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ABSTRACT

We present for astrophysical use a multidimensional numerical code to solve the equations for ideal magne-
tohydrodynamics (MHD). It is based on an explicit finite-difference method on an Eulerian grid, called the
total variation diminishing (TVD) scheme, which is a second-order—accurate extension of the Roe-type upwind
scheme. Multiple spatial dimensions are treated through a Strang-type operator splitting. The constraint of a
divergence-free field is enforced exactly by calculating a correction via a gauge transformation in each time
step.

Results from two-dimensional shock-tube tests show that the code captures correctly discontinuities in all
three MHD wave families as well as contact discontinuities. The numerical viscosities and resistivity in the
code, which are useful in order to understand simulations involving turbulent flows, are estimated through the
decay of two-dimensional linear waves. Finally, the robustness of the code in two dimensions is demonstrated
through calculations of the Kelvin-Helmholtz instability and the Orszag-Tang vortex.

Subject headings: methods: numerical — MHD —- shock waves

1. INTRODUCTION

In recent years upwind finite-difference schemes based on ideal gas conservation laws have been popular for solving compressible
hydrodynamic conservation equations, mainly because of their ability to sharply capture discontinuities and also to the robustness
of the schemes. Several examples include Godunov’s scheme (Godunov 1959), the MUSCL scheme (Van Leer 1979), the Roe scheme
(Roe 1981), the TVD scheme (Harten 1983), the PPM scheme (Colella & Woodward 1984), and the ENO scheme (Harten et al.
1987). A comparative review of some of these schemes can be found in Woodward & Colella (1984). Such methods have been very
effectively applied to many astrophysical problems (e.g., cosmological hydrodynamics with the TVD scheme [Ryu et al. 1993],
accretion flow with the ENO scheme [Ishii et al. 1993], and supernova remnants [Chevalier, Blondin, & Emmering 1992] and
astrophysical convection [Porter & Woodward 19947 with the PPM scheme).

As important as these hydrodynamical tools have been, there are many applications that fundamentally depend on the presence
of magnetic fields and an ionized, conducting character of the medium under investigation. To the extent that these media can be
treated through continuum fluid mechanics, this means one must work with magnetohydrodynamic (MHD) equations rather than
hydrodynamic equations. But, owing to the intrinsic complexity of the MHD flows, the development of numerical techniques to
solve MHD equations has been slower than for hydrodynamics. For instance, until now most numerical schemes have been based
on methods dependent on artificial viscosity to form shocks (e.g., DeVore 1991; Lind, Payne, & Meier 1991; Stone & Norman 1992).
Those schemes have been used successfully in astrophysical applications (e.g., Lind et al. 1989; Stone & Norman 1994). However,
since past experience with fully conservative, high-order upwind hydrodynamic schemes found those to be superior in many
applications (Woodward & Colella 1984), it is naturally interesting to extend such schemes to solve MHD conservation equations.
Several investigators who have worked in recent years on the development of high-order, conservative, upwind differencing schemes
for MHD include Brio & Wu (1988), Zachary & Colella (1992), Zachary, Malagoli, & Colella (1994), and Dai & Woodward (1994a,
b). Brio & Wu applied Roe’s approach to the MHD equations. Zachary and collaborators used the BCT scheme (Bell, Colella, &
Tragenstein 1989) to estimate fluxes in MHD conservation equations. Dai & Woodward applied the PPM scheme to MHD. One of
the special concerns in developing a scheme for MHD is the fact that the equations may have solutions at which they are no longer
strictly hyperbolic, meaning that some of the characteristic speeds become locally degenerate.

In a previous work (Ryu & Jones 1995), we described a one-dimensional conservative numerical mode to solve the equations for
ideal magnetohydrodynamics. It is based on an explicit finite-difference scheme on an Eulerian grid, called the total variation
diminishing (TVD) scheme (Harten 1983), which is a second-order—accurate extension of the Roe-type upwind scheme. Tests using
an extensive set of MHD shock-tube problems showed that the one-dimensional code can resolve strong shocks within 2—4 cells;
weaker shocks, especially slow shocks, are somewhat broader. Contact and tangential discontinuities also require more cells for
capture.

This code provides a promising first step to a useful computational tool. However, only a very limited number of practical
applications can be studied under the planar symmetry constraint. Most real flows will depend on structures in at least two or, more
likely, in three spatial dimensions. Thus, general application of our code requires that it be extended to a multidimensional form. In
this paper we describe this extension. In the multidimensional code, multiple spatial dimensions are treated through a Strang-type
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operator splitting (Strang 1968). The constraint of a divergence-free field is enforced exactly by calculating a correction via a gauge
transformation in each time step (Brackbill & Barnes 1980).

This scheme should have many interesting applications to astrophysical problems. We have already applied the one-dimensional
version of our code successfully to the first time-dependent study of diffusive cosmic-ray acceleration in oblique MHD shocks
(Frank, Jones, & Ryu 1994, 1995a). We demonstrated that inclusion of magnetic fields in the fluid dynamics introduces a number of
effects, including some that are subtle and not apparent except in a time-dependent simulation. With the new multidimensional code
described here, we can extend that analysis to include such important issues as the evolution of unstable MHD cosmic-ray shocks.
Tests we describe below illustrate some of the other kinds of problems that can be addressed with the code. We have underway a
study of the nonlinear evolution of the MHD Kelvin-Helmholtz instability (Frank, Jones, & Ryu 1995b), for example.

