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ABSTRACT 

In VLBI observations, atmospheric turbulence and local oscillator phase noise often limit the coherence 
time to a few seconds. When such coherence losses severely limit the integration time, detection thresholds 
rise and weak sources cannot be detected. We show here that under these conditions, the detection methods 
and measurements of visibility amplitude and phase can be reformulated in terms of incoherently averaged 
quantities. The theory is presented by examining the properties of averaged amplitudes and triple products. 
This paper reviews current detection methods, discusses new techniques, presents applications to recent 3 
mm VLBI experiments, and shows that signal processing can significantly improve the probability of signal 
detection. 

1. INTRODUCTION 

VLBI at millimeter wavelengths is severely limited by 
atmospheric path length fluctuations. Under these conditions 
the fringe detection threshold can be improved by incoherent 
averaging (see Thompson et al 1986; hereafter referred to as 
TMS) or by using the complex triple product. The triple 
product is also known as the bispectrum and its properties 
have been extensively studied by Kulkami (1989) and Corn- 
well (1987). With an array, further improvements can be 
made by the simultaneous use of all elements in a global 
fringe search. A global fringe search algorithm has been 
given by Schwab & Cotton (1983) and is implemented in 
AIPS (1990). In this paper we give expressions for the de- 
tection threshold in a global fringe search, and explore re- 
lated issues in a quantitative way. 

2. CONVENTIONAL SINGLE BASELINE FRINGE SEARCH 

The standard fringe detection method in VLBI is a single 
baseline search of the two-dimensional space of delay and 
delay rate for a maximum correlation amplitude. The signal- 
to-noise ratio (SNR) for a point source without coherence 
loss is 

SNR=L p \J(2BT), (1) 

where R is the peak correlation in units of SNR, and n is the 
number of independent points in the two-dimensional search 
over delay and delay rate space. 

The SNR is the ratio of the signal amplitude to the stan- 
dard deviation of one component of the noise vector. With 
this definition the SNR becomes the inverse of the rms phase 
for large SNR. A SNR of 7 is sufficient to ensure a very 
small probability of false detection for a fringe search over 
106 trial values of delay and delay rate (see TMS, p. 262). 
Alef & Forças (1986) have demonstrated the use of antenna 
based residuals to narrow the search range on each baseline 
and lower the detection threshold by decreasing n in Eq. (2). 

3. AVERAGING OF DATA SEGMENTS 

Data averaging can be extended beyond the coherence 
time by incoherently averaging data segments. The field of 
view is usually small enough that the visibility phases 
change slowly and can be coherently averaged over the co- 
herence interval or 4‘segment.” In this case an unbiased es- 
timate A of the correlation amplitude can be made by aver- 
aging M segments of the correlation amplitude squared 
minus the expected value of the noise. A is given by 

A = 
1 M 

(3) 

where p is the correlation amplitude=Ta/, (TJTS) is the 
geometric mean of the ratio of source antenna temperature to 
system temperature on each baseline, B is the bandwidth 
(Hz), L is the digital loss factor ^1 (1 for ideal analog pro- 
cessing), T is the coherent integration time (s). The probabil- 
ity of false detection or probability of error (PE) is given by 

PE= 1 — [1 — e“fi2/2]"«»ne_'R2/2, (2) 

where æ* is the complex correlation which results from co- 
herent integration over time interval T in units of one stan- 
dard deviation of one component of the noise vector. The 
estimate is unbiased because 

(|a|2) = 2 + s2, (4) 

where s is the signal in units of the rms noise, and hence 

{A2) = s2. (5) 
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1392 ROGERS ETAL.: FRINGE DETECTION METHODS 1392 

We note that the quantity within the square root of Eq. (3) 
can be negative, in which case we will take our estimate for 
A as zero. In the weak signal case, we define the SNR for A2 

as 

SNRa = 
(a2) 

V(T)' 
(6) 

In the absence of a signal, the variance of A2 is 4/M so that 
when s<l, Eq. (6) becomes 

(7) 

The detection reliability can be estimated by comparing the 
measured value of A with the expected peak value of A due 
to the noise in the absence of a signal. For a large number of 
segments the probability distribution of A2 becomes Gauss- 
ian by the central limit theorem so that the probability of 
false detection, PE^, is determined by integrating the tail of 
a Gaussian probability distribution 

PEa = 1- 
1 f00 

'ET 
-*l2dx (8) 

For the case where the integral in Eq. (8) is much less than 
unity, we use the usual asymptotic expansion for the error 
function and we obtain the approximation 

PE. -SNR^/2 

2 ttSNR. 
(9) 

which is valid for PE^l. With the SNRA defined by Eq. 
(6), a SNR of 7 is sufficient to reduce the probability of false 
detection to 1.3 XlO6 in a search of 106 points. We can con- 
vert the threshold for reliable detection corresponding to a 
particular value of SNRA into an equivalent signal for a 
single segment by inverting Eq. (7), 

s= V2SNRaM
_1/4. (10) 

If a value of SNR equal to SNRr is required for reliable 
detection of unit flux density within a single segment, then 
the ratio of the flux density needed for detection with seg- 
mented data, s incoh, compared to that of a single segment, 
5coh ÎS 

