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ABSTRACT

In principle, the expansion of the universe can be harnessed to provide energy. In a gedankenexperiment,
energy is gained by connecting together widely separated bodies with strings. The tension and the energy
generated are calculated for single strings. Mining energy in an expanding universe in this way raises unre-
solved issues concerning the conservation of energy. Apparently, the tethered-body experiment delivers
“nascent” energy that previously did not exist in any identifiable and quantifiable form. It is argued that
energy in a homogeneous and unbounded universe, in general, is not conserved on the cosmic scale.

Subject headings: cosmology: theory — relativity

1. INTRODUCTION

In a unit of mass, nuclear reactions release energy ~ 10~ 2c2,
accretion disks around black holes release gravitational energy
~107!c2, but expansion of the universe in certain cosmo-
logical models—such as the “free-lunch” inflationary model
(Guth 1981)—can in principle release energy exceeding c2.
Where does this energy come from?

Photons traveling in expanding space between comoving
galaxies lose energy. This is the cosmological redshift effect (see
Harrison 1981), and the natural question is what happens to
the lost energy? Energy is conserved for the Doppler and
gravitational redshifts in spatially bounded systems, and in
these cases the “lost ” energy is manifest in identifiable alterna-
tive forms. But in a spatially unbounded homogeneous and
isotropic universe that conforms to the Robertson-Walker
metric, the lost energy fails to manifest identifiable alternative
forms. If we argue that the lost energy of individual photons
transforms into metric disturbances (i.e., deformations of the
Robertson-Walker metric), these disturbances, as they propa-
gate, will also lose energy because of the cosmological redshift.
The question now becomes, what happens to the lost energy of
the gravitational waves?

Uniform radiation, such as the cosmic background radi-
ation, is subject to the cosmological redshift effect, and in this
instance the adiabatic form of the first law applies, but leaves
unresolved the problem of the lost internal energy in an
expanding, homogeneous, and unbounded universe. Does the
energy totally vanish, or does it reappear, perhaps in some
global dynamic form? The tentative answer based on standard
relativistic equations is that the vanished energy does not reap-
pear in any other form, and therefore it seems that on the
cosmic scale energy is not conserved.

The possibility of mining energy in a de Sitter space has been
discussed by Davies (1984). Here I indicate how new energy in
a gedankenexperiment can be mined, either in unlimited
amounts in certain accelerating universes or in finite amounts
in decelerating universes, and argue that the energy gained is
“nascent ” in that it did not exist previously in any identifiable
form.

2. THE TETHERED BODY EXPERIMENT

Imagine a comoving body of mass m tethered by an inex-
tendable string of negligible mass to an unwinding mechanism
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located on a second comoving body of much larger mass at
distance L. Initially, with bodies comoving, the string unwinds
and increases in length at the rate L. = HL, in accordance with
the velocity-distance law, where H = R/R is the Hubble term
and R(t) is the scale factor. The experimenter on the larger
body applies tension to the string and reduces the recession
velocity of the smaller body. The tension in the string, from the
equation of motion and the Robertson-Walker metric, is

1 dyRU)

T=—
"R @

)

where U is the peculiar velocity of the smaller tethered body
in the comoving frame, y = (1 — U%/c?)”"/?, and the string
unwinds at the rate L = HL + U. When the peculiar velocity
reaches the value U = — HL, the tension vanishes in a deceler-
ating (but not necessarily an accelerating) universe, and the
energy E = [ TdL gained, assuming that R changes little
during the experiment, is

E ~ mc*{[1 — (HL/c)*]™"* — 1} ~ $m(HL)? , (V)]
for L < Ly, where Ly = ¢/H is the Hubble distance. If, now,
the tethered body is released (T = 0), it will eventually relax
back to the comoving state (U = 0) in accordance with equa-
tion (1). Thus the energy E released at the unwinding mecha-
nism, given by equation (2), derives from the expansion of the
universe, and, oddly enough, is created by increasing the
kinetic energy of mass m in the comoving frame by an amount
equal to E. In effect, the cosmic internal energy (in kinetic form)
increases, and an equal amount of mined energy is released at
the unwinding mechanism (in thermal or other form) and is
available for immediate use by the experimenter. This process
may be repeated, although not indefinitely, by detaching the
string, rewinding it, and reattaching it to a succession of co-
moving bodies.