This paper is organized in the following way. In § 2 we describe the extension of the one-dimensional code into a multidimen-
sional form, including the operator splitting scheme and the correction to preserve V + B =0. In § 3 we present the results of
numerical tests performed with the two-dimensional version of the code, including shock-tube problems, the decay of linear waves,
the growth of the Kelvin-Helmholtz instability, and evolution of the Orszag-Tang vortex. Our findings are summarized in § 4.

2. THE NUMERICAL SCHEME

2.1. The MHD Equations

MHD describes the behavior of the combined system of a conducting fluid and magnetic fields in the limit that the displacement
current and the separation between ions and electrons are neglected. So the MHD equations represent coupling of the equations of
fluid dynamics with Maxwell’s equations of electrodynamics. Here we describe a numerical scheme to calculate the evolution of the
following ideal MHD equations, where the effects of electrical resistivity, viscosity, and thermal conductivity are dropped:

dp
o +V:(pv)=0, 2.1
1
Qg+v-Vv+le——(VxB)xB=0, (2.2)
ot P P
ap
Et—+v°Vp+ypV'v=0, (2.3)
OB
E—Vx(va’):O 2.4)

(see Jackson 1975 for the derivation of the equations). Here we have chosen units so that the factor of 4n does not appear in the
equations. An additional explicit constraint V + B = 0 is imposed to account for the absence of magnetic monopoles. Although that
constraint is included in the derivation of equation (2.4), it generally cannot be maintained precisely in differenced forms of that
equation, even when one works with an exactly conservative scheme as we will outline.

In Cartesian geometry, the above equations are written in conservative form as

g, OF,  OF, OF,
ot + ox dy 0z 0, 23)

14 PUx
POy pv; + p* — B
pv, pv,v,— B, B,
pv, pULV, — Bsz
a=| 2% |. F.- 5 , 2.6)
B, B,v, — B, v,
Bz Bz Uy — Bx v,
E (E + p*)v, — B(B,v, + B,v, + B,v,)
with F, and F, obtained by properly permuting indices. Here the total pressure and the total energy are given by
p* =p+ 3B + B + B}, @7
1 1
E=5p(u§+vf+v,2)+y——f—l+5(B§+Bf+B,2). 2.8)

With the state vector ¢ and the flux functions F,(g), F,(q), and F,(g), the Jacobian matrices, 4,(¢q) = 0F,/0q, A (q) = 0F,/0q, and
A,(q) = 0F,/0q, are formed. The system of equation is called hyperbolic if all the eigenvalues of the Jacobian matrices are real and
distinct and the corresponding set of right eigenvectors is complete (Jeffrey & Taniuti 1964). The MHD equations form a non-
strictly hyperbolic system, meaning that some eigenvalues may coincide at some points.
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2.2. The One-dimensional Code
The procedure to build a one-dimensional MHD code based on the TVD scheme was described in detail in our previous paper
(Ryu & Jones 1995). Here, we briefly summarize it and mention optimizations for the multidimensional extension. To start, we
consider a plane-symmetric, one-dimensional flow exhibiting variation along the x-direction. The first step to build the code is to
find the eigenvalues and the right and left eigenvectors of the Jacobian matrix 4,(g). The seven eigenvalues a,, ..., a; in nonincreas-
ing order are
ay,7 =0t ¢y, az6 = Vs Cp, a3,s = vyt Cg, a4 = Ux (2.9)

where c/, ¢, ¢, are the fast, Alfvén, and slow characteristic speeds. The quantities a4, ..., a; represent the seven speeds with which
information is propagated locally by three MHD wave families and an entropy mode. The three characteristic speeds are expressed

1 BZ B2 BZ BZ BZ BZ 2 27]1/2 1/2
cra=|g far + BB B [ BB BY BN 2.10)
2 p p p
and
BZ 1/2
cA=(—"> , (2.11)
p
with the sound speed
1/2
a= (y E) . 2.12)
P

The corresponding eigenvectors are given, for example, in Jeffrey & Taniuti (1964). However, near a point where either B, = 0 or
B, = B, = 0, the eigenvectors are not well defined, with elements becoming singular. By renormalizing the eigenvectors, the
singularities can be removed. The renormalized eigenvectors are given in Brio & Wu (1988) and Ryu & Jones (1995).

In a code based on the TVD scheme, the physical quantities are referred to the cell centers, while the fluxes are computed on the
cell boundaries. Implementation of Roe’s linearization technique would result in a particular averaged form of the physical
quantities on the cell boundaries (Roe 1981). However, as pointed out by Brio & Wu (1988), it is not possible to derive this particular
analytic form of the averaged quantities in MHD for general cases with an adiabatic index y # 2. Instead, we modify Roe’s scheme
and USe p; 1 1/2, Ux i+ 1725 Vyi+ 1725 Uz,i+1/2> By,i+1/2> Bzi+1/2> P¥e1/2 On the cell boundaries with the arithmetic averages ati and i + 1.
Then, other quantities such as momentum, gas pressure, total energy, etc., are calculated by combining those quantities. Our tests
for cases with y = 2 indicated that the above simple averaging would do just as well when compared with the full implementation of
Roe’s linearization technique, as already suggested for the original hydrodynamic code by Harten (1983).