S_mc±=M-l/4 
scoh 

2SNR4 

SNRj—2" (ID 

The subtraction of 2 from SNR) is required to correct the 
coherent average for noise. Choosing values of SNRr=7 
and SNRa = 6.6, results in the same negligibly small prob- 
ability of error (<0.01% in a search of 106 points) for both 
coherent [from Eq. (2)] and incoherent [from Eq. (9)] aver- 
aging. The above relation then becomes 

^^ = 0.53M_1/4. (12) 
^coh 

The factor 0.53 is valid only for large M. For a smaller 
number of segments, the above analysis will not hold due to 
a breakdown of the Gaussian approximation introduced in 
Eq. (8). Flux density limits for small values of M are, how- 

Number of Segments Averaged 

Fig. 1. Reduction in the flux detection threshold obtained by searching over 
an incoherent average of many segments. The open circles show results of a 
simulation in which a maximum in segmented and averaged amplitude was 
found in a search of 100 points in (delay-delay rate) space. Two thousand of 
these searches were made and the threshold was defined as the dividing line 
between the top 1% and lower 99%. The solid line is calculated by a nu- 
merical integration of the probability density for Aq from °° [a large enough 
value to make p(Aq) extremely small] down towards 0 until a value of 10-4 

is reached. Both methods are equivalent to a combined PE=0.01 and 
« = 100 for which SNRr=4.3 and SNRA = 3.8. Normalization is to the 
Ai = 1 point on the solid curve. 

ever, accessible via two alternate routes. The first is to nu- 
merically integrate the exact expression for the probability 
distribution of A2 (given in Appendix A). Since the probabil- 
ity of error is related to p(A2) by 

PE= 1 — (13) 

specification of PE and the number of search points n, yields 
the flux threshold A0. The solid line in Fig. 1 shows this 
limit (normalized to the value for M=l) as a function of 
segment number. 

The second method uses simulations to statistically esti- 
mate flux thresholds. A single simulation represents a search 
for a maximum over n samples of A with no signal. After 
making a large number of searches, we separate the resulting 
distribution of noise maxima so that a fixed percentage are 
above our threshold value; this percentage is PE from Eq. 
(13). In Fig. 1 the simulation data corresponds to the same 
PE and n as the numerical integration of p(A2). The asymp- 
totic limit described by Eq. (11) is also shown and agrees 
well with both the simulation and the exact determinations of 
flux limits for large values of M. Earlier work (see TMS, p. 
269) has shown that incoherent averaging improves the de- 
tection threshold by the factor M1/4. For small values of M, 
we find the sensitivity improves at a faster rate of ~M0,36. 
Because of this faster than expected reduction in detection 
threshold, the potential of incoherent averaging is more pow- 
erful than previously recognized. It should be noted that the 
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1393 ROGERS ETAL.: FRINGE DETECTION METHODS 1393 

difference between the asymptote given by Eq. (11) and the 
curve for a simple Af1/4 rate improvement increases for 
larger searches and more stringent detection criteria (i.e., 
smaller PE). 

The SNR given in Eq. (6) needs to be modified, following 
TMS, to include the presence of a signal when used to esti- 
mate the standard deviation of the correlation amplitude. In 
this case 

(A2) 
SNRA = —=. (14) 

v(A4)-(A2)2 

Since 

(|<z|4) = s4 + 8s2 + 8, (15) 

then 

s2 / M 
SNR>2 V?TT- (16) 

In the limit when s>l, 

SNR>|Vm. (17) 

The fractional error € in the amplitude estimate, calculated 
by noting that SNR^ is the signal to noise of the amplitude 
squared, is given by 

or for 5>1 [by the use of Eq. (17)], 

which is the same as would be obtained for a coherent aver- 
age over the entire data duration, with the assumption of no 
coherence loss. 

Incoherent averaging of segments of duration T is equiva- 
lent to incoherent averaging of amplitudes in the fringe rate 
power spectrum with a sine2 windowing function of width 
(1/J) Hz. This equivalence has been shown by TMS using 
ParsevaTs theorem. Incoherent averaging in the spectral do- 
main allows a windowing function to be chosen that matches 
the spectrum of atmospheric phase fluctuations better than 
the sine2 function. Clark (1968) has shown that in the limit- 
ing case when the coherent integration is shortened to the 
inverse bandwidth the detection scheme becomes equivalent 
to the intensity interferometer described by Hanbury Brown 
(1974). 

In segmenting complex amplitude data it has been the 
practice to average coherently nonoverlapping segments 
rather than to compute a running average for each input data 
point and the SNR theory has been given for M independent 
nonoverlapping segments. Two sets of segments can be de- 
rived from a common dataset by offsetting the segment 
boundaries so that the boundaries of one set are midway 
between the boundaries of the other set. In this case it can be 
shown that in the absence of a signal and in the limit of a 
large number of segments the incoherent average A2 from 
one set is 50% correlated with the other set. Thus incoher- 

ently averaging the combined overlapping set results in a 
further small reduction of the flux density threshold by a 
factor of (3/4)1/4 which corresponds to an improvement of 
about 7%. To realize the greatest threshold reduction, a run- 
ning mean can be used to generate the segmented ampli- 
tudes. In this case the data which is made up of correlation 
accumulation periods (APs), is segmented such that each 
segment is offset from the previous one by a single AP. In- 
coherently averaging the entire set of segments lowers the 
threshold by a factor of (2/3)1/4 or makes an improvement of 
about 10% in the limits of large M and a large number of 
APs per segment. 

