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An algorithm to identify hot/cold spots in anisotropy maps was used to compute the genus and number of
spots descriptors in the first year COBE-DMR sky maps. By means of Monte Carlo simulations it is shown
that the structure present in these maps is consistent with a scale invariant primordial spectrum. An unbias
estimation of the coherence angle of the fluctuation field, based on the genus curve, gives a spectral index
n=12403

1. INTRODUCTION

Information about the spectrum of primordial matter density fluctuations, P(k), can
be inferred from the autocorrelation function (acf) of the cosmic microwave back-
ground (CMB) temperature. An alternative way to test hypotheses for models of
P(k) is to look at the statistics of the geometric properties of anisotropy spots on
CMB maps. The most important advantages of this second approach are that, unlike
acf computations, topological analysis does not assume an ergodic radiation field
(Cayon et al.,, 1991; Vittorio and Scaramella, 1991), and it provides information
about P(k) independent of its normalization. In addition to using the analysis
of geometric properties of anisotropy spots to test hypotheses, this analysis technique
can be used as a diagnostic tool to detect the presence of a non random component
on CMB maps, such as foreground signals; as an unbias estimator of the coherence
angle of the underlying random field (Adler, 1981); and to verify the Gaussianity
of primordial fluctuations, thus providing a test for models of structure formation
that rely on primordial seeds, such as cosmic strings (Bennett et al., 1992) or texture
(Park et al., 1991).

The excursion set of a random field is defined as the domain of all the points where
the field takes values T'> T, = vg, where ¢ and v denote the standard deviation and
threshold level respectively.

There are several topological descriptors that have been studied and used to
characterize the properties of the excursion regions on CMB maps (Sazhin, 1985;
Vittorio and Juszkiewics, 1987; Bond and Efstathiou, 1987; Coles and Barrow, 1987,
Coles, 1988a; Coles, 1988b; Gott et al., 1990; Martinez—Gonzalez, 1989): the number of
spots N, on the sphere with temperature above T,, and below — T,; their mean area,
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A,; the total curvature of their boundary, or genus G,; the length of contour levels, L ;
the total excursion area of hot spots, a,; the number of up crossings for the one
dimensional case and the Euler—Poincaré characteristic which is the generalization of
the number of up-crossings for the two dimensional case (Adler, 1981).

From the theory of the geometric properties of excursion sets it is possible to
derive analytical expressions for some of the above mentioned descriptors. In particu-
lar, for two dimensional, stationary, isotropic, Gaussian random fields these geometric
properties depend only on the coherence angle parameter: 62 = — C(0)/C"(0). The
mean number of spots and genus on the 47 surface, and the total area of the excursion
set are:

2 exp(—v?)
_ p(—Vv7) 1
N n0? exfc (v//2) M
2\1/2 y y2
<Gv>=<g> H_feXp<_7> | 2
{a,y =2merfc(v/1/2), 3)

notice that the total area of the excursion set is independent of the parameter 6,. This
fact will be used to identify the presence of possible systematic effects in the data.

The topology of the first year COBE-DMR maps was analyzed in order to check the
consistency of the Harrison—Zeldovich power spectrum, P(k) oc k (Harrison, 1970;
Zeldovich, 1972), with the data. The COBE-DMR results are described by Smoot et al.
(1992) and references therein.

ALGORITHMS TO COMPUTE TOPOLOGICAL DESCRIPTIONS

COBE data is pixelized by means of a projection of the 2D celestial sphere onto a
cube (the skycube), where the sphere is circumscribed (Torres et al., 1989). Each
side of the cube is divided into 1024 pixels for a total of 6144 pixels, each one
with angular dimensions = 2.6° x 2.6°, comparable to COBE’s angular resolu-
tion. Pixel numbering is done by packing in a single word the face number and
the Cartesian coordinates of the pixels on that face. Having the address of a pixel stored
in the pixel number is a convenience that has been exploited to develop efficient
algorithms.

The advantages offered by this pixelization scheme on the skycube and the desire to
work with the data as close to its original form as possible, made the skycube an
obvious choice as a data-base structure for the hot spots algorithms used here. An
added advantage of the skycube is that it is a flat surface, thus avoiding the problems of
evaluating the topological descriptors in the presence of poles.