A similar situation exists in stellar structure theory. In the
absence of nuclear reactions, the emission of luminous energy
is accompanied by an increase in internal energy (Eddington
1926), and both forms of energy are at the expense of gravita-
tional energy. In a uniform unbounded universe, however, the
explanation is much less obvious.
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In more detail, consider a body of mass m, at distance L,
from the experimenter, and a second body of mass m, in the
opposite direction at distance L,, and that both are connected
together by an inextendable string of length! L =L, + L,.
When the peculiar velocities are small compared with the
velocity of light c, the tension is

T = —m(l + qH?L), 3)

where m = mym,/(m, + m,) and ¢ = — RR/R? is the deceler-
ation term.? The string stays in tension when I, < —gH?L. In
the particular case when either L or L is constant, the tension is
positive in an accelerating universe of ¢ < 0 and negative in a
decelerating universe of g > 0. By unwinding the string at
either body at the rate L, the generated power is

E = —mi(L. + qH?L) . @

2.1. Nonrelativistic Solutions

Assume that the string unwinds at rate [ = aHL, hence
U= —(1 —o)HL, with a constant (hence L oc R*) and less
than unity. The tension now has the value

T=(1 - a) — qgmH>L , ®)
and the power generated becomes
E = ol — o) — qymH3L? . (6)

If 1 >a>gq, the tension stays positive and energy is gen-
erated® in an expanding (H > 0) universe. From

RA(HL)/dR = —HL(1 — « + g) , 0

it can be seen that in the nonrelativistic approximation the
power generated is unlimited in accelerating universes of g <
—(1 — o) and limited in all other universes of ¢ > —(1 — a).

With m in solar-mass units, L in megaparsecs, H = 100 h km
s~! Mpc ™, a finite amount of energy is mined at the rate

E =2 x 103FmI2Jy~! , (8a)
where

F=o1l —a)a—qh®=3x10"3 (8b)

! Practical considerations would suggest that the length of the string is
large compared with either the scale of astronomical irregularities (such as
clusters of galaxies) or [2G(m, + m,)/QH?]"3, whichever is the larger. The
mass of the string, its properties, the time taken to propagate tension along
the string, and other practical matters are ignored, and it is stressed that
mining energy in the manner proposed lies beyond the bounds of foreseeable
technology.

2 The relativistic form of eq. (3) for a stringof §; < cis

T = —ypim{y?L; — 6 — DHL; + [y(1 + q) — 1JH2L}}
wherey, = (1 — B})~'2, B, = Ujc,and i = 1,2.
3 The relativistic forms of eqs. (5) and (6), for a mass m tethered to a much
larger mass, are
T =91 - o)y« — g — 1) + 1JmHL ,
E=ayl — o[y’ —q— 1) + 1ImH>2,

and the tension is positive when 1 > a > (g + f?).
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for g = 0.5 (Einstein—de Sitter model), « = 0.6, and h = 0.5. A
body, such as the Moon (m =3.7 x 10™% solar masses),
tethered at 1 Mpc distance, generates power of the order of the
present-day world consumption by the human race.

