AND Dn-o RELATION 

The results obtained so far can be summarized by saying that 
the standard-candle law underlying the Fundamental Plane 
and Dn-o relation is a mass-luminosity relation of the form 
Lpc =q(M)Ma. The factor q(M) takes the deviation of the 
M-L relation from a power law into account. Preferably, M 
should be obtained through detailed mass-modelling; the 
luminosity should be corrected for variations in the stellar 
content. The mass-luminosity distance estimator can be 
transformed into a ‘generalized’ FP by rewriting the mass 
and luminosity variables. Using, for example, equation (2) for 
M, log Lpc = log + 1.8 ôMg2 (constant age), log = 
constant - 0ASBe + 2 log Re, and a = 0.82, one finds: 

log 7?e = constant + 0.69 log(t>2) + 0.34)S'5e (6) 

+ 0.69 log ^ - 1.5 ÔMg2 + 1.85 log q(M). 

Compared to the traditional expression for the FP, equation 
(6) has three additional terms, involving /?, ôMg2, and q{M). 
These terms describe, respectively, a correction factor to the 
mass estimator that takes deviations from homology and 
variations in dynamical state and viewing angle into account 
(see Section 3.1), a correction to the luminosity for 
differences in the stellar populations of ellipticals based on 
the Mg2 index (assuming constant age and varying Z), and the 
deviation of the true M-L relation from a power law. 
Furthermore, ol has been replaced by (f2), i.e., by the second 
moment of the velocity profile averaged over a large aperture 
(see JFK). Note that (v2) includes rotational motion when 
present. An extension of the FP with only an Mg2 term (with 
a different coefficient than above) has been given by Guzmän 
6 Lucey (1993). 

In the same way, a generalized Dn-o relation can be 
derived. Using the relation between Dn and Rc given by van 
Albada, Berlin & Stiavelli (1993), 

log Dn - log(27?e) - 0.289 - 0.019(AS£)2, (7) 

one finds: 

Distances to elliptical galaxies 1259 

log D,, = constant + 0.69 log(t;2) + 0.05 AS£ - 0.02(AS£)2 

+ 0.69 log/? - 1.5<5Mg2 + 0.85 log q{M). (8) 

where A57? = SB& - SBn = SBe - 20.75. 

6 CONCLUDING REMARKS 

Several questions remain unresolved at this point, in particu- 
lar how best to estimate the mass from a given set of data, 
and how to correct luminosities in a given waveband for 
population differences. An additional problem that must still 
be considered is that of the accuracy and bias of the 
mass-luminosity distance estimator. The inclusion of several, 
sometimes not precisely measured, quantities in a distance 
estimator may lead to distances less accurate than those 
obtained from an approximate expression involving only 
quantities measured with high precision (such as the Dn-o 
relation). On the other hand, the simpler distance estimators 
(FP and Df-o) may be considerably biased in certain regions 
of parameter space. Ultimately, a simultaneous solution of 
the mass-luminosity distance indicator and the velocity field 
is required. 
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APPENDIX A: MODELS OF OBLATE 
STELLAR SYSTEMS 

We have constructed one-component (constant mass-to-light 
ratio) models of oblate systems with the following procedure. 
Adopt cylindrical coordinates R, z, (¡> and choose a density 
profile p(R,z). For a distribution function depending on only 
two integrals of motion, f=f(E, Jz), one may calculate the 
velocity dispersions by solving Poisson’s and Jeans’s 
equations (Satoh 1980; BDI). For p we choose a modified 
Jaffe law: 

sin2/ +cos2/. The code that we use is nearly identical to that 
of Carollo (1993) and Carollo & Danziger (1994). 

It is of interest to compare the model results with predic- 
tions from the second-order virial theorem (see Chandra- 
sekhar 1969). Consider a coordinate system x, y, z and let 
the z-axis coincide with the symmetry axis of our oblate 
galaxy. Then one may write, using the virial equations in the 
notation of Binney & Tremaine (1987, section 4.3), 

KJKZZ = WJWZZ. (A5) 

Here Kxx and Kzz represent the total kinetic energy in the x 
and z directions, respectively. (Note that we make no attempt 
to separate streaming motions from random motions.) The 
quantities Wxx and Wzz are diagonal elements of the potential 
energy tensor. Their ratio depends only on the intrinsic 
flattening e: 

WYY 

arcsm e r 7 
 yl — 

2(1-e) ! 
: G(e), 

arcsm e 
(A6) 

p(m)=p„ 
1  

(Í+ m/rcf(l + m/rL)2 ’ 
(Al) 

where 

m2=R2 +z2/(c/a)2. (A2) 

rc is the core radius, rL is the half-mass radius of the unmodi- 
fied Jaffe law, and c/a is the axis ratio of the system. We use 
rc = 0.001 rL. 