Since the objects that, are being studied (hot spots) are defined in terms of a threshold
level v, the first step of the analysis is to produce a binary map for each threshold level.
A binary map consists of 1’s and 0’s according to its corresponding pixel having
a temperature greater than or equal to T,, or less than T, respectively.

© Taylor & Francis * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApL%26C..32...95T

r 905 AGLRC . 320 T U5 T !

ANALYSIS OF COBE-DMR FIRST YEAR MAPS 97

The HOTS program: Hot spots are then found on a bitmap by forming tree data
structures. The skycube is traversed, as soon as a lit pixel is found it becomes the root
node and all the neighbor pixels that are lit become children nodes of the same tree.
A tree is completed when no more hot pixel neighbors are found. The number of hot
spots in the map at this threshold equals the number of trees found. The area of the hot
spot is the total number of nodes in the tree. Other geometric characteristics can easily
be computed by using the tree data structure. Length of contour levels are found by
counting for each node pixel the number of sides whose neighbor pixel is not lit.

An estimate of the eccentricity of hot spots can be found by first finding the
coordinates of the center of the hot spot, and then evaluating the distance of all pixels to
the center. The eccentricity is the ratio of the smallest to the largest distance. Finding
the center of a hot spot can be done considering that it is a uniform sheet of mass. The
center is then given by coordinates of the center of mass. The algorithm given by Adler
(1981) to evaluate the Euler—Poincaré characteristic can be easily implemented using
tree data structures.

The total curvature index, or genus of a map at a threshold level is the total number
of hot spots minus the number of holes in them (Gott et al., 1992). The number of holes
ata given threshold level is found using the hot spot algorithm recursively with an input
binary map formed by negating the binary sky map at the same threshold.

In order to test the algorithm, simulated maps of a Gaussian random field were
generated as described below and their genus and hot spot number density, areas and
contour lengths were evaluated by HOTS. Figure 1a shows the simulated total area
mean values with theoretical a, while Figure 1b does the same for the genus. The
agreement is good.

When an equatorial band is excluded from the maps, in order to remove the
contribution of the galaxy, a boundary is introduced and as a consequence there appear
deviations of the G, and N, curves with respect to their theoretical values. To take into
account this effect, all Monte Carlo generated data sets contain identical treatment,
including galactic cuts, as done in the analysis of the experimental data.
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FIGURE 1 a) Mean value of the total area of excursion divided by 2merfc (v/ﬁ) at different threshold
levels. The horizontal line corresponds to the expected theoretical value for a random field, independent of its
coherence angle. Open squares with 1 sigma error bars are for Monte Carlo data. Circles are for the 31(A4 + B)
DMR maps with a 30° (filled in circles) and a 10° (open circles) galactic cut. b) Mean values of the genus as
a function of threshold for Monte Carlo simulations of a Gaussian random field. The solid curve is the
theoretical function.
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MONTE CARLO SIMULATIONS

A CMB map as observed by COBE can be simulated by assigning to each pixel
i a temperature given by the real part of:

T, =T, (1 + Z ZI: W, Y,,,(0; ¢i)>a 4

I1=2m=-1

with T,, the monopole temperature of 2.735 K (Mather et al., 1990), and 0,, ¢, the zenith
and azimuth angles of a unit vector to pixel i. The dipole term (I = 1), which is excluded,
is dominated by the Doppler effect due to our present peculiar velocity relative to the
co-moving frame. The finite beamwidth, g,, of the instrument enters in the term W, as
a high-pass filter (Scaramella & Vittorio, 1988): W, =exp[ —0.5471(I+ 1)]. For ran-
dom Gaussian fields and harmonic coefficients are random variables with zero mean,
and follow a Gaussian probability distribution. Their variance is determined by the
spectrum of primordial matter density perturbations.

Since DMR’s beam size ( > 2°) is probing scales beyond which only fluctuations of

the gravitational potential on the surface of last scattering affect the isotropy of the
CMB, the Sachs—Wolfe effect alone suffices for the determination of the variances

(Sachs & Wolfe 1967). For power law spectra, P(k) oc k", the Bond—Efstathiou formula
(1987) for the variances is adequate since only the contribution of terms up to [ ~ 30 is
important after beamwidth filtering and further Gaussian smoothing are done on the
maps. Instrumental noise and sky coverage is taken into account by adding to each
pixel a noise term equals to a Gaussian random number with dispersion equals to the
one-observation measurement noise, T, .., divided by \/N_,. The number of obser-
vations N, is included in the original skymaps. The slope of a plot of T2 versus 1/N_
with properly binned data is used to find T,,. The noise ievels found with this
procedure for each channel at each one of the three DMR frequencies was found to be
within 7% of the nominal value.

