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ABSTRACT

It is shown that the requirements of self-consistency constrain the functional form of the turbulent dynamo
field in an incompressible plasma. These requirements involve the back-reaction of the magnetic field through
the Lorentz force in the momentum equation and the conservation laws of magnetohydrodynamic turbulence.
The dynamo field is calculated in the weak-field limit when the turbulence is isotropic, as well as in the
strong-field limit when the turbulence is anisotropic. For magnetic fields of a nontrivial topology, it is shown
that the results of kinematic dynamo theory are strongly modified by the production of hyperresistivity (in the
mean-field induction equation) which is left as a remnant after a near-cancellation between the alpha and beta
effects. An interpolation formula for alpha quenching, encompassing weak-field and strong-field regimes, is

proposed.
Subject headings: MHD — plasmas — turbulence

1. INTRODUCTION

The dynamo effect has been invoked as a mechanism for the
generation and sustainment of astrophysical magnetic fields.
The most well-developed branch of dynamo theory is the kine-
matic dynamo theory, which has been comprehensively dis-
cussed in several existing monographs (Moffatt 1978; Parker
1979; Krause & Ridler 1980; Zeldovich, Ruzmaikin, & Sokol-
off 1983). Kinematic dynamo theory is essentially concerned
with the question of growth (or decay) of a magnetic field B,
given a velocity field ». The magnetic field is assumed to obey
the induction equation of resistive magnetohydrodynamics
(MHD),

B
-6—=Vx(va)+t1VzB,

ot )

where 7 is the resistivity of the conducting field. In turbulent
systems, we can separate the variables B and v into an averaged
part and a fluctuation, i.e.,

B=(B>+J3B=B,+JB, (2a)

v=_{v) +v=0vy+ v, (2b)
where {6B) = {dév) = 0. The angle brackets represent either
an ensemble average or an average over the small-space and
fast-time scales of the fluctuations. Averaging equation (1), we
obtain

08,

Py =V x(vyx B))+V x&+nVB,,

©)

where

& = (bv x 6B) @

is the turbulent dynamo field. Subtracting equation (3) from
equation (1), we obtain an exact equation for the magnetic field
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fluctuation:

%6B=Vx(vox5B+5vao)+11V2(SB

+ [V x (90 x 6B) — <6v x B>]. (5)

In the “first-order smoothing” or “ quasi-linear ” approxima-
tion, the term in brackets on the right-hand side of equation (5)
is neglected. The advantage of making this approximation is
that it yields a linear equation for the fluctuation 6B, i.e.,

£6B=Vx(vox5B+6vao)+nV26B.

ot ©)
Equation (6) can be easily inverted to give 6B. If v, is a con-
stant, then it can be eliminated by a Galilean transformation.
For turbulence that is isotropic but not reflectionally sym-
metric, one then obtains from equation (4) the well-known
result (Moffatt 1978; Parker 1979; Krause & Rédler 1980;
Zeldovich et al. 1983)

&=ayBy— foJ,, Y]
where

oy = —§<5v-5w>, @®)

Bo=75 <100l , ©)

and 7 is an approximate eddy correlation time. Whereas the
ag-effect can amplify a seed magnetic field, the B,-effect
enhances the diffusion rate, typically to values much larger
than that due to the classical resistivity #. The violation of
mirror symmetry, a requirement for the ag-effect, can occur
due to the effects of natural cyclonic and nonuniform rotation
on both small and large scales. If v, is not spatially uniform, it
cannot be eliminated by a Galilean transformation and leads
to the so-called Q-term in the mean-field induction equation
(Moffatt 1978; Parker 1979; Zeldovich et al. 1983). If we write
the mean magnetic field as the sum of a poloidal and a toroidal
component, the Q-term can generate a toroidal component
from the poloidal component. The a,-term, on the other hand,
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regenerates the poloidal field from the toroidal component due
to the effect of small-scale turbulence. In this paper, we focus
on the aq-effect, which is the heart of the mean-field amplifica-
tion process.

From the inception of turbulent dynamo theory, it has been
widely realized that the kinematic dynamo models are incom-
plete. If a weak seed magnetic field is amplified exponentially in
time, the back-reaction of the magnetic field on the turbulent
flow that generates it must eventually be taken into account
and may alter qualitatively the predictions of kinematic
dynamo theory. This realization gives rise to two important
questions: first, what is the approximate magnitude of the
mean magnetic field for which the kinematic theory ceases to
be valid, and second, what happens to «, and f, when the
kinematic theory no longer applies?