4. CLOSURE PHASE 

The closure phase (see Jennison 1958; Rogers et al 1974) 
is the sum of interferometer phases around a triangle of base- 
lines. This phase is independent of instrumental phases and 
atmospheric path delays and depends only on the source 
structure. Neglecting noise, the closure phase for a point 
source is zero. In the following analysis in this section we 
assume that the source produces zero closure phase (i.e., it is 
either unresolved or has symmetric structure). To estimate 
the noise in the closure phase it is convenient to define a 
phase noise loss function L(s) (see Rogers et al 1984), 
which is defined for a random phase 0 by the relation 

L(s) = (cos 6). (20) 

Since the probability density distribution of the phase is 
given by 

£-s2/2 r oc 
p{0)=—  re~r l2esr cos 6dr, (21) 

277 Jo 

(which reduces to a uniform probability distribution for 
5 = 0) one can show that 

where /0 and Ix are hyperbolic Bessel functions. For low 
SNR, Eq. (22) reduces to 

For the closure phase, 9C, given by 

oc=el+e2+d3, (24) 

the associated loss function is 

L{sc)={cos{e1+e2+e3)). (25) 

Since #!, d2, and 03 are independent and (sin(^))=0, we can 
expand Eq. (25) to obtain the result 

L(5c)=T(51)L(52)T(53). (26) 

If we define the SNR of the closure phase as 

SNRc=L-1[L(sc)]=L-1[L(s1)L(s2)L(s3)l (27) 

hence, for low SNR [see Eq. (23)], we obtain 
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1394 ROGERS ETAL.-. FRINGE DETECTION METHODS 1394 

L 1(s)^yl-s, 
> 7T 

so that 

(28) 

(29) 

which is valid when s1, s2, s3<l. In the high SNR limit, 

1 
L(s)~l- 

so that 

SNRr 

2s2 ’ 

sls2s3 

'Jslsj + sfsj + shj 

When s1 — s2 — s3 — s, 

SNRc--=. 
^3 

(30) 

(31) 

(32) 

5. BISPECTRUM OR TRIPLE PRODUCT 

6. AVERAGE OF CLOSURE PHASORS AND TRIPLE PRODUCTS 

If the bispectrum or triple product for coherent integration 
time T is averaged for M equal segments the SNR will im- 
prove. First, consider the closure phasor average 

C = — T eidc 
C M ^ 6 ■ (39) 

For weak signals, we use Eqs. (23), (25), and (27) to obtain 

(Re C) = (cos 9C)-- (40) 

and in the absence of a signal (where 6C is a uniformly 
distributed random variable) 

((Re C)2)= 2 (cos2 ec)=2-. (41) M c' 2M ' 

If we use (Re C)/V((Re C)2) as a measure of the SNR, then 

SNR/ - v(ir ^ (42) 

The bispectrum is the product of the complex interfero- 
metric amplitudes on the three baselines of a triangle and is 
given by 

b=!a1||a2||fl3|e‘(e' + ^+^)=!a1|k2«a3kiA (33) 

where a¿ and are the amplitudes and phases of the visibil- 
ity on the three baselines. The expectation of b is given by 

and the probability of error, based on the analysis leading to 
Eq. (9) is given by 

PE~—^ e-SNR^ (43) 
n'27tSNRc 

We follow a similar method for the bispectrum analysis. The 
bispectrum averaged over M segments is given by 

(b) = ((Sj + n1)(s2+ n2)(s3 + n3)) = s^Sj, (34) 

where (s^n^, etc., are the complex sum of signal and noise 
phasors. Each noise term component has unit variance. For 
low SNR on each baseline, 

(|b|2) = (|n1|
2|n2|

2|n3|
2) = 8. (35) 

If we use the ratio of the signal (which will appear in the real 
part of b for a point source) to one component of the noise 
vector as a measure of SNR then 

SNR^^p^, (36) 
W) 

or, since ((Re b)2)=(|b|2)/2, 

s3 

SNR„~y, (37) 

where Sj—lsjl and s = s2
:= s3<^]. 

We can write an expression for the bispectral SNR that is 
valid for a wider range of SNR by including the signal terms 
previously neglected in Eq. (35) and noting that (s¿n¿)=0. In 
this case, 

515953 
SNRft~       , (38) 

V4 + (s2S2 + SlS3 + 'S2'S3) + 2(52+S2 + S3) 
where s2 = Sjsf , etc. Kulkarni (1989) gives an even more 
general expression for the bispectrum SNR. Note however, 
that he defined the SNR as the ratio of the signal to the total 
noise. 