In the power-law models Roct", H = nft, ¢ = (1 — n)/n,
equation (6) integrates to give an energy gain

E=3mHo Lo’ (1 — oY — gz — g — )7'0% = 1), (9)

where y = HL/H, L,. Energy is continually mined in acceler-
ating universes of ¢ < —(1 —«), or n>«"!, but only in
limited amounts ~ $m(H, L,)? in all other models. In the open
(k = —1) Friedmann model, g tends to zero (n — 1) and

E— %m“Z(Ho Lo)2 s (10

and in the flat Einstein—de Sitter model of n = %,q = 1,

E — 3ma(l — a)2x — 1)(3 — 20) " }(H, Lo)? . 1)

Equation (4) can be integrated with the Friedmann-Lemaitre
equations of zero cosmological constant with an equation of
state P = fpc®. On substituting in equation (4) the expressions

LL = o«*(H, Lo)*yy , (12a)
qH’LL = qo(H, Lo)*ix! ~ 30+ iz | (12b)

where x = L/Ly, y = HL/H, L,, we find that the integrated
energy mined is

E = 3m(Ho Lol’[o*(1 — ) + a™'Qq(1 + 3)(1 — x9], (13)

where a=2—3(1+f)a™", qo=Q1 +3()/2, po=Qqp.,
and p, = 3H}/8xG is the critical density. In accelerating uni-
verses defined by f < — 1, the energy mined is continuous for
0 < a < 1; generally, however, the energy gained tends to a
fixed amount ~ im(H, L)

In the inflationary universe (Guth 1981) of ¢q= —1,
H = constant, equation (6) becomes

E = ol —oa®mH3I?, 14
and this integrates to give a total energy that increases with I2:
E =31 - «))mHXL? - L}), (15

in agreement with equation (12).

2.3. A Relativistic Solution

The relativistic expression for the power generated in the
inflationary universe is

. L d(yRU) a« U d(yRU)
E = — —_— —_ p—
"RTa T"1-«R & °
from equation (1) and the relation L = —a(1 — &) “'U. Hence
. o 1y, AyUET Ve
E=m—yleVe -/
"1« dt ’ (16)
and integrating from U = 0, we find
E= m[ﬁ yU% + (1 — y“‘)} i a7
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The energy mined inside the Hubble sphere (in this case the
event horizon) of radius Ly = ¢/H, in which —U < (1 — ), is
finite. As —U —»¢, L—> Ly/(1 — ), and L — ca/(1 — a), the
energy mined goes to infinity. It is interesting that a tethered
body at distance Ly < L < 2Ly beyond the event horizon,
may stillhave —U < cand L < c.

It must be stressed that throughout this paper all practical
issues, such as the mass and other physical properties of the
strings, are totally ignored, and may well involve insuperable
problems. In the relativistic treatment, when the tethered body
approaches the Hubble distance, the propagation of tension in
the string at a speed no greater than light-speed raises addi-
tional issues that also have been ignored. Does a tethered body
beyond the Hubble distance Ly violate causality? Apparently
not, provided the peculiar speed U of the tethered body is less
than c relative to the local comoving frame and to the distant
comoving frame of the unwinding mechanism. The cosmo-
logical event horizon in this case is relative to the unwinding
mechanism and refers to comoving bodies and not the tethered
body.

2.4. A Network of Strings

The nonconservation of internal energy is impressively
demonstrated by constructing on the cosmic scale an imagin-
ary homogeneous and isotropic network of strings in tension
(Vilenkin 1985; Kibble & Turok 1986; Turok 1988). The
network has the same effect as the cosmological term or as a
negative-pressure fluid, and Gott & Rees (1987) have shown
that the internal energy in a comoving volume tends to
increase and the expansion of the universe tends to accelerate.

3. NONCONSERVATION OF ENERGY

The following discussion demonstrates the nonconservation
of energy on the cosmic scale.