An answer to the first question might be that kinematic
dynamo models will be invalid roughly when the energy of the
mean magnetic field and the kinetic energy of the characteristic
tubulent flow reach equipartition. It turns out that this answer
is not supported by theory at the present time. This is because
of the “ Alfvén effect,” a process by which the small-scale mag-
netic fluctuation energy reaches equipartition with the energy
of the turbulent flow long before the large-scale magnetic field
has picked up enough energy to reach equipartition with the
turbulence (Pouquet, Frisch, & Leorat 1976). If one uses the
simple estimate (Zeldovich 1957) (for which there is no rigor-
ous justification in three dimensions),

(8B*>'? ~ R,/’B,, (10)

where R,, is the magnetic Reynolds number, the Alfvén effect
constrains the large-scale field B, by the inequality (Cattaneo
& Vainshtein 1991; Vainshtein & Cattaneo 1992),

27172
B, < U 47p ' (1)

RI?

Since R, typically varies from 10° in stellar plasmas to 10** in
galactic plasmas, Cattaneo & Vainshtein claim that the
inequality (11) severely restricts the magnitude of B, for which
the predictions of kinematic dynamo models hold.

A different point of view, but one that also casts doubt on
the validity of kinematic dynamo theory, is developed by
Kulsrud & Anderson (1992). They note that in order for mean-
field dynamo theory to be successful, it is important that the
small-scale fluctuations be subdominant to the growing mean
field. Unfortunately, they find the opposite to be the case in
their calculations: there is much more energy on small scales
than large, and the mean field generated by the kinematic
dynamo effect is completely overwhelmed by the faster
growing magnetic fluctuations. Thus, the “dynamo field
quickly becomes unobservable under such conditions and the
kinematic approximation fails before the mean field grows
significantly ” (Anderson & Kulsrud 1993, p. 1).

If we accept inequality (11) as the regime of validity of the
kinematic theory, the next question is what happens to a, and
Bo when the kinematic approximation breaks down. In this
paper, we attempt to answer this question by going beyond the
kinetic approximation and imposing the constraints of self-
consistency. We consider magnetic topologies that are more
general than currently available models of x-quenching. (See,
e.g., Riidiger & Kichatinov 1993 and references therein, which
assume that the mean magnetic field is uniform in space.) The
standard result (7) is contained as a “weak-field ” limit of our
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results. In the “ strong-field ” limit, we show that

B Jy * B

&)= B—g V- <x2V _OE(Z,—O> : (12)
where J, = V x B, and x? is a positive definite functional. The
form of equation (12) is popularly known as “ hyperresistivity;”
it conserves magnetic helicity and dissipates magnetic energy
(Boozer 1986; Bhattacharjee & Hameiri 1986; Strauss 1986).
We demonstrate here that for magnetic fields of nontrivial
topology, hyperresistivity is left as a remnant after a remark-
able near-cancellation between the a- and f-effects of kine-
matic dynamo theory.

The following is the plan of the paper. In § 2, we discuss the
“weak-field ” corrections to kinematic dynamo theory due to
self-consistent dynamics. In § 3, we consider the “strong-field ”
limit in which the turbulence is strongly anisotropic. Though
the results obtained in §§ 2 and 3 hold in different asymptotic
regimes, we suggest that it is possible to interpolate between
those regimes to obtain a form for &, that contains both
asymptotic limits. In § 4, we give a derivation of the expression
(12), using quasi-linear theory. We conclude in § 5 with a
summary and a brief discussion of the implications of our
results.