The state vector ¢" at the time step n is updated by calculating the modified flux £, at the cell boundaries as follows:

At - -
L.q; =q; — —A— (./.;:,i—l/z —fx,i+ 1/2) s (2.13)
X
1 Ax U
j.‘xl+1/2 —5[ q?) + F(qi+ )] — 2At" Zﬂk1+1/2Rk i+1/2 5 (2.14)
Bii+ 12 = Qk( vz + Vi, z+1/2>°‘k i+1/2 — Gr,i + Gri+1) > (2.15)
A,i+1/2 = Ly ;. 12 ° @i —a) (2.16)
Iri+1 — Gk,i
—_— for ay ; #0,
Pri+12 = Ok, i+1/2 kvl 2.17)
0 for o ;412 =0,
Gk,i = Sign (J ; +1,2) max [0, min {lﬁk,w vzl Gr,i—1/2 sign (Gi,i+ 1/2)}] > (2.18)
. 1 At At 2
Ir,i+1/2 = 5 [Qk(A_x Ay it 1/2) - <Ax it 1/2) ]“k,i+ 1/2 » (2.19)
e
~—+e€ for | x| < 2e,
0u(1) = { 4¢ Ix (220)
[x] for |x| > 2e,

0.3 fork=1and 7,
0.1 for k=2and 6,
€=0045 fork=3and5, (2.21)

0.0 fork=4.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...452..785R

788 RYU, JONES, & FRANK Vol. 452

Here a;, R,, L, are the seven eigenvalues in equation (2.9) and the corresponding right and left eigenvectors. The time step At" is
restricted by the usual Courant condition for the stability, At” = Cc,,, Ax/max (|v%,;1 12| + €}.i+1/2) With Ce,y,, < 1. Typically we
use Cc,, = 0.6, although values up to 0.9 seem to be sufficient for most calculations. Note that the € and Cc,,, values in equation
(2.20) as optimized for the multidimensional code are different from those recommended for the one-dimensional code (Ryu & Jones
1995). Our tests showed that procedures to steepen contact discontinuities and rotational discontinuities similar to those suggested
in the original TVD paper by Harten (1983) do not work very well in this context. They produce spurious numerical oscillations that
can significantly degrade the solution. So, we do not include contact steepener and rotational steepener routines in our multidimen-
sional MHD code.

2.3. The Multidimensional Extension

The multidimensional extension has been done through a Strang-type directional splitting (Strang 1968). In each time step,
multidimensional derivatives are split into a set of one-dimensional derivatives, with variations in other directions ignored tempo-
rarily. Then each row and column in the grid is treated as if it were a one-dimensional problem. Updating the flow quantities along
each row is done using the one-dimensional code described in the previous section. The parallel (to the direction of the row)
component of the magnetic field is kept constant, and only the perpendicular component is updated. One complete time step
updating the full state vector ¢" to ¢"* ! in each cell is composed of updating it along two or three directions, as appropriate. For
instance, in three-dimensional Cartesian geometry, the state vector is updated along x-, y-, and z-directions, so

qn+ 1 _ Lz Ly Lx qn . (222)

In order to maintain second-order accuracy, the order of directional passes is permuted by the Strang-type prescription: L, L, L,,
L.L,L,LL,L,LUL,L,LL,L, andthen L,L,L, for example. The time step is restricted to satisfy the Courant condition
along each row in three directions. It is calculated at the start of the above permuting sequence and used through one complete
sequence.

2.4. EnsuringV - B=0

The condition V - B = 0 is, of course, a necessary initial constraint in multidimensional MHD flows and should be preserved
during their evolution. While the differential MHD equations formally ensure V + B = 0, the numerical errors due to discretization
and operator splitting can lead to nonzero divergence over time. Physically, this is due to the fact that even through schemes such as
this one are exactly conservative of the fluxes in equation (2.6) on the cell boundaries crossing each directional pass, nothing
maintains a constant magnetic flux in the Gauss’s law sense across the entire surface of each cell. That is, nothing forces conserva-
tion of magnetic charge over a finite cell during the entire time step. This error usually grows exponentially during the computa-
tions, causing an artificial force parallel to the magnetic field and destroying the correct dynamics of the flow (see, e.g.,
Schmidt-Voigt 1987).

Zachary et al. (1994) showed that, by use of the modified form of the MHD equations originally suggested in Brackbill & Barnes
(1980), the error in V * B could be kept small enough in their code that their tests showed no discernible differences with and without
the correction for nonzero V * B. So they abandoned the correction in their code. However, since the modified form is not suitable
for our code and it does not remove V + B completely anyway, we enforce V + B = 0 explicitly by a simple transformation. First we
solve for the potential, ¢, defined by the Poisson equation

Vi +V-B=0. (2.23)

Here B is the updated magnetic field obtained by the procedure already outlined. Then we compute the corrected magnetic field,
defined as B° = B + V¢, for which V + B° = 0, as required.
The difference form of the above Poisson equation in two-dimensional Cartesian geometry is

Diva;— 20+ iz + Dijiz— 20+ b _ B i+1,j— Byi-1,; + B,ij+1—Byij-1
4(Ax)? 4(Ay)? 2Ax 2Ay ’

To solve the above difference equation, we employ a suitably selected rapid technique. On a Cartesian grid, for example, we can take
advantage of the fact from the Fourier transform derivative theorem that fast Fourier transforms (FFTs) can provide an exact
solution to ¢; ; from equation (2.23) if the field structure is periodic on some space (e.g., Bracewell 1986). Even if the magnetic field is
not periodic on the computational box of interest, it is often possible to create such a structure for this transformation by doubling
the box size for this step only and choosing an appropriate symmetry within the extended space. According to our tests, the cost of
enforcing V « B = 0 explicitly is reasonable, taking <$5% of the total CPU time in cases with periodic boundaries on the com-
putatational space. With others, like reflecting or continuous boundaries, that require an extended space, the cost of enforcing
V «- B=0is $30% of the total CPU time.