3.1. Lemaitre-Robertson Equations

According to general relativity, a universe conforming to the
Robertson-Walker metric has density p and pressure P given
by (Lemaitre 1931 and Robertson 1933):

8nGp = 3(H? + K) — A = 3QH?, (18)
8nGPc 2 =H2q—1)— K + A, (19)

where K = k/R? (k = 0, +1) is the curvature, A is the cosmo-
logical constant, q is the deceleration term, and Q is the density
parameter. These equations combine to give the well-known
result

d(pc?R3)/dt + PdR®/dt =0 . (20)

3.2. Thermodynamic First Law in Cosmology

For a comoving volume V proportional to R3, containing
total internal energy E = pc®V, equation (20) takes the adia-
batic (conserved entropy*) form of the first law of thermody-

4 Generation of entropy by bulk viscosity or other means requires a more
elaborate energy-momentum tensor (Tolman 1934, pp. 321-323, 339). The
nonconservation of energy argument, however, remains essentially unchanged.
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namics
dE/dt + PdV/dt =0 . 21)

In the laboratory, an expanding cell of volume ¥, containing
internal energy E at pressure P, loses energy adiabatically to
the external world at the rate

dE/dt = —PdV/dt . 22)

and the sum of energies inside and outside the cell remains
constant.

In an expanding, homogeneous, unbounded universe, all
large-scale comoving regions are alike in content, and each, by
detailed balancing, may be regarded as a closed system having
no external world to which the lost energy —PdV can be
transferred. We may imagine the whole universe partitioned
into macroscopic cells, each of comoving volume V, and all
having contents in identical states. The —PdV energy lost
from any one cell cannot reappear in neighboring cells because
all cells experience identical losses. The usual idea of an
expanding cell performing work on its surroundings cannot
apply in this case.

3.3. Pressure Decelerates and Tension Accelerates

Examination of equations (18) and (19) suggests that the lost
internal energy is not balanced by an equivalent gain in energy
in dynamic form. On perturbing equation (18) at constant
volume (6R = 0), and using 6E = V2 §p, we find

OE = 3VH 8H/4nG . 23)

Thus, in the relativistic treatment, an increased (decreased)
internal energy corresponds to an increased (decreased) rate of
expansion, and a decrease in internal energy is not balanced by
an increase in the bulk kinetic energy, as in normal bounded
thermodynamic systems. On perturbing equation (19) at con-
stant volume (6R = 0) and constant expansion rate (0H = 0),
we find

8P = c*H?3q/4nG (24)

and thus, in the relativistic treatment, an increased (decreased)
pressure corresponds to an increased (decreased) deceleration,
which again runs counter to the behavior of normal bounded
thermodynamic systems.

From equation (20), using the equation of state P = fpc?, we
find that E varies as ¥/, and an expanding universe under
tension (f < 0) creates internal energy, and under pressure
(f> 0) loses internal energy. In the inflationary universe
(f= —1), energy is continually created at a sufficient rate to
sustain constant energy density (McCrea 1951, 1964); the uni-
verse is thrown into a state of accelerated expansion, and the
new internal energy is not at the expense of dynamic energy. In
this remarkable application of the relativistic equations, a
closed universe can in principle inflate from close to zero size
and zero mass to a vast system containing billions of galaxies
spanning billions of megaparsecs. Nowhere in the equations
can we find this immense energy in potential form in the initial
state, and clearly, in this instance total energy is not conserved.

4. NEWTONIAN ANALOGIES

Can total energy (internal and dynamic) be defined in an
expanding universe on the basis of equations (18) and (19)?

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...446...63H

.

) D 44870763

{1995

66 HARRISON

Most discussions resort to Newtonian analogies that, when
examined closely, are found to be misleading more than
enlightening,

With the pressure set equal to zero (and the cosmological
term omitted), the “Newtonian” argument (Milne 1934;
McCrea & Milne 1934; Bondi 1960) yields