2. SELF-CONSISTENCY: THE WEAK-FIELD LIMIT
From the induction equation
0B
E+Vx(ql—va)=0, (13)

we can obtain the equation for the vector potential
AB =V x A):

A
%+n1—vx8=—v¢. (14)

Here ¢ is a scalar function. Taking the scalar product of equa-
tion (13) with 4 and equation (14) with B, and adding the
results, we obtain

a%(A-B)+2nJ-B+V-<2ExA+%xA>=O, (15)

where E = nJ — v x B. Averaging equation (15), we obtain

0 0
E(AO * By) +a (64 * 6B) + 2uJ, - B,

+2n¢3J - B> +V - (250 x Ay + 2(3E x 54>

oA, 054
+= xA0+<7x5A>>=o. (16)

An alternative form for d/0t(A4, * B,) can be obtained by using
the averaged form for equation (14),i.e.,

04,

=t 1o —v0 % Bo— & = =V, (17
and the averaged form for equation (13), 1.e.,

0B

a—to+Vx(nJo—voxBo—é")=0. (18)
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We take the scalar product of B, with equation (17) and 4,
with equation (18) and add the two equations. The result is

0
3 o " Bo) +2nJo * By — 28, * B,
0A
+V-<2onAo+6—t°xA0)=0, (19)

where E, =nJ, — vy x By — &. Subtracting equation (19)
from equation (16), we obtain

1
&-B,= —«51-53)-5%(&1 - 5B)
-v- <<5E x 54> +% <aj—:’ x 6A>) ., (20)

which reduces to
& B, = —n{dJ * 6B) + {OE - 6B) . (21

Equation (20) was derived by Bhattacharjee & Hameiri
(Bhattacharjee & Hameiri 1986; Hameiri & Bhattacharjee
1987) in their study of the dynamo effect in laboratory plasmas.
Equations (20) and (21) are both exact relations and impose
constraints on the allowable functional forms for &. (In deriv-
ing eq. [21], we have assumed, for simplicity, that the oper-
ations of spacetime differentiation and ensemble averaging
commute.)

The back-reaction of the magnetic field on the turbulence
that generates it modifies the kinematic relations (8) and (9). In
the weak-field regime, when the turbulence can be regarded as
isotropic, it has been shown (Pouquet et al. 1976; Vainshtein
1980; Zeldovich et al. 1983; Gruzinov & Diamond 1994) that
the relation (7) changes to

& ~aB, — pJ,, (22)
where

__z <<5,, ey — L (5T - 5B>> . (23)
3 p

Vainshtein reports that f = 28, for incompressible isotropic
turbulence. However, if the effect of the perturbed pressure is
taken into account, then it can be shown that

B =Bo (24)

(Avinash 1991 ; Gruzinov & Diamond 1994).
From equations (21) and (22), we obtain

1<6J - 5B = —aBZ + BJo - By + (OE - 5B) .  (25)

Equation (25) should be compared with equation (9) of Gruz-
inov & Diamond (after a typographical error in eq. [9] of
Gruzinov & Diamond is corrected). Gruzinov & Diamond
maintain that their relation #<éJ - 6B) = —aB2 + BJ, - B, is
an exact expression, but this is not so because it omits the last
term in equation (25). It is this last term that yields hyper-
resistivity in the strong-field, anisotropic regime. Eliminating
{8J - 6B) between equations (23) and (25), we obtain

gt (t/3pn)BJo * Bo + {OE - 4B))
1 + (/3np)Bj '

In the limit (t/np)B3 < 1, equation (26) gives a =~ ay, the kine-
matic result. (The second and third terms in the numerator of
eq. [26] are much smaller than o, in this limit.)

(26)
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We have not shown that equation (26) continues to hold in
the strong-field regime, which is the subject of § 3. However, in
anticipation of the results derived in §§ 3 and 4, we heuristically
take the limit (t/7p)B3 > 1 of equation (26). We obtain

Jo B, 1
azﬂ"—%hB—g@E-am. (27)

Substituting equation (27) in equation (22), we obtain

Jo-B, 1
a=<ﬂ°B—g°+B—%<5E-aﬂ>>Bo—ﬁJo, (28)

B
= —BJo, + B—% (SE - 5B . (29)

The first term on the right-hand side of equation (29) is perpen-
dicular to B, and does not contribute to & . Thus a significant
cancellation has occurred between the S-effect (third term in
eq. [28]) and (a part of) the a-effect (first term in eq. [28]), to
yield

B
& = B—% (SE - B) . (30)

In §§ 3 and 4, we will demonstrate that equation (30) has the
functional form of equation (12) in the strong-field limit.