The present version of the multidimensional MHD TVD code runs at ~400 Mflops on a single Cray C90 processor, although it is
not specifically optimized for the machine. This corresponds to an update rate of ~2 x 103 cells s~ ! for the one-dimensional
version and ~ 10° cells s~ * for the two-dimensional version.

(2.24)

3. TESTS

In this section we briefly describe several tests we have carried out to determine the characteristics of the code and its suitability
for practical application. We aim to examine the ability of the code to handle all three MHD wave families as well as its performance
in computing complex flows. In addition, we will estimate the effects of numerical viscosity and electrical resistivity. For each of
these tests we assume an adiabatic index y = 5/3 and a Courant constant Cc,, = 0.6.
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3.1. Shock-Tube Tests

Extensive tests of the code have been done with MHD shock-tube problems, using a two-dimensional Cartesian grid and various
orientations of the structures with respect to the grid. Here we describe tests performed in a two-dimensional box with x = [0, 1]
and y = [0, 1], where structures like discontinuities and waves propagate along the diagonal line joiningx=y=0and x =y = 1.
We present two tests. One includes only two (x and y) components of the magnetic field and velocity, so that they are confined in the
computational plane. The second includes all three components. The results from the numerical calculations are marked with dots
in Figures 1 and 2. They can be compared with analytic solutions from the nonlinear Riemann solver described in Ryu & Jones
(1995), plotted here with lines. Structures are measured along the diagonal line joining x = y = 0 and x = y = 1. The plotted
quantities are density, gas pressure, total energy, v (velocity parallel to the diagonal line; i.e., parallel to the wave normal), v,
(velocity perpendicular to the diagonal line but still in the computational plane), v, (velocity in the direction out of the plane), and
the analogous magnetic field components, B, B,,and B,.

The first test in Figure 1 has been done with two-dimensional magnetic field and velocity vectors in the x — y plane. In this case
the sign of the perpendicular magnetic field (B,) remains unchanged across the structures. The initial left-hand state is (p, v, v,, v,,
B,,B,,E) =(1,10,0,0, 5/\/471, 0, 20) and the initial right-hand state is (1, — 10, 0, 0, 5/\/47z, 0,1), withB, = 5/\/4—7r. Figure lain Ryu &
Jones (1995) illustrates a solution to this problem with the one-dimensional MHD TVD code. The calculation has been done using
256 x 256 cells, and plots correspond to time ¢t = 0.0Sﬁ. The structure is bounded by a left- and right-facing fast shock pair. There
are also a left-facing slow rarefaction, a right-facing slow shock, and a contact discontinuity. Three anomalous points visible in the
v, plot are due to the error induced in the subtraction of two big numbers to get a small number. Note that v 1 has been calculated
withv, = (—v, + vy)/ﬁ, and v, and v, are, at least, an order of magnitude larger than v, in preshock regions. As expected from the
two-dimensional nature of the magnetic field and the velocity structure, there is no rotational discontinuity. In this test the fast
shocks are strong, with a large parallel velocity jump, [v)]. The density, parallel velocity, and pressure jumps in the slow shock are
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FiG. 1—Two-dimensional MHD shock-tube test. Structures propagate diagonally along the line (0, 0) to (1, 1) in the x-y plane. The initial left-hand state is (p, v,
vy, v, By, B, E) = (1, 10,0,0, 5/,/47,0, 20) and the initial right-hand state is (1, — 10, 0,0, 5/, /4, 0, 1), with By = 5//4n and y = 5/3 (same test as in Fig. 1ain Ryu
& Jones 1995). Dots are from a numerical calculation with the MHD TVD code described in § 2 using 256 x 256 cells and a Courant constant of 0.6. The structure is
shown at time ¢t = 0.08\/5 along the grid diagonal. The dots are plotted along the diagonal line (0, 0) to (1, 1). Lines are from the nonlinear Riemann solver described
in Ryu & Jones (1995). Plots show (left to right) (1) fast shock, (2) slow rarefaction, (3) contact discontinuity, (4) slow shock, and (5) fast shock.
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FIG. 2—The 2 dimensional MHD shock-tube test. Structures propagate diagonally along the line (0, 0) to (1, 1) in the x-y plane. The initial left-hand state is (p,
vy, 0y, 0, By, B,, E) = (108, 1.2, 001, 0.5, 3.6/\/4n, 2/\/4m, 0.95), and the initial right-hand state is (1, 0, 0, 0, 4/,/4x, 2/, /4=, 1), with B, = 2//4n and y = $ (same
test in Fig. 2a in Ryu & Jones 1995). Dots are from a numerical calculation with the MHD TVD code described in § 2 using 256 x 256 cells and a Courant constant
of 0.6. Structure is shown at time ¢t = 0.2\/5, along the diagonal line (0, 0) to (1, 1). Lines are from the nonlinear Riemann solver described in Ryu & Jones (1995).
Plots show (left to right) (1) fast shock, (2) rotational discontinuity, (3) slow shock, (4) contact discontinuity, (5) slow shock, (6) rotational discontinuity, and (7) fast
shock.

weak, so that this feature is mainly apparent through the jumps in the tangential velocity, [v,] and tangential magnetic field, [B, ].
The capture of shocks and the contact discontinuity here are virtually the same as with the one-dimensional code.