The models yield the dependence of the mean square 
velocities {v2

R\ (vf), and (vj) on R and z. Because there is no 
streaming in the R and z directions, we write a2

R and cr2 for 
{vR) and (vl) respectively. Due to our choice of /, oR = oz 

everywhere. Models of this type leave the odd moments of 
the velocity distribution undetermined, but streaming in the 
azimuthal direction can be introduced in an ad hoc manner 
by defining 

(A3) 

where Ovaries from 0 to 1 (Satoh 1980; BDI). For k= 1, the 
model is an ‘isotropic rotator’, because in that case 

oR =oz. For /: = 0, there is no streaming and flattened 
models have anisotropic pressure. 

The models have been projected on the sky for a range of 
viewing angles, and the mean square velocity {v2) (including 
rotation if present) has been calculated for circular apertures 
centred on the galaxy. Æ1/4-laws have been fitted to the 
major-axis luminosity profiles of the projected images, 
yielding As geometry requires, we find that /?e ma is 
independent of inclination, to within 0.5 per cent; in the 
following, we shall therefore use the face-on value fte0. The 
effective radii RQi of the systems at a viewing angle / are taken 
as: 

Re = y¡ J^e,m/^e,ma = (A4) 

where p is the axis ratio of the isophotes of the projected 
image. For a density distribution stratified on self-similar 
ellipsoids, as in equation (Al ), p is related to the intrinsic axis 
ratio cja and to the inclination / through p2=(c/a)2 

where e = —c2/a2. 
Consider a line of sight x'. From the observational point of 

view, Kx'x’ is directly proportional to the luminosity-weighted 
average over the entire galaxy of the second moment of the 
velocity profile along x', provided that light traces mass. 
Then the proportionality factor is simply 0.5 M For example, 
for the face-on view x' coincides with the z direction, so that 

Kz-*(v\ 

I(x,y,v)dvj , (Al) 
I x,y 

where the angular brackets indicate an average over the sky 
and vsys is the systemic velocity of the object along the line of 
sight. Thus equation (A5) can be written in the form 

(v2)i/(v2)n^ G(e), (AS) 

where the subscripts 0 and 1 refer to face-on and edge-on 
view of the system. For an oblate system seen at an inclina- 
tion /, 

(v2)i = (v2){ sin2 / +(v2)q cos2 /. (A9) 

Alternatively, using equation (A8), 

(t'2)/ = (t'2)0[G(e) sin2 / + COS2 /]. (A10) 

It should be noted that by taking the second moment of the 
velocity profile there is only one virial-theorem prediction 
for the behaviour of (v2), with inclination /; the distinction 
between rotating systems and pressure supported systems is 
not present. 

In Fig. 1, the VT prediction, scaled to our face-on E5 
model, is given by the thick solid line. It differs considerably 
from our model results for an aperture with a radius of 
0.5Re. Indeed, according to the VT, the quantity {v2)¡Rei is 
not constant, but varies according to the expression 

(^X-Rc^^o^eoIGieJsin^' + cos2/] 

x [( 1 - e2) sin2 / + cos2/],/4, 

I(x,y,v)(v-vsys)
2dv 
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where we have combined equations (A4) and (A10). We have 
verified that both the pressure-supported models and the 
oblate isotropic rotators approach the VT prediction when 
the aperture is increased. For an aperture with a radius of 
ARC, the difference is less than 2 per cent. Comparing our VT 
prediction with that using the equations given by SBD, which 
are based on an approximate analysis (separately for rotating 
systems and pressure-supported systems), we find significant 
differences. 

APPENDIX B: METALLICITY DEPENDENCE 
OF THE L/M RATIO 

Evidence for a spread in L/M at fixed mass, related to the 
Mg2 index, is present in the field galaxy sample of Faber et al. 
(1989). This is shown in Fig. Bl. The upper panel displays 
the M-Mg2 relation, using equation (2) with /? = 5 as the mass 
estimator. The solid line is a fit with a second-degree poly- 
nomial (see caption), and we use this fit to define the 
metallicity excess at fixed mass as ôMg2 

==(A/g2)obs - (Mg2)nr 
In the lower panel of Fig. Bl, LB is plotted against M. 
Different symbols are used to indicate the values of ôMg2. 
The data show that, at fixed M, high values of L are 
associated with lower than average values of the Mg2 index. 
This trend is consistent with the prediction from Worthey’s 
(1994) models. 

Plotting the residuals ô log LB with respect to the fitted 
line versus ôMg2, and applying a test to the contingency 
table based on this plot, we find that the hypothesis that 
d\ogLB and 6Mg2 are unrelated can be rejected at the 99 
per cent level. 

Figure Bl. Upper panel: Mg2 versus M for a sample of 222 field 
galaxies from Faber et al. (1989). The solid line is the least-squares 
fit given by: Mg2 = 0.20 + 0.073 (log M-10)-0.010 (logM-10)2. 
It is used to define the metallicity excess àMg2 = (Mg2)ob% - (Mg2)ñv 
Lower panel: LB versus M for the same galaxies as shown in the 
upper panel. The straight line is a least-squares fit with slope 0.825. 
Circles: ôMg2 < - 0.02, triangles: ôMg2 > 0.02, small dots: 
- 0.02 < <5Mg2 < 0.02. Note that the triangles lie mainly above the 
line, and the circles below. This split according to ôMg2 value shows 
that luminosity at fixed mass is sensitive to the metallicity excess. 
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