3. SELF-CONSISTENCY: THE STRONG-FIELD LIMIT

As a large-scale magnetic field B, grows in strength, the
turbulent velocity field adjusts itself to the growing anisotropy
induced by B,. To motivate the results that follow, we begin
with a simple discussion of the main physical consequences of
this growing anisotropy. For this purpose, neglecting col-
lisional dissipation, we write the linearized equation for the
fluctuating vector potential

%(M:&vao—V&qb, (31)

which can be resolved into parallel and perpendicular com-
ponents:

0

5 A= —-V100, (32
0
=34, =60 x By— V.84 . (33)

Hence, we have

£=<5vaxjdt@>,
ot
= <5v x V x Jdt(év x B, —VL5¢)>

+ <00 x V x (34, b)), (34)

where b = B,/B,. The plasma beta, defined by f, = 2p/B?, is a
convenient parameter with which we can track the growth of
the magnetic field (for fixed p). As discussed later in this section,
for very large By, the perturbed quantities 64,, v, and oJ,
are very small. Then equation (33) reduces to

50 x By ~V, 66 . (35)
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When equation (35) holds, the first angle bracket on the right-
hand side of equation (34) is nearly zero. Then the second term
in equation (34) can be written, for incompressible plasmas, as

B
& =— B—g V - (BybA; v, . (36)

Equation (36) is a local relation, and the averaged terms under
the divergence operator cannot be omitted in general by
appealing to boundary conditions. We shall demonstrate that
relation (36) (which is equivalent to the relation [30]) even-
tually leads to the functional form of equation (12).

Equation (36) can be derived in a more formally rigorous
way by introducing a f,-ordering on the self-consistent
resistive MHD equations. For fusion plasmas, this procedure
was first developed by Rosenbluth et al. (1976) and Strauss
(1976), but a pedagogically more satisfactory derivation for
astrophysical plasmas is given by Zank & Matthaeus (1993),
who delineate three regimes f,> 1, f,~ 1, and B, < 1. We
will use these regimes to classify the three cases of weak, mod-
erate, and strong magnetic field, respectively. The case §, > 1
is described well by fully three-dimensional, incompressible
resistive MHD equations, and the turbulence is nearly iso-
tropic. The results of § 2 pertain to this case. In the cases , ~ 1
and B, <1, the growth of B, leads to the development of
anisotropy. Assuming, for simplicity, that B ~ B, = constant
to leading order, Zank & Matthaeus (1993) demonstrate for-
mally that the effect of this large-scale field is “to introduce a
preferred direction into the system that manifests itself by
reducing the ‘dimensionality’ of the underlying incompressible
description.” Using a small parameter € which is equal to the
Alfvén Mach number M, = vo/V, = vo(po)'/*/B,, Zank &
Matthaeus derive, for §, ~ 1, the system of equations

V,'v,=0, V,-B, =0, 37
0 B?
a+vL'VJ. v, = -V, P+_2° + (B, V,))B,, (38)

0
<E +o - VJ.)BJ. =(B, V), +1nV’B,_, (39)
where B= B, + B, % and v = v, to leading order. In this ord-
ering, 4, and v are zero to leading order, as asserted earlier.
It is then possible to write v =V, ¢(x, y, t) x £, where ¢ =
—¢/Boand B, =V, A(x, y,t) x b. Hence, we have

B
&, = (ov x 5By, =B—§v (=B, v, 64>
0

= B—g V- (B,d$JB,), (40)
Bj
which is identical to equation (36).
In the next section, we will use quasi-linear theory to show
that equation (40) has the form of equation (12), with x? related
to the spectrum of fluctuations.

4. DERIVATION OF HYPERRESISTIVITY FROM
QUASI-LINEAR THEORY

We introduce Elsasser variables Z* = B, /p}/?> + v, and
Z~ = B, /py? —v,. Then, neglecting collisional dissipation
equations (37)—(39) can be combined to give

V,-Z*=0, V,-Z =0, 41)
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0 . _ "
aZ ~Z -V, Z'=-V,P,, (42)
and
J . _ + _
EZ +Z*-v,Z" =V,P,, (43)

where P, = p/po +(Z* + Z~)?/8. Hereafter, we set py = 1.
We assume that (B) = B (x)y + B, Z and that the inhomoge-
neity depends only on x. Since 6B, = VoY x b (where Ay =)
and ov, = Vé¢ x b, we have