B=^2 \ai\\a2\\a?\e
iec. (44) 

For equal signal amplitudes the expectation of the real part 
of B is 

(Re B) = s3, (45) 

and its second moment is 

((Re B)2)= ““ (|b|2)(cos2 0C). (46) 

Hence for low SNR, 

((ReB)2)=f:, (47) 

and with the definition, SNR5 = (Re B)/V((Re B)2) , we 
obtain 

SNRß=iVÄA3. (48) 

Following Kulkarni (1989), for a wider range of SNR the 
more general expression for SNRfi is 

SNR* 
sls1s2^M 

^4 + (sk2+'SlS3 + S2'S3) + 2(s? + sÍ + sÍ) 
The probability of error, from Eq. (9), is 

(49) 

PE- 3-SNR¿/2 

27tSNR* 
(50) 
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1395 ROGERS ETAL. : FRINGE DETECTION METHODS 1395 

The detection threshold for the bispectrum average is about 
30% lower in units of SNR or about 10% lower in units of s, 
or flux density, than the average of closure phasors. Thus, it 
is advantageous to average the triple product instead of the 
closure phasor. In either case the 53 dependence of the SNR 
imposes a sharp flux density threshold. In the case of low 
SNR on one or two baselines of the triangle the bispectrum 
has a SNR advantage of about 10% and 20%, respectively, 
compared with an average of closure phasors. As in the case 
of incoherent averaging, a further small improvement can be 
made by averaging triple products from 50% overlapping 
segments. In this case the overlapping segments are 25% 
correlated and hence the threshold is reduced by (5/8)1/6 or 
about 7%. In the running mean limit the threshold is im- 
proved by (1/2)1/6 or about 11%. 

If no assumption is made about source structure the clo- 
sure phase can have an arbitrary value and we must examine 
the magnitude of the average bispectrum. In this case the 
SNR is reduced by y/2 and becomes 

SNR¿= 
<1B|) 

(51) 

since <|B|H<B>| and (|B|2)=2((Re B)2). The corresponding 
approximation for the probability of false detection is 

PE~  *1  e-SNR¿2/2 
AttSNR^ 

(52) 

7. FRINGE SEARCHING WITH AN ARRAY 

For weak signals it may not be possible to detect fringes 
on any individual baseline so that a global search is required. 
While the sensitivity of a coherent array of N equal elements 
improves by the square root of the number of baselines, 

¡N{N-l) 
V 2 ’ (53) 

the detection threshold for an array whose elements have not 
been “phased up” is improved by only about 

over that of a single baseline (see Rogers 1991). The failure 
of the threshold to improve by the square root of the number 
of baselines is the result of the vast increase in search pa- 
rameter space. When a search is made over indepen- 
dent points, where n is the total number of independent pa- 
rameters of delay, rate, and phase in the search to each 
element (beyond the first which acts as a reference), the de- 
tection threshold is increased by ^¡{N— 1) as shown in Ap- 
pendix B. For an array we consider the n parameters of each 
element as one dimension. Note that n can be very large, 
e.g., 100 rates, 100 delays and 4 phases give « = 40,000. 
Because the search points may not be completely indepen- 
dent, it is shown in Appendix C that the expected noise level 
for an (N-l) dimensional search is increased by at least 
a/s(N —1)/9, for one specific prescription of a fringe search, 
which thereby sets a lower bound on the strength of a noise 

spike. Also, a least-squares estimate of station phases from 
[N(N—1)/2] independent baseline phases has a standard de- 
viation of ^[2¡Ñ, which shows that in the high SNR regime 
the added degrees of freedom needed to phase up an array 
result in an SNR loss of y¡{N— 1). This result comes from 
the covariance matrix of estimators derived from the normal 
equations as shown in Appendix D. The separation of the 
bounds placed by Appendix B and C is always less than 6% 
for any value of N, thereby ensuring that the factor \¿V/2 is 
accurate to within 6%. To summarize, the relative flux den- 
sity needed for signal detection with an array, sarray, com- 
pared with that needed for detection with a single baseline, 
Sbase> is given by 

0.94 
^ array 
■^base 

(55) 

In the presence of atmospheric phase variations a global 
fringe search must be performed on segmented data. Data 
within a segment can be coherently added while the M seg- 
ments are incoherently combined. The variable to be maxi- 
mized is 

2 
— bias 

1/2 
, (56) 

where the inner summation is the coherent sum of complex 
visibilities over all baselines, frequencies, and samples 
within the coherence interval. are the phases needed to 
counter rotate each data sample, 

0iy - + ^ ( T’/ - r;- ) + ( - corp i, (57) 

where are the instrumental phases, ^,...,7^ are 
the instrumental delays, and wri,...,iur^ are the instrumental 
rates (these parameters describe the search space), with the 
boundary condition that </>! = ty = cor =0. 