The second test in Figure 2 involves all three components of both magnetic field and velocity, with the magnetic field plane
rotated across the initial discontinuity (such calculations are often describe as 21-dimensional). This test is also presented as Figure
2ain Ryu & Jones (1995). The initial left-hand state is (p, v, v,, v,, B,, B,, E) = (108, 1.2, 0.01, 0.5, 3.6/\/4=, 2/./4=, 0.95) and the
initial right-hand state is (1, 0, 0, 0, 4/\/4n, 2/./4=, 1), with B, = 2/\/22'. Again the calculation has been done using 256 x 256 cells,
and plots correspond to time ¢t = 0.2,/2. Fast shocks, rotational discontinuities, and slow shocks propagate from each side of the
contact discontinuity. Here the rotation of the magnetic field across the initial discontinuity generates two rotational discontinuities.
Again, the structures are captured by the two-dimensional code in a way very similar to what we found with the one-dimensional
code.

We also carried out many of the other shock-tube tests described in Ryu & Jones with this code, including rarefactions of both
fast and slow wave families. Generally the solutions are comparable to those seen there. In summary, then, results from multidimen-
sional shock-tube tests show that the code captures correctly discontinuities and rarefaction waves in all three MHD wave families,
as well as that carried with the entropy mode.

3.2. Decay of Linear Waves

Our conservation equations (2.5) and (2.6) refer to ideal MHD without the effects of viscosity, electrical resistivity, and thermal
conductivity. However, in numerical calculations on a discrete grid, diffusion of magnetic field and momentum across cell bound-
aries is unavoidable and introduces effective numerical electrical resistivity and viscosity. Energy diffusion also occurs and produces
numerical thermal conductivity. But the effects of the numerical thermal conductivity are mostly small compared to those of the
numerical viscosity and electrical resistivity.
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In order to estimate the properties of the numerical resistivity and viscosity in the multidimensional MHD code, we have followed
the decay of two-dimensional Alfvén, fast, and slow waves in numerical calculations and compared their decay rates to the predicted
rates in a viscous, resistive fluid. The MHD equations for a viscous, resistive fluid can be written as

)
Liv-vn=0, 3.1)
ot
v 1 1 1
~—+v'Vo+—-Vp——(Vx B)x B=—0,04, (3.2)
ot P p p( ) P kOik
op
o Foo VetV o=@ —Doydyv,, (3.3)
B
%—Vx(va)=anB. (3.4
In these equations,
O = WOk v; + 006 — 364V * ) + (5, V * v (3:5)

is the viscosity tensor, where y and { are the dynamic shear and bulk viscosity, respectively, # is the electrical resistivity, and
ak = a/axk.

In the test of the decay of Alfvén (shear) waves, we have used a standing wave formed along the grid diagonal with initial
conditions

0V, = Uy Ca Sin (K x + k),
0p = 0p = v, = 6v, = 6B, = 0B, = 6B, =0, (3.6)
in a stationary background with p, = 1, p, = 1, and B = B, %, with B, = 1. This gives characteristic speeds a = 1.291 and c, =
0.7071. The calculations have been done in a square periodic box with size L = 1 using 8 x 8, 16 x 16, 32 x 32, 64 x 64, 128 x 128,

and 256 x 256 cells. The x- and y-wavenumbers have set to k, = k, = 2n/L, so the total wavenumber k = (k2 + k2)'/> = ./2(2n/L),
and the initial peak amplitude has been set to v,,,, = 0.1. The predicted complex frequency of the wave is

(e e -z (o) e

o=cz|—4+nlk’tcp,kll —-—|——1n)k . 3.7

2 <po ") A ai \po " G
so the decay rate is

1 u 2

r,= 3 (Po + n)k . (3.8)

The effect of the shear viscosity and the electrical resistivity on Alfvénic turbulence of scale L is measured through a Reynolds
number defined by

1 u 1 8alc,
=cL|=— =—. 3.9
Ra=cn [2 (po i ")] LT, 9

When the Reynolds number corresponding to L is large, the fluid should be able to maintain on that scale a turbulent flow whose
properties are not controlled by the properties of the viscosity and resistivity.

In a similar fashion we have set up tests of the decay of compressive waves. Each involves standing waves formed on the grid
diagonal. For the fast wave we used initial conditions

C2

=_2——L_U
v Cf—B(z)/Po

8p=0p=0v,=0B,=06B,=06B,=0. (3.10)

OVy = VympCy Sin (ke x + ky ), ov amp Cr Sin (ko x + Kk, y) ,

For the slow wave we set up initial conditions

02

=—s—v
» ¢ — Bj/p,

8p=0p=0v,=06B,=6B,=0B,=0. (.11)

OV, = Upp € Sin (K, x + K, y) , ov amp Cs SiN (K, x + k, y)

The same background configuration and computational box have been used as in the case of Alfvén waves. For comparison, the
characteristic wave speeds are ¢, = 1.518 and ¢, = 0.6013. In compressive waves with a large wave amplitude, nonlinear effects
become important (e.g., steepening), so a smaller initial peak amplitude, v,,,, = 10~ *, has been used. The derivation of the predicted
frequency and decay rate of the fast and slow waves in a viscous, resistive fluid is complicated. The analytic expressions can be
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obtained only up to the first order of u, {, and #, in the limit

Po

u

k,

¢

—k, and lk<c,, Cas C
Po Po

a condition usually satisfied. The resulting decay rate for fast waves is

k2
I'i=———-
)
while the decay rate for slow waves is
k2
=35> 2
2(cs —c3)

for the decay of fast waves and

for the decay of slow waves.

|

7
c}(

TS )
__+.__.+ p—
300 po !