0Z* =VE, xb, 6Z-=VE_xb, (44)
where &, = 8y + 0¢ and &_ = 8y — 6. Then the turbulent
electromotive force & can be written as

& = (v, x 6B, =§V “(ELOZ™ —E_SZFY . (45)
We Fourier-analyze along y- and z-directions, and write
1
£, 0Z = E i (X, D0Z 4 A%, t
+ (27t)2 ky,kygsz,k,' +kyk ky'k ( )

x exp [i(k, + ky)y — ik, + k;)z]

~ s T Eonn o 002205 ) 6)
where * denotes complex conjugation. Similarly, we have
E_0ZF ~ (2:!)2 g & (X, DOZEH(x, 1), 47)
where k = (k,, k.). From equation (44), we obtain
Vi, =b-VxdZ*, (48)
which gives

Ern=ki%b - [ik x 8Z;(x, 1) + V X 6Z}(x,t)] . (49)
Similarly, from
V2E_=b-VxdZ, (50)
we obtain
E_p=ki%b [ik x 6Z(x, )+ V x 6Z;(x,t)]. (51)

It is clear by inspection of equations (45), (48), and (51) that in
order to compute &, we need a renormalized turbulence theory
to deal with the nonlinear terms Z~ - VZ*, Z* -VZ~, and
(Z* + Z7)? in equations (42)—(43). For simplicity, in order to
keep the underlying physics as transparent as possible, we
choose to use the quasi-linear approximation, neglecting
mode-coupling effects. The linear propagators in our deriva-
tion can be shown to be broadened by nonlinear effects
(Strauss 1986; Tetreault 1989). In the quasi-linear approx-
imation, equations (42) and (43) yield

<2% —<Zy- V>6z+ =62" V2, ()

(g +4(Z*) -v>5z- =-06Z"-VKZ7), ()

where we have used the condition dp + (B) + 6B = 0, valid for
a wide class of resistive modes (see, e.g., Hameiri & Bhatta-
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charjee 1987). In Fourier space, equations (52) and (53) give
0 ik {<Z™),|0Z} =62, -V (Z* 54
5; —1 y< >y kK = k J_< > ( )

and

(% + ik,<z+>y>52.: =—0Z; -VXZ5, (5

respectively. Equations (54) and (55) can then be easily
inverted. Formally, we write

8Z) =Gy oZ; -V(Z*) (56)
and
0Zy = —GJoZ} -V(Z™ ), 57
where G;f are the Green’s functions, given by
Gi =t ik<Z*))7". (58)

Using equations (56) and (57) in equations (49) and (51), respec-
tively, we obtain

Eon > K[2Gy6Zy VI )) (59)
and

Eoum —K[2GHOZE -V | (60)
Substituting equations (59) and (60) in equation (45), we obtain
gzg;gV-K-V('IOB;(ZF’), (61)

where

BS & 25757 1 CFs7te st

= n? ‘é k%G 0Z, *6Z, + G O6Z *6Z]). (62)

An equation similar to equation (62) has been derived earlier
by Tetreault (1989) in the context of MHD clump turbulence in
toroidal plasmas, confined by a strong toroidal field B,,. If the
fluctuations are dominated by one component orthogonal to
B, (say, the x-component) which is a case of considerable
physical interest, then equation (61) can be approximated by
the functional form of equation (12). We note that equation
(12) obeys the integral relations,

j & Bydr = J;&V(""—f"’) -da, (63)
| 4 S BO

Jo - By |?
Jé” < Jodr = ~f KZI:V(O—ZO>] dr
v v Bj

J, * B, J,* B,
2f Jo * Bo o Do
+ LK < B )V( B2 )dr N (64)

where S denotes the surface of V. The physical significance of
equations (63) and (64) is clear: the turbulent dynamo field &
neither creates nor destroys helicity in any volume V but dissi-
pates energy (Boozer 1986, 1993; Bhattacharjee & Hameiri
1986) within the volume. (If the dynamo field would have
created or destroyed helicity, there would have been a volume
term in eq. [63]. There is a volume term in eq. [64], and it is
negative definite, representing dissipation.)