The search algorithm given by Eq. (56) is based on the 
assumption that the source is unresolved. Since the visibility 
phases in this case are zero, the signal will appear in the real 
part of the inner summation. Consider only the contribution 
of the signal components to (G2). In this case 

<G2) 
2 

N{N-l) 2 
/ 

2 s2(cos d>/ cos <£„,), 
m 

(58) 

where <!>/ and <&m are the phase residuals on the / and m 
baselines [i.e., the visibility phases in Eq. (56) counter ro- 
tated by the instrumental phases]. For a large number of 
stations the terms for which l±m are dominant. Also the 
residuals on different baselines should be uncorrelated so 
that 

(G2)=s2(cos í>)2. (59) 

Since the global search results in only an estimate of the 
instrumental phases (cos 4>) can be viewed as a loss factor 
that results from the phase noise in the estimate. The reduc- 
tion in signal is approximately given by the loss factor func- 
tion of Eq. (22), whose argument is scaled by a factor /, so 
that 

(G2)~s2L2(sf). (60) 
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1396 ROGERS ETAL. \ FRINGE DETECTION METHODS 1396 

In the global search to maximize G there are (N— 1) un- 
known phases. With (JV—1) unknown phases to be deter- 
mined from N{N-1)/2 baseline phases, the value of 5, the 
SNR of a single baseline, is scaled by 

4 
W{N-l) 
2{N-1)Z (61) 

the station phases for the individual segments. In this case 
the individual baselines should be incoherently averaged in 
the same way as individual data segments. Using the theory 
given in Sec. 3 [see Eq. (10)] we get 

SNR¿ = y VM 
W(tf-l) 

(66) 

For a single baseline cos 4>=1 and no signal is lost by the 
presence of an error in the station phases since the search 
will remove the phase error in this case. In this case Eq. (58) 
becomes the same as Eq. (5). In practice, for signals around 
and above the detection threshold, s^l, L2(sf) is close to 
unity and the approximation for L in Eq. (30) is valid. The 
bias term in G is given by 

0.9X2X (#— 1) 3.6 
biaS~ N{N— 1 )/2 (62) 

where the first factor of (jV- 1) is the result of the (AT— 1) 
dimensional search and the factor of 2 is the normal bias 
without searching. Note that there is a weak dependence of 
the bias on the search parameter n, which we have ignored 
here because it enters only as \¡2 \oge n. The numerical fac- 
tor of 0.9, which results from the use of the real part rather 
than the magnitude in Eq. (56), was determined by numerical 
simulation. It is approximately the ratio of a maximum found 
using a search for the real part to that maximum found using 
a search for the magnitude. For a source of arbitrary structure 
the real part in the inner coherent sum should be replaced by 
the magnitude. In this case the numerical factor in the bias 
becomes approximately unity. In the absence of a signal 

, 4 (AT— l)2 , x 

}~MÏÑ(Ñ::Ï)Ï2Ÿ, (63) 

where the factor (AT—l)2 accounts for the change in prob- 
ability distribution that results from choosing the maximum 
from an (AT— 1) dimensional search for each segment. If we 
define 

{G2) s
2 i— 

SNRC=-— ^ML2(sf), (64) 
V(G4) 2 2 

we obtain an expression for the probability of error, with a 
large number of segments of [see Eqs. (8) and (9)] 

PE   e-sm¿12. (65) 
'TttSNR^ 

Unfortunately, the bias in Eq. (56) is somewhat dependent on 
the extent of the search, but may be estimated from the data 
in a region of search space in which it is known that there is 
no signal. Numerical simulations show that the use of the 
magnitude in place of the real part in Eq. (56), as is required 
when searching for a source of arbitrary structure, makes 
little difference to the detection threshold for N> 3. In the 
case of a single baseline the process of taking the real part 
and searching through values of the second station phase for 
a maximum gives the same value for G as taking the mag- 
nitude without a search. When the signals are weak the loss 
factor is significant so that it may be better to incoherently 
average the individual baselines and not attempt to determine 

Equation (66) is only valid when the product of the number 
of segments and the number of baselines is large and the 
SNR is low, but otherwise has no other approximations. Note 
that for N>2, Eq. (66) gives a higher value for the SNR than 
Eq. (64). However we have not accounted for the extent of 
the search. Whereas the coherent search always requires an 
(Af-l) dimensional search, because the station phases are 
unknown, the incoherent search is far less demanding. For 
example, when the rates and delays are already determined 
on a strong calibrator it may be sufficient to search in only 
two dimensions for a right ascension and declination offset. 
The incoherent global search for the coordinates of the 
source requires relatively little computation, compared with 
a coherent global search. Hence the incoherent search is a 
very useful technique since, in many cases, it is just as sen- 
sitive as a fully coherent segmented search. Once a signifi- 
cant peak is found for the source’s right ascension and dec- 
lination, the visibility information is then best extracted by 
computing the bispectrum on all the available triangles for 
the phase information and computing incoherent averages on 
each baseline for the amplitude information. In order to in- 
clude the phase information in existing image processing 
packages, the closure phases from the bispectral averages 
can be converted back to baseline phases by linear least 
squares using weights from the SNRs of the bispectral aver- 
ages. Note that all the bispectral components should be used 
in the analysis since they are always at least partially inde- 
pendent [see also Kulkarni (1989), Sec. VI d.] 

It is important to recognize that, as with fringe searching 
on a single baseline, there is a bias in global fitting with an 
array. If there is no source present then global fitting, without 
the bias correction term, will find a source of approximately 
y¡N-1 times the lo- noise level for the phased array. Also, 
without bias correction the global fitting will increase the 
apparent flux of a detected source by approximately 
\¡(N— 1) a when the source is so weak that the SNR on each 
baseline is unity or less. (Using global fitting without bias 
correction at the VIA is known to result in biased flux mea- 
surements.) 