For the Monte Carlo generation of maps, two maps (A and B) were generated
separately, each with its corresponding noise level, then added and subtracted to form
the(A4 + B)and (A — B) maps. Finally, 2.9° Gaussian smoothig was applied to the maps.

Each sky map produced is one realization of the ensemble. To each realization,
HOTS was used to extract G,, N, 4, and L,. After 400 realizations were done, their
respective mean value and dispersion were computed.

Figures 2a—2d show the mean values and their 1 sigma error bars for the number
of spots and genus. In these plots it is shown what would be seen by the 53 GHz
DMR radiometers observing a universe with Harrison—Zeldovich primordial fluc-
tuations. In the same plot it is also shown the values of topological descriptors as
obtained from maps made with pure instrumental noise. The separation between these
two curves is an indication of both the power of a statistical test and the efficiency of
a topological descriptor as discriminator. Noisier maps for example would result in
“noise” and “signal” curves which are too close. The L, and A, curves (not shown) for
noise and signal are too close to each other, rendering these descriptors inefficient for
testing power spectra with index close to one. Genus and number of spots will be the
only descriptors used here to test that hypothesis.
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FIGURE 2 a) Number of spots normalized to the area of the sphere for the COBE-DMR 53(A + B) data
(triangles) and Monte Carlo simulations for the COBE 53 GHz radiometers observing a Universe with
a Harrison—Zeldovich spectrum (solid line with error bars) and with instrumental noise only (short dashed
line). b) same as a) for genus. ¢) and d) are the same as a) and b) but the data (triangles) show the COBE-DMR
53 GHz (4 — B) maps and the short dashed curve corresponds to the Harrison-Zeldovich simulations.

To compare a cosmological model with the data, the y* and the cumulative
probability distribution of x? are constructed from the Monte Carlo data as suggested
by Gott et al. (1992). That is, for each Monte Carlo map the values of a topological
descriptor U, at 25 threshold levels v: —3.0...3.0 are used to compute the normalized y:

_ 1 ZU;—<Up)P?
24 & o}

2

)

where {U;» and o; are calculated from the set of Monte Carlo simulations for
a particular cosmological model.

PREPARATION OF DATA

Four of the six original COBE-DMR sky maps were used: 53A and B and 90A and B.
The data comes in the skycube format discussed above, in Geocentric Ecliptic
coordinates. Before the analysis of peak statistics can be performed it is necessary to
remove the Doppler component consisting primarily of the dipole anisotropy but
including a 1.2puK kinematic quadrupole term, and to rotate the maps to galactic
equatorial coordinates. To reduce the noise on the maps, an additional Gaussian
smoothing of 2.9° was done.
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To check for the integrity of the data and the analysis software I have computed
and compared with COBE’s published results (Smoot et al, 1992), the follow-
ing quantities: the dipole, the rms sky variation on a 10° scale, and the quadrupole.
The dipole and quadrupole was obtained with a least squares fit of the map to
the harmonic expansion (4). The dipole amplitude and orientation are in agreement
with Smoot etal. (1992): AT/T=336+0.04, 1=264°+1°, b=48°+1°. These
numbers are weighted averages with 31B excluded. COBE’s error bars for the dipole
are larger because here I have not considered systematic effects, only statistical errors
are quoted.