PoPo  “\3p0  Po

., Of a,

B} p 2<1 I C) 2<u ) 2<7u
— =+l —+= )+ —+n)-cY s+
I:Po Po A 3P0 Po Po 3 po

As in the case of Alfvén waves, we define Reynolds numbers,

87!26[
f
8n2c,
R=Tr

Po

ML
Po

B n cz<l£+£>_az<_ﬂ_+,1>],
)]
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(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Figure 3 shows an example from a 32 x 32 cell test of the decay of a linear wave, an Alfvén wave in this case. In most calculations,
including this one, the decay pattern fits well to an exponential form, giving well-defined decay rates.
In Figure 4 the normalized decay rates and Reynolds numbers in the tests using Alfvén, fast, and slow waves are plotted as a
function of the number of cells spanning the length L. Good fits of the form I' oc n_ 2 and R oc n2, are possible, confirming that our
code has second-order accuracy. Ryu & Goodman (1994) carried out analogous tests for the hydrodynamic TVD code by
examining the decay of two-dimensional sound waves and plane shear flows (Ryu & Goodman 1994). Those tests also produce a

v,

6B,

.01

.01

T T T T T T17]

T

i N e

t

FI1G. 3.—Time evolution of the spatially root mean square z magnetic field, (6B2»*/2, and z-velocity, (6v2)'/2, in the test of the decay of a two-dimensional Alfvén
wave. An initial Alfvén wave has been set up in a stationary background, and the decay has been followed in a numerical calculation using 32 x 32 cells. See text for

details.
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FiG. 4—Normalized decay rates, I'y L/c,, 'y L/c,, and I'; L/c,, and the Reynolds numbers R (see text for definition) vs. resolution (number of cells spanned by the
box size L) in the tests of the decay of two-dimensional Alfvén, fast, and slow wave. Standing waves have been set up in a stationary background, and the decay rates
have been measured during their oscillation. The calculations have been done using 8 x 8, 16 x 16,32 x 32, 64 x 64, 128 x 128, and 256 x 256 cells and a Courant
constant of 0.6. See text for details. For comparison, dotted lines with ("'L/c,) oc n_,j and R oc nZ,,, are drawn.

numerical Reynolds number that scales as R oc nZ,,. In the case with a relatively strong field examined here [the plasma f =
Po/(B3/2) = 2], the numerical Reynolds number that applies to a particular number of cells is, on average, roughly 20-30 times
smaller than that in the hydrodynamic TVD code.

However, the amount of numerical dissipation also depends on background configuration, especially on background field
strength in MHD codes. So we have followed the decay of a fast wave in a background with different magnetic field strength (B,).
The fast wave becomes a sound wave if B, = 0. We have used B, = 10, 3, 1, 0.3, 0.1, 0.03, 0.01 0.003, 0.001, and 0 (so f =2 x 1072,
...,2 x 105, and o) with 128 x 128 cells. For B, = 0, the hydrodynamic TVD code has been used (Harten 1983; Ryu & Goodman
1994). Except for By, the background configuration is same as that used in the test in Figure 4. Figure 5 shows the resulting
normalized decay rate and Reynolds number as functions of 8. Here the normalized decay rate is biggest around = 1, which is the
case of the test in Figure 4. The reason the normalized decay rate is decreased with decreasing f for § < 1 is that the fast wave speed
increases faster than the decrease in the decay rate. The decay rate in the MHD TVD code converges as f goes to co. But still it is
significantly larger than that in the hydrodynamic TVD code. This is because the MHD TVD code does not reduce exactly to the
hydrodynamic TVD code even if B = 0. There are seven characteristic fields in MHD, and five characteristic fields for hydrody-
namics are recovered by combining them properly, as was described in Ryu & Jones (1995). This procedure puts in some additional
numerical diffusion.

The above tests mean that to reach an inertial range simulations of MHD turbulence, especially with strong field (8 ~ 1), would
need to resolve fine structures with more cells than those of hydrodynamic turbulence. That could be an important aspect of such
calculations. We suspect that this will be a common property of many numerical schemes, but are not aware of any previously
published tests that address the issue. Computations primarily concerned with MHD shocks, however, can be conducted with
similar resolutions to those for hydrodynamic shocks. Numerical dissipation measured in this subsection influences smooth flows
only, and shocks, especially strong shocks, are resolved in the MHD TVD code as sharply as in the hydrodynamic TVD code.