If the elements of the array have unequal sensitivities, the 
baselines in the summation of Eq. (56) should be weighted in 
proportion to the expected SNR for each baseline to maxi- 
mize the SNR of the sum. For example, consider adding a 
baseline with SNR=5 to one with unit SNR using weight w. 
In this case the SNR of the sum is 

(1 + H>S) 

V(i+w2) 
(67) 

which is maximized to a SNR of \/(l +s2) when vc=.v. This 
result can be readily extended to an array [e.g., Vilnrotter 
et al. (1992)]. For an array whose elements have their sensi- 
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tivity given by their system equivalent flux densities 
(SEFDs) the overall coherent sensitivity for a phased-up ar- 
ray is 

SEFDC 

N-l N 

2 2 
/ = 1 ; = /+1 

1 
1 -1/2 

SEFD¿SEFD; 
(68) 

where the summation is carried out over all baselines. For a 
single baseline the SEFD is the geometric mean of the 
SEFDs of the two elements. As with an array of equal ele- 
ments the detection threshold is degraded by the vast in- 
crease in search parameter space. A lower bound on this 
degradation can be estimated using the method of Appendix 
C, by including the appropriate optimal weighting factors, to 
estimate the noise peak present in a search. The SEFD is 
effectively increased by the factor F given by 

F = 
SEFD;SEFD7 

\ ^1 = 1 ^j — i+l 
1 

(69) 

SEFD, SEFD, 
Unless the SEFDs are very different (more than a factor of 
10), 

(70) 

to an accuracy of better than about 10%. Another measure of 
the array sensitivity, useful for mapping, is given by the 
equivalent SEFD for fringes from the A:th element to all other 
elements phased up and optimally weighted. In this case, for 
equal elements the sensitivity is improved by a factor of 
y¡N-1 relative to a single baseline, compared with the im- 
provement factor of VÑ/2 for a global search on all elements 
of the array. 

If signals from several antannea are optimally combined 
to form an element in a larger array then the SEFD of the 
arrayed element is given by 

SEFDarray= 2 
i = i 

1 
1 -l 

SEFD, (71) 

Equation (71) is the well-known result that the equivalent 
aperture of an array is the sum of the individual apertures. 
Note that Eq. (71) requires that the signals from the antennas 
be optimally weighted (see Dewey 1994) (which is not done 
at the VLA) and that there be no loss due to poor phasing. 
The SEFD of the baseline formed by this arrayed element 
and the kXh element of the array is 

SEFD*_array= 

If baselines are added incoherently, and we seek to optimize 
the detection of a weak source, the correlations should be 
weighted in proportion to the expected baseline SNR2 so that 

SEFDincoh= 
N-l N 

2 2 

1 -1/4 

^ ^ (SEFD/SEFD.)2 
i = \ ; = i +1 v 1 

(73) 

Hence, the better systems become even more dominant in the 
overall performance of the array for source detection than in 
the case of a coherent search. 

8. EXAMPLES 

8.1 Closure Phase from Bispectrum 

Figure 2 shows the results of determining the closure 
phase from an average of M segments of data. The SNR was 
computed from the data by taking the ratio of the signal 
voltage to the square root of the sum of noise power compo- 
nents in a direction normal to the signal vector. That is, 

Xfliamp,- cos( 6C — 6C) 
SNR= , , (74) 

7^!amp2 sin2(0c¿— 6C) 

where amp,- is the triple product of the amplitudes (s1, s2, 
and s3), and 0C. is the closure phase for each segment, re- 

1 2 4 10 27 67 134 270 
time in each segment (sec) 

Fig. 2. Closure phase from the triple product for an observation of 380 s 
duration as a function of the segment duration. The data for a triangle of 
baselines formed by antennas at Haystack(K), Kitt Peak(P), and Owens 
Valley(O), observing the quasar NRAO530 at 86 GHz on 1994 April 4 at 
0822 UT. The coherent SNRs for the full length of the observation are 15, 5, 
and 10, while the SNRs for 1 s segments are 1.5, 0.6, and 0.8 on the PO, 
KO, and KP baselines respectively. The SNR for the bispectrum shown is 
calculated by the method described in the text [see Eq. (72)]. Also shown is 
the rms variation of closure phases among segments and the approximate 
±lo- error bars on the closure phase average from the inverse of the SNR. 
This approximation for the closure phase error is valid for SNR>1. In the 
limit of no signal or very short segments, the 1er phase error approaches 
tt/VI radians. In this plot the minimum segment length is the coherent ac- 
cumulation period of the hardware correlator (1 s) and the maximum length 
is that which produces two segments. 
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pc 
(T) CO 

O'! O 

LO O'! O'! 

spectively, and 0C is the closure phase for the sum. Sj, s2, s3 

are estimated from the data on each baseline incoherently 
averaged with the same segment length. The SNR computed 
this way agrees with the SNR calculated from Eq. (49). As 
with data on a single baseline, the Icj error in a measurement 
of phase is 1/SNR for SNR>1. 