8nGp = 3(H? + K) = 3QH? , 5)
d(pR3)dt = 0, (26)

in agreement with the relativistic equations (18) and (19). The
Newtonian treatment, which followed and did not precede the
relativistic treatment, violates basic classical concepts and is
strictly only quasi-Newtonian. The argument goes as follows.
A unit of mass at an arbitrary comoving coordinate distance r
and proper distance R(t)r, can be considered to have “ potential
energy” —GM/Rr and “kinetic energy” 3(RHr)? relative to
the center r = 0 of the mass M = 4npR3r3/3 of radius Rr. The
ratio of these two so-called energies is —Q. If we take twice
their sum and divide by r2, we find (HR))(1 — Q) = —k, where
k is a dimensionless constant of the motion that is usually
identified with the curvature constant of relativity theory.
Because the pressure is zero, the internal energy E = Mc? of
the expanding mass M remains constant. It can therefore be
claimed that both the dynamic and internal forms of energy are
separately conserved and the total energy (their sum) is a con-
stant of the expansion. According to this argument, energy in
“Newtonian cosmology ” seems nicely conserved. This appear-
ance, however, is purchased at a stiff cost.

First, the pressure is not always zero. In the early universe,
HR > 1, and hence the density parameter Q is very close to
unity. By making the unrealistic assumption that the pressure
is always negligible, we are free to claim that the total energy is
zero. Thus Tryon (1973) has proposed that the universe is a
zero-energy creation.

Second, quite apart from its unrealistic nonrelativistic
approximations and Euclidean assumptions, the treatment
applies to a particular region with a fictitious center and
boundary. The potential and kinetic energies of the given unit
of mass at the fictitious boundary are not single valued and
definitive, as in a bounded system, but arbitrary and relative
to the fictitious center. In a centerless and unbounded universe,
the energies, as defined, are nonphysical and not even mean-
ingful.

Third, the “potential energy ” per unit mass is the gravity
potential y. The determination of ¥ in an unbounded system
encounters the insolubility of the Dirichlet problem (Kellogg
1929; Ramsey 1964). A unique single-valued gravity potential
function does not exist in a uniform and unbounded distri-
bution of matter, and the Newtonian gravitational force is
indeterminate.’

In relativistic systems, energy can be defined only in asymp-
totically flat spacetime (Tolman 1934; Arnowit, Deser, &
Misner 1960; Brill & Deser 1968; Schoen & Yau 1979; Witten
1981). Simple familiar Newtonian analogies in cosmological
studies, as in Newtonian cosmology, cannot be accepted as
reliable guides in discussions concerning the conservation of
energy.

4. CONCLUSION

The tethered-body experiment demonstrates that in prin-
ciple energy can be extracted from the expansion of the uni-
verse. This raises into prominence the question of energy
conservation. Apparently energy mined in an expanding uni-
verse, as in the tethered body experiment, is nascent and unlike
energy normally extracted from spatially bounded systems.
The tentative conclusion of this discussion is that energy in
recognizable forms (kinetic, potential, and internal) in an
expanding, spatially unbounded, homogeneous universe is not
conserved.

I am indebted to Charles Leffert for posing the problem of
determining the force acting on widely separated tethered
masses in an expanding universe, also to Galen Gisler, Thomas
Kibble, Martin Rees, and David Van Blerkom for helpful com-
ments, and to the Los Alamos National Laboratory for hospi-
tality while preparing this paper.

* The solution of the Poisson equation V2 = 4nGp, when p is a uniform
density, is Yy = ¢ + 2rnGpr?/3, where ¢ is a solution of the Laplace equation
V2¢ = 0. Thus in addition to the limitation Y < —c?, ¥ in an unbounded
space is not a uniquely defined single-valued function (because the origin of the
radial coordinate r can be located anywhere) and, like the harmonic function
¢, is indeterminate. This problem dates back in various forms to the Bentley-
Newton correspondence (Harrison 1986) and has been dubbed the “gravity
paradox” by Jaki (1969). In relativistic cosmology, the symmetrized
Robertson-Walker form of the metric tensor g, evades the Dirichlet existence
problem besetting the Newtonian gravity potential. See remarks by Einstein
(1923, p. 380), Layzer (1954), McCrea (1955), North (1965), and Harrison
(1981).
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