3.3. The Kelvin-Helmholtz Instability

To evaluate a numerical method’s potential for practical problems, it is essential to test its ability to simulate complex, fully
two-dimensional flows. We present two sample test problems that include some challenging properties, such as strong shear and
obliquely intersecting shocks. The first test involves an unstable, compressible shear layer, i.e., the compressible MHD Kelvin-
Helmbholtz instability. To make this test as clean and decisive as possible, we have chosen as initial conditions a smoothly sheared
flow with linear, eigenmode perturbations that have precisely known solutions (Miura & Pritchett 1982).
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FIG. 5—Normalized decay rate, I'L/c, and Reynolds number R vs. plasma f in the test of the decay of a two-dimensional fast wave. A standing wave has been set
up in a stationary background, and the decay rate has been measured during its oscillation. The calculations have been done with the MHD TVD code for B, = 10,
3,1,0.3,0.1,0.03,0.01, 0.003, and 0.001, using 128 x 128 cells with a Courant constant of 0.6. For B, = 0, the calculation has been done with the hydrodynamic TVD
code, and its result is indicated with dotted lines. See text for details.

Initial equilibrium configurations exist in which the magnetic field lines lie in planes of constant velocity. For perturbations of this
with associated wavevectors parallel to the equilibrium velocity field, the dynamical role of the magnetic field depends on the angle
between the field and the wavevector. If the field is perpendicular to the wavevector (that is, out of the computational plane in a
two-dimensional simulation), the field can only be compressed in perturbations, not stretched, so the perturbation behaves quali-
tatively like a gasdynamic flow. A much more interesting case for our purposes begins with the magnetic field parallel to the flow,
since perturbations then bend and stretch field lines. We have actually tested both cases, but here present only the latter case.

Following Miura & Pritchett (1982), we can describe a perturbed equilibrium state as

p(x9 Vs t) =po + 6p(x’ ys t) B Ux(x9 Y, t) = on(y) + 5vx(x, Y, t) s vy(x, Y, t) = 5vy(x, Y, t) ’
B.(x, y,t) = B,y + 0B(x, y, 1), By(x, y, t) = 6B(x, , t), (3.17)

p(x> Ys t) = po + 6p(x’ Y, t) B DZ(X, Ys t) = Bz(x, Y, t) =0,
where the equilibrium velocity profile V,(y) is given by

—0.5L
Vi) =~ tanh (%) : (3.18)

and the equilibrium gas density and pressure along with the magnetic field are uniform. The length, h, measures the thickness of the
shear layer.

The flow is defined an a square computational box with x = [0, L], y = [0, L]. The box is assumed to be periodic in the
x-direction and has reflecting y-boundaries. Each of the perturbed quantities takes a form

of (x, y, 1) = f(y) exp (ikyx + icot) , (3.19)

where k, = 2n/L and f(y) is a complex function found by numerically integrating the linearized versions of equations (2.1)-(2.4) (see
Miura & Pritchett 1982). In practice it is most convenient to define these quantities in terms of the perturbed total pressure, p*. To
obtain that quantity, we integrated from one of the y-boundaries to the midplane and assumed antisymmetric and symmetric
continuations through the midplane for the real and imaginary parts, respectively. Further details of the method, including
boundary conditions, can be obtained from the Miura & Pritchett paper. From symmetry the real part of the frequency w is zero in
the computational reference frame. The imaginary part, or growth rate, T, can be obtained by iteration on the solution. For our
purposes it was sufficient to use values for I" obtained in this fashion and published in graphical form by Miura & Pritchett.
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Our test assumes p, = 1.0, po = 0.6 (sound speed a = 1), B, = 0.4 (Alfvén speed c, = 0.4), V, = 1.0. Thus, the sonic Mach number
of the flow is M, = 1 and the Alfvénic Mach number is M, = 2.5. We chose h = L/8r, which places the y-boundaries far enough
from the strongly sheared flow to produce minimal boundary effects during the linear phase of the stability. The linear growth rate
for this mode is I' = 0.68¥,/L. For the test shown we began with a perturbation such that | §p*(y = L)| = 0.001p¥. That carries peak
perturbations | 5p* | = 0.058p# and | 6v, | = 0.07V,,.

Figure 6 illustrates the early growth of the perturbation as measured by the root mean square transverse velocity, N
normalized to the initial value. Results determined from simulations with three resolutions, 128 x 128, 256 x 256, and 512 x 512
cells, are shown along with the predicted, exponential growth curve. After an initial transient, the simulated instability grows at the
expected rate for t ~ 1/T, before saturation becomes significant. The transverse velocity saturates at larger values in the higher
resolution calculations, presumably because the effects of numerical dissipation are reduced.

In Figure 7 (Plate 23) we present images of the 512 x 512 simulation at ¢ = 1.4/T". Dynamically this time is close to the earlier time
shown in Figure 4 of Miura (1984) for a simulation of the same problem. Flow properties are apparently very similar, although ours
is of higher resolution and shows much finer detail. The quantities shown in Figure 7 here are (left to right and top to bottom) p,,
(magnetic pressure), p (gas pressure) and magnetic field lines (contours of vector potential A4,). The simulation figure has captured
the development of an intense magnetic field region left of center on the grid and shows clearly how gas is excluded from that
structure. Not obvious in this view, but apparent in displays of the flow velocity, is a nascent vortex just to the right of center.

3.4. The Orszag-Tang Vortex

In the final test we have followed the formation of the compressible Orszag-Tang vortex. The problem was originally studied by
Orszag & Tang (1079) in the context of incompressible MHD turbulence, and was later extended by Dahlburg & Picone (1989) and
Picone & Dahlburg (1991) to compressible MHD turbulence. Zachary et al. (1994) applied this problem to test their code. We have
used this problem to demonstrate the robustness of our code in handling problems involving multiple shocks and their collisions
and also to compare our code, at least qualitatively, with the code by Zachary et al. (1994) in a complex, albeit two-dimensional,
MHD flow.