From Fig. 2 it is clear that there is an optimum coherent 
integration time that maximizes the SNR and minimizes the 
error in the determination of the closure phase. Too long a 
coherent integration degrades the SNR because of coherence 
loss and results in a corrupted value of closure phase. On the 
other hand, a very short coherent integration results in a low 
SNR. This happens when the SNR of each segment drops to 
unity, and the signal drops very rapidly owing to the 53 term 
in the bispectrum. In the case shown here, two baselines are 
weak and the third is stronger. If only one baseline were 
weak, the decline of SNR would not occur until the segments 
are so short that the SNR of each segment on the stronger 
baselines approach unity. 

8.2 Fringe Search on Incoherent Average of Segments 

Figure 3 shows the result of a single baseline search in 
delay and delay rate using data from seven observations di- 
vided into 10 s segments. In this case, a single observation of 
270 s duration does not result in a significant detection 
whereas the incoherent addition of 200 10 s duration seg- 
ments results in the detection of the radio source with very 
small probability of false detection. 

8.3 Global Fringe Search on Segmented Data 

Figure 4 shows a global search for fringes on three base- 
lines using a single observation of 27 10 s segments. In this 
case, although the individual baselines only show marginal 
fringes on two of the three baselines, the search clearly es- 
tablishes the station clocks. 

Figure 5 shows a global search on the same triangle of 
baselines. In this case, the sensitivity of the elements have 
been reduced by a factor of about 2 owing to added atmo- 

Fig. 3. Contour plot of SNRA for a two-dimensional search for fringes using 
200 10 s segments of the PO baseline taken on the Galactic Center (Sgr A*) 
at 86 GHz on 1993 November 13 from 2030 to 2345 UT. The peak at 25 ns 
and zero fringe rate is a significant detection. The coherent SNRs for the 
individual 270 s duration observations taken individually do not provide a 
significant detection. The residual delay is shown for a range of 125 ns 
which corresponds to the multiband delay ambiguity formed by the synthe- 
sis of a 56 MHz band using seven 8 MHz single-band channels spaced 8 
MHz apart. 

Global search 317-2117 (10 sec segs) 

Fig. 4. A global fringe search on the Kitt Peak(P), OVRO(O), Haystack(K) 
triangle for a single 270 s observation at 86 GHz on the source NRAO530. 
The data were segmented into 10 s segments and contours of SNRC were 
calculated. As in the other figures, the delay is shown over a range of one 
ambiguity. 

spheric attenuation as the source set. A search on each base- 
line failed to detect fringes. With narrow search windows, 
fringes were detected only on the baseline PO. The global 
search detected fringes just above the threshold with 
SNR^ó, and gave values for the clocks [K=—5 ns, P = 
-60 ns, 0=0 ns (reference)] which agree with the values 
from the earlier observations, when corrected for the clock 
rates. Figure 6 shows the SNR, for the same observation, as 
a function of delay for each baseline separately, clearly 

Global search 317-2315 (10 sec segs) 

delay offset on baseline KP (nanosec) 

Fig. 5. A later observation on NRAO530. The value of SNR4 for the indi- 
vidual baselines KP, KO, and PO using clocks from the global search are 
equal to 2.6, 0.1, and 11 respectively. The global search produces a value of 
SNRC equal to 5.8 at the peak, and corresponding delay offsets close to 
those of the earlier observation shown in Fig. 4. 
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values of rate and delay for each element of the array (ex- 
cluding the reference element). In the last case, for incoher- 
ent averaging over time segments and baselines, the search is 
assumed to span only the two dimensions of right ascension 
and declination. The thresholds for segmented data are valid 
only for large M, as discussed in Sec. 3. If the segmented 
data thresholds are to be compared with those that could be 
obtained from a coherent integration of the entire dataset, 
without coherence loss, then these entries should be multi- 
plied by ^¡M. 

The data used as examples in this paper were taken as part 
of the millimeter VLBI project to study the Galactic Center 
headed by Don Backer and Melvyn Wright of the University 
of California at Berkeley. Millimeter VLBI at the Haystack 
Observatory is supported by the National Science Founda- 
tion. 

APPENDIX A: PROBABILITY DISTRIBUTION AND CUMMULATIVE 
PROBABILITY OF A2 

The probability density of A2 can be derived from a suc- 
cessive convolution of Rayleigh probability densities nor- 
malized by M and with an added offset of 2. The result is the 
relatively simple expression 

Fig. 6. The SNR of the individual baselines for the observation of Fig. 5. 
The delay range of 125 ns is the full range of one multiband delay ambigu- 
ity. The arrows mark the location of signal, in delay for each baseline, found 
in the global search. 

showing that fringes cannot be correctly identified on the KO 
and KP baselines without the global search. 