and
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We discuss the physical implications of the calculation given
above in the context of astrophysical plasmas. In the presence
of a large-scale background magnetic field B,, the plasma tur-
bulence is envisioned to be a bath of Alfvénic fluctuations.
Indeed, if we set the right-hand side of equations (52) and (53)
to zero, we obtain uncoupled Alfvén wave fluctuations which
obey the relation dv = +6B. Observations of incompressible
MHD turbulence in the solar wind (see, for instance, Belcher &
Davis 1971; Burlaga & Turner 1979) indicate a tendency of
alignment or anti-alignment between the fluctuations év and
0B. Dobrowolny, Mangeney, & Veltri (1980) have shown from
considerations of the inertial range of the turbulence (ignoring
source or dissipation terms) that this tendency is a general
consequence of the dynamical relaxation of self-consistent
MHD turbulence if the initial excitation favors one type of
Alfvén fluctuation (+ or —). It should be emphasized that
alignment (or anti-alignment) is merely a tendency and not
realized in practice. (If this asymptotic state were realizable,
then according to eq. [23], « would be exactly zero.) However,
the tendency in itself is indicative of the fact that & calculated
by the kinematic theory will be strongly reduced by the Alfvén
effect. In the neighborhood of the asymptotic state, one expects
nonlinear mode-coupling effects to be weak (Dobrowolny et al.
1980). There are many Fourier modes in the turbulent bath,
and quasi-linear theory, which sums over the modes but
neglects nonlinear mode-coupling effects, is a reasonable first
approximation. In the context of this physical picture, our cal-
culation shows that when the two types of propagating Alfvén
wave fluctuations are coupled by the terms on the right-hand
side of equations (52) and (53), we obtain the result (61) in
which hyperresistivity is left as a remnant after a near-exact
cancellation between the alpha and beta effects of the kine-
matic theory.

Before we conclude this section, we draw the attention of the
reader to an instructive discussion of the Alfvén effect in
Biskamp’s recent monograph (Biskamp 1993). Biskamp gives a
qualitative discussion of the importance of hyperresistivity in
the context of MHD turbulence and the inverse cascade phe-
nomenon that underlies the conservation of magnetic helicity.

5. CONCLUSIONS

In this paper, we have examined the constraints imposed by
self-consistency on the turbulent dynamo in the weak-field as
well as strong-field regimes. Synthesizing the results of §§ 2—4,
we propose the interpolation formula

T J, - B
= — 1| BJ. B V - 2y 220
* {“°+3M[B° oF KV( B3 )]}
X 1+—B} . 65
3n B3 (63)

As demonstrated in §§ 2 and 3, when equation (65) is substi-
tuted in equation (22), there is a near-cancellation between the
o- and B-effects, and in the strong-field limit, we are left with
the functional form of equation (12) for &, known as hyper-
resistivity. Even though our derivation of hyperresistivity is
based on the quasi-linear approximation, we believe that the
functional dependencies of this term on mean physical vari-
ables is robust because it is consistent with well-known proper-
ties of three-dimensional MHD turbulence (Taylor 1974;
Pouquet et al. 1976; Matthaeus & Montgomery 1980; Boozer
1986; Bhattacharjee & Hameiri 1986). Hyperresistivity does
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not amplify either magnetic flux or energy. It can, for example,
convert toroidal flux to poloidal flux as long as the conversion
is consistent with helicity conservation and dissipates magnetic
energy in the process.

While these conclusions pose critical challenges for tradi-
tional turbulent MHD dynamo models, they do not negate the
relevance of the traditional theory for all astrophysical mag-
netic fields. The mechanism and affectiveness of the saturation
mechanism discussed in this paper may not apply in all circum-
stances, particularly if the mean magnetic field is very weak.
Thus, the galactic dynamo problem may require consider-
ations rather different from those relevant to the solar or plan-
etary dynamo. Field (1994) has recently given a useful
summary of the issues raised by recent criticisms of the
dynamo theory for galactic magnetic fields, and it is clear that

a final resolution of the problem of origin of galactic mag-
netic fields depends on reliable calculations of alpha and beta
over relevant timescales, after freeing “the classical theory
from having to assume the first-order smoothing approxima-
tion.” The present self-consistent calculation is a step in that
direction.

This research is supported by the Air Force Office of Scienti-
fic Research grant F49620-93-1-0071 and the National Science
Foundation grant ATM-9310157. We thank F. Cattaneo for
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cussions, S. Spangler for useful pointers to the literature. We
also thank an anonymous referee for constructive criticism
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