The test has been set up with the initial velocity and magnetic field given by

v = vo[ —sin 2ny)® + sin 2nx)p] , (3.20)
(3.21)

with vy =1 and B, = 1/,/4n. Both the velocity and the magnetic field contain similar x-points, but they have different modal
structures. The background density and pressure have been assumed to be uniform, with values fixed by

B = By[ —sin (2ny)% + sin (4nx)p] ,

2o _Y 322

(ypo/Po) 322
__bo _10

/3=(Bg/2) =3 (3.23)

with y = 5/3. The calculation has been done in a periodic box with x = [0, 1] and y = [0, 1] using 256 x 256 cells.

3= |

512x512

256x245

128x128

= L1 1 | | I R | I

1.5

FiG. 6.—Evolution of the spatially root mean square transverse velocity {v}>'/? in the MHD Kelvin-Helmholtz instability. The results of simulations at three
different resolutions are shown: (dash-dotted lines, 128 x 128; dashed lines, 256 x 256; solid line, 512 x 512). Initial conditions, which involve eigenmode pertur-
bations on a smoothly sheared flow of uniform density and pressure, are described in the text. Time is expressed in units of the predicted linear growth time, I'~!. The
dotted line represents the predicted linear growth of the instability. The transverse velocity is normalized to the initial perturbation.
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PLATE 23

FiG. 7—Gray-scale images of the MHD Kelvin-Helmholtz instability. These images were taken from the high-resolution (512 x 512) simulation at ¢ = 1.4/T.
Quantities shown (left to right and top to bottom) are gas density, magnetic pressure, gas pressure, and magnetic field lines (contours of vector potential 4,).

Ryu, JonEs, & FRANK (see 452, 795)
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Figure 8 (Plate 24) shows the gray-scale images of gas pressure, magnetic pressure, as well as compression V - v and vorticity
(V x v),, at time ¢t = 0.48. The overall flow structure indicates that the gas pressure and the magnetic pressure are anticorrelated,
resulting in the smoother total pressure, except in the postshock flows where both the gas and the magnetic pressures increase
sharply. The V - v plot traces the loci of many shocks, which are interacting with each other. Usually shocks, especially strong
shocks, are resolved sharply within 2-3 cells. The (V x v), plot demonstrates the existence of many fine sheared structures that are
not visible in other plots. Even though we have neither used exactly the same initial conditions nor made plots at exactly the same
epoch, the images show that the overall shape and dynamics match closely those in Dahlburg & Picone (1989) and Zachary et al.
(1994).

4. SUMMARY

In this paper we have described a multidimensional numerical code to solve the ideal MHD equations. It is based on an explicit
and conservative finite-difference scheme on an Eulerian grid, called the TVD scheme (Harten 1983). The TVD scheme is a
second-order—accurate extension of Roe’s upwind scheme (Roe 1981). We previously developed and tested a one-dimensional
version of the code (Ryu & Jones 1995) and carried out some successful applications, as described in § 1. The multidimensional
extension has been done through a Strang-type directional splitting (Strang 1968). The constraint V - B = 0 has been enforced
exactly by calculating a correction via a gauge transformation at each time step.

We have carried out a number of tests of the method using a two-dimensional Cartesian grid to demonstrate its robustness. From
shock-tube tests we find that the method successfully captures all types of MHD discontinuities. It captures strong, fast-mode
shocks generally within 2-3 numerical cells, while weak, slow-mode shocks may spread over more cells. Other discontinuities, such
as rotational discontinuity, contact discontinuity, and tangential discontinuity, generally require more cells for containment too. We
tested the diffusive and dissipative properties of the code of examining the decay of three types of linear MHD waves. From this we
conclude that to bring turbulent flows within an inertial, nondissipative range requires that important structures exceed ~ 50 cells.
To examine the ability of the code to correctly follow complex multidimensional MHD flows, we carried out simulations of the
evolution of an unstable shear flow and also followed the evolution of the Orszag-Tang vortex. In both cases our results agree with
previously published behaviors.

The method is reasonably fast. Our current version of the code runs at about 400 Mflops on a Cray C90 processor, so that about
10° two-dimensional zones can be updated per second.

These properties seem to make the code an attractive method for solving practical problems involving MHD flows in astro-
physical contexts. It is reasonably accurate and robust, with small enough numerical diffusivity that meaningful solutions to a
variety of two-dimensional problems ought to be achievable with it, using only modest computational resources by today’s
standards.
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PLATE 24

FI1G. 8.—Gray-scale images of gas pressure (upper left), magnetic pressure (upper right), V - v (lower left), and (V x v), (lower right) in the compressible Orszag-
Tang vortex test. White indicates the regions with high (or positive) values, and black indicates the region with low (or negative) values. The calculation has been
done in a periodic box with x = [0, 1] and y = [0, 1] using 256 x 256 cells and a Courant constant of 0.6. The initial configuration has been set with p = 25/367
p = 5/12n,v = —sin (2ny)% + sin 2nx)p, B = [ —sin 2ny)% + sin (4nx)ﬁ]/ﬁ, and y = 5/3, and the plot shown is at t = 0.48.
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