9. SUMMARY 

Table 1 summarizes the detection thresholds for various 
detection methods relative to the conventional coherent 
single baseline search of a single segment. An array im- 
proves as yjN/2 for a coherent search with an added im- 
provement of better than M1/4 for the incoherent averaging 
of many segments. The detection thresholds in Table 1, in all 
cases except the last one, result in a probability of false de- 
tection of less than 0.01% in a search of 106 independent 

p(A2) 
MY (A^2)^ 2)/2 

2/ (Al) 

Figure 7 shows this distribution for various values of M, as 
well as one of the Gaussian approximations used for large 
M. In order to fix a detection threshold we integrate the tail 
of Eq. (Al), finding a value of Aq that satisfies Eq. (8). This 
can either be done by straightforward numerical integration 
or by using an analytic expression for the cumulative prob- 
ability which we show here: 

p{Al)= ,p(A2)d(A2) 

M—Î 
= e-M(A¿

Q + 2)¡2 2 

¿ = 0 

M 9 
y (¿0+2) 

A:! 
(A2) 

Table 1. Thresholds for various detection methods. 

Method Asymptotic Flux Density Threshold 

1-Baseline Coherent 

1-Baseline Incoherent Averaging 

3-Baseline Bispectrum 

N-Element Array Coherent-Global Search 

Global Search with Incoherent Averaging 

Incoherent Averaging over Segements $z Baselines 

0.53 MU* 

(ir)'/6 

(lb1/2 

0.53 (Äb 

0.53 ( 

1/4 

\ J/4 

1 

0.14 (M=200) 

0.52 (M=200) 

0.45 (N=10) 

0.05 (M=200, N=10) 

0.05 (M=200, N=10) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
95

A
J 

 1
09

.1
39

1R
 

1400 ROGERS ETAL.: FRINGE DETECTION METHODS 

Z = A2 

Fig. 7. Probability density functions of A2 for incoherent averages with an 
increasing number of segments. For one segment (M = 1) the density is an 
exponential probability density with an offset of 2. As M increases, the 
density approaches a Gaussian function as expected from the central limit 
theorem. 

The value of A0 found this way corresponds to a 1% prob- 
ability of false detection in a search of 100 independent trials 
and agrees well with the values plotted in Fig. 1. 

APPENDIX B: SEARCH OF A LARGE NUMBER OF RAYLEIGH 
DISTRIBUTED RANDOM VARIABLES 

When a search is made over a large number of indepen- 
dent Rayleigh distributed random variables (see TMS, p. 
264), 

p(Zm) = nZme~zl'nll\_\-e~z'"2nY~1, (Bl) 

where p(Zm) is probability distribution of the maximum of n 
variables of unit variance. For large n, (Zm) ^ ^2 loge n so 
that the expected value for the noise peak in a search on a 
single baseline is increased by yj2 \ogen as the result of a 
fringe search over n independent rates and delays. For a 
search over (N—l) dimensions or n^N~1^ points 

(Zm) = y¡2 loge n
N~1= ^2{N~\)\oge n (B2) 

APPENDIX C: LOWER BOUND ON THE STRENGTH OF A NOISE 
SPIKE 

Consider the following search procedure for the purpose 
of evaluating the noise. First, search for a maximum in the 
magnitude on a single baseline from station 2 to station 1. 
Adjust the phase of station 2 to make the baseline phase 
zero. Then form a partial sum of the counter rotated cross 
spectra on just the baselines from station 3 to stations 1 and 
2. Find a peak in the magnitude by adjusting the delay and 
rate of station 3 and then adjust the phase of station 3 (which 

1400 

is in common to both baselines) to zero the phase. Continue 
this process up to N stations. The noise peak for the partial 
sum to the £th station is 

2\[k— 1    
N(N— i) loge n> (Cl) 

where the first factor is the noise caused by adding (k—l) 
baselines and dividing by the total number of baselines. The 
values of delay rate and phase found using this procedure 
will give a sum over all baselines which is a real quantity 
because the phases were adjusted to make the partial sums 
real and will have a value equal to the sum of the magnitudes 
of each partial sum for the search to each added station. Thus 
the noise peak on the average of all baselines is 

iV(V-1) ^ l0ge W[1 + + V(AT-1)], (C2) 

which becomes [e.g., Gradshteyn & Ryzhik (1980)] 

 23/2 [2 
55 v'2 log, n — -y-, (C3) 

where the equality is approached for large N. The noise peak 
is increased by more than 

23/2 Í2 Mr(jV-l) /8(1V-1) 
— (c4> 

as a result of file {N—l) dimensional search. Since this rep- 
resents only one possible prescription for finding a maximum 
in the average of cross-spectral functions over all baselines, 
it is an upper bound on the sensitivity improvement over a 
single baseline. 

APPENDIX D: COVARIANCE MATRIX OF ESTIMATED STATION 
PHASES 

If we use the method of least squares to estimate N—l 
station phases represented by column vector X from the ob- 
served baseline phases represented by the column vector Y 

Y=A.X+£, (Dl) 

where the column vector e are the measurement errors on 
each baseline. The normal equations are 

At-X=At-Y (D2) 

and A is the matrix of points for N— 1 phases to be deter- 
mined from N{N—1)!2 baselines. The matrix ArA has di- 
agonal elements of value N—l and all other elements have a 
value of —1. It can be shown be inspection that the inverse 
of ArA, which is the covariance matrix, has diagonal ele- 
ments of value 2/N and all other elements of value UN. 
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