To compare the quadrupole numbers against COBE’s results I have used the rms
value Q,,. and the direction of the axis of symmetry connecting the two minimum
points of the quadrupole. The principal axes are found making an analogy with the
mechanics of rigid bodies. If one builds a unit radius shell with a surface mass
distribution given by the [ = 2 term in the harmonic expansion (4):

p= Z U (6)
with
0,= %(3 cos®6—1), (7)
Q, = /3esin f cos 0 cos ¢, )
Q; = /3¢sin f cos fsin ¢, )
Q.= —\/zésin2 6 cos2¢, (10)
Q5= \—/_;—gsinz 0 sin 2¢, (11)

&2 = 5/4x, then the eigenvectors of the moment of inertia matrix are the sought axes of
symmetry. The matrix in terms of the quadrupole coeflicients is:

(¢, 4. 45 4
3e \/gs \/58 3¢
44 qq q3
I.= I + = 12
Y 12 \/38 3¢ \/38 12
2q
| 113 Iz1 _T;_

It is found that the use of the principal axes of the quadrupole are not only useful to
visualize the quadrupole orientation, but also in this case it reveals a possible
correlation between the quadrupole and the galaxy, as can be seen by the increasing
alignment of the quadrupole with the galaxy as the galactic cut is reduced (Figure 3).
Notice that the quadrupole orientation goes to its convergence value much faster for
those maps less contaminated with galactic emission, as expected.

© Taylor & Francis * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApL%26C..32...95T

r 905 AGLRC . 320 T U5 T !

ANALYSIS OF COBE-DMR FIRST YEAR MAPS 101
80 T T TT l T I | T T 17T ] T T T T I L [ T T 1T r TTrrr I LI

- a) ]

60 [— —

oﬁ 40 s
20 |- EI E { -

0 —l | I J I | [ 1111 I 1)t 1 I Lt 1 I Lt [ 1 B N I | l 1.1 11
0 5 10 15 20 25 30 35 40
Gal cut [Deg]
1T 17T I L L I 1 171 ’ LI I LR L I LI L | I T 1 1T

80 — b) /_

= r B
9 60 -
a L i
'g - .
2 40 i |
5 i i
e - ]
(O L _
20 |— ]

L -
oy_ilLJ ,LJJJLIJJ;IJIIII|Illllll1||llll|—‘

o

50 100 150 200 250 300 350
Gal longitude [Deg]

FIGURE 3 a) Quadrupole rms as obtained here (filled in polygons) and by Smoot et al. (1992) (open
polygons)for different galactic cuts, 31 GHz (circles), 53 GHz (squares) and 90 GHz (triangles). b) Orientation
of the principal axis of the Quadrupole on the /, b plane for different cuts of the equatorial band. Filled in
polygons are data points obtained in this analysis, open polygons are from Smoot et al. (1992). The data
corresponds to three galactic cuts|b| > 10°, 20°, and 30°, the smaller | b| values are more strongly aligned with
the galaxy.

ANALYSIS AND CONCLUSIONS

The total area of the excursion set (3) is a good topological descriptor to detect the
presence of a non-random component in CMB maps. Figure 1a is a plot of a, versus
v and illustrates what would be obtained for a pure random field independent of its
coherence angle. Curves of a versus threshold for the 31 GHz DMR (4 + B) map in the
same figure show large deviations. These deviations become more pronounced when
the galactic cut is smaller, indicating that the galactic contamination at high latitudes is
the most likely source responsible for the observed effect. For the 53 and 90 (4 + B)
maps no deviations beyond the 1 sigma area in Figure 1a were seen for galactic cuts
|b] > 25 degrees.
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Genus and number of spot descriptors were used to test for the consistency of
a Harrison-Zeldovich spectrum of primordial perturbations. It is found that the null
hypothesis (i.e. the structure on COBE maps is due to instrumental noise alone) can be
rejected with a very high confidence level (see Figure 2): the 2 obtained for the COBE-
DMR data when the null hypothesis is assumed in the Monte Carlo procedure are very
high: 6.75 and 7.51 for the number of spots and genus for the 53 GHz channels, 3.59 and
4.38 respectively for the 90 GHz channels. The corresponding probabilities of obtain-
ing such a high y? are < 1/400 for all these cases. It is clear that there is structure on the
DMR maps from astrophysical or cosmological origin. A detailed analysis of possible
noncosmological sources (Bennett et al., 1993) shows that the contribution to the DMR
maps of known point sources in infrared, radio and x-ray catalogues is negligible.
Ruling out foreground sources the most probable cause of the structure seen is from
cosmological origin.

Using the topological descriptors genus and number of spots computed on Monte
Carlo realizations of CMB maps with a Harrison—-Zeldovich (normalized to 16 pK
Q... ps) POWer spectrum it is found that this model is consistent with DMR data with
a high confidence level (Figure 2) in agreement with a preliminary hot spot analysis
(Gurzadyan and Torres 1993). The x> of COBE-DMR data when the Harrison—
Zeldovich hypothesis is assumed in the Monte Carlo procedure are very low: 0.62 and
1.48 for the 53 and 90 GHz number of spots, and 0.72 and 1.73 for the 53 and 90 GHz
genus. The corresponding probabilities for such a low x? values are 95% and 14% for
the 53 and 90 GHz number of spots and 83% and 8% for the 53 and 90 GHz genus.
Other values for the spectral index n are also consistent with the data. To see the
dependence of the genus and number of spots on the spectral index, several sets of
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FIGURE 4 Coherence angle in degrees versus spectral index as obtained from the Monte Carlo runs.
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Monte Carlo realizations were generated with fixed Q,,._ps normalization and
variable n. For each spectral index, the genus curve as a function of threshold v was
fitted using (2) in order to obtain the best 0, that fits the data. The dependence of the
coherence angle with spectral index is alomost linear, as can be seen in Figure 4. With
the error bars for 6, obtained from the Monte Carlo simulations it is now possible to
estimate the best n with its error bars by fitting the genus curves of COBE’s maps to get
their coherence angle. Based on the the genus curves, the coherence angle for the 53
GHz (4 + B) DMR mapis 0, = 4.9° + 0.1° which gives a spectral index n = 1.2 + 0.3 in
agreement with the values obtained by Smooth et al. (1992) based on the fit to the acf.

ACKNOWLEDGEMENTS

Ithank Prof. Remo Ruffini, Roberto Fabbri and George Smoot for their useful comments. This research has
been supported by Colciencias of Colombia project # 1204-05-007-90 and the European Community under
contract No. CI1-CT92-0013. The support of the Super Computer Computations Research Institute of
Florida State University, where some of the Monte Carlos were done, is greatly appreciated. The COBE
datasets were developed by the NASA Goddard Space Flight Center under the guidance of the COBE
Science Working Group and were provided by the NSSDC.

REFERENCES

Adler, R. J., 1981, The geometry of Random Fields (New York: Wiley).

Gott,J. R, et al., 1990, Ap. J., 352, 1.

Gurzadyan, V., and Torres, S., 1993, in Present and Future of the Cosmic Microwave Background, Edts.
Sanz, J. L., Martinez—Gonzalez and E. Cayon, L., Springer-Verlag, 429, 139.

Bennett, C. et al., 1993, Ap. J., 414, L77.

Bennett, D. P., Stebbins, A., and Bouchet, F. R., 1992, 4p. J., 399, L5.

Bond, J. R. and Efstathiou, G., 1987, MNRAS, 226, 655.

Cayon, L., Martinez—Gonzalez, E., and Sanz, J. L. 1991, MNRAS, 253, 599.

Coles, P., 1988a, MNRAS, 231, 125.

Coles, P. 1988b, MNRAS, 234, 509.

Coles, P., and Barrow, D., 1987, MNRAS, 228, 407.

Harrison, E. R., 1970, Phys. Rev. D, 1, 2726.

Martiez—-Gonzalez, E., and Sanz, J. L., 1989, MNRAS, 237, 939.

Mather, J. C. et al., 1990, 4p. J., 354, L37.

Park, C., Spergel, D. N., and Turok, N., 1991, 4p. J., 372, L53.

Sachs, K., and Wolfe, A. M., 1967, Ap. J., 147, 73.

Sazhin, M. V., 1985, MNRAS, 216, 25p.

Scaramella, R., and Vittorio, N., 1988, Ap. J., 331, L53.

Smoot, G. F. et al., 1992, Ap. J., 396, L1.

Torres, S., et al., 1989, in Data Analysis in Astronomy, ed. V. di Gesu, L. Scarsi and M. C. Maccarone (Erice,
1988), 40, 319-333.

Vittorio, N., and Scaramella, R., 1991 in Physical Cosmology, Edts. Blanchard, A. et al., p. 135.

Vittorio, N., and Juszkiewicz, R. 1987, Ap. J., 314, 1.29.

Zeldovich, Ya. B., 1972, MNRAS, 160, 1P.

© Taylor & Francis * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApL%26C..32...95T

r 905 APLRC . 32 D05 !

© Taylor & Francis * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApL%26C..32...95T

