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Abstract. We present time-dependent hydrodynamical models
of radiation driven hot star winds, which are subject to a strong
instability intrinsic to the radiative line force. The calculations
are done using a newly developed radiation hydrodynamics
code applying the Smooth Source Function method (Owocki
1991) to calculate the radiative acceleration. Assuming spheri-
cal symmetry, the wind consists of a sequence of narrow, dense
shells, where each shell is bounded by a pair of reverse and
forward shocks, in good agreement with comparable models by
Owocki (1992). We find frequent encounters of two shells with
subsequent merging of the shells into one. For small periodic
base perturbations, the wind structure is also periodic, without a
stochastic component. For large base perturbations, on the other
hand, a continuous spectrum of wave frequencies is excited in
the wind. Furthermore, our models show the shock decay to set
in from about 5 stellar radii on.

The major theme of this paper is the energy transfer in the
wind. Time-dependent supergiant wind models up to now sim-
ply assume radiative cooling to be efficient, and hence the shocks
to be isothermal. To test this assumption and to calculate the
X-ray emission, the energy equation is included in the simu-
lations. A severe numerical shortcoming is then encountered,
whereby all radiative cooling zones collapse and the shocks be-
come isothermal again. We propose a new method to hinder this
defect. Simulations of dense winds then prove radiative cooling
to indeed be efficient up to 5 to 7 R.. Shock temperatures are
between 10° to 107 K, depending on the base perturbation. Be-
yond these radii, however, the cooling zones of strong shocks
become broad and thereby alter the wind structure drastically: all
reverse shocks disappear, leaving regions of previously heated
gas. This gas cools as it advects to larger radii. Since, moreover,
shell-shell collisions only occur up to 6 to 7 R., the wind can
be divided into two regions: an inner, active one with frequent
shocks and shell-shell collisions; and an outer, quiescent region
with “old” hot material, and with no further shell collisions.

Key words: stars: early type — stars: mass-loss — hydro-
dynamics — instabilities

1. Introduction

The winds of hot, luminous OB stars are driven by the mo-
mentum transfer from the star’s UV continuum radiation field
to metal ions, which is accomplished in numerous line transi-
tions of these ions. Building upon the work by Lucy & Solomon
(1970), Castor et al. (1975), and Abbott (1980, 1982), the sub-
sequent inclusion of the finite cone angle effect (Pauldrach et
al. 1986; Friend & Abbott 1986), a detailed NLTE treatment of
the wind (Pauldrach 1987), radiative transfer allowing for mul-
tiple scattering (Puls 1987), and the empirical inclusion of line
blocking and shock emission (Pauldrach et al. 1994a) results in
stellar wind models which are able to predict the correct mass
loss rates and terminal velocities, and to reproduce the complete
UV line spectrum (Pauldrach et al. 1994a,b).

The most severe restriction underlying these models is their
intrinsic assumption of stationarity. However, a wealth of obser-
vational evidence exists for a distinct time-dependency of the
winds: 1. In the absorption troughs of ultraviolet P Cygni pro-
files of strong but unsaturated metal lines one observes the ap-
pearance of so-called discrete absorption components (DACs)
at 0.3 to 0.5 of the wind’s terminal velocity, vo,. The DACs
propagate to near v, on timescales of one to a few days (Prinja
& Howarth 1986, 1988; Henrichs 1988; Kaper 1993, and ref.
therein). DACs have also been found in the P Cygni profile of
the subordinate optical line He I A5876 of the O supergiants
HD 151804 (Fullerton et al. 1992) and HD 152408 (Prinja &
Fullerton 1994a,b), starting already at 0.1 v, . Because the re-
currence time-scale of the DACs seems to be correlated with the
projected rotational velocity of the star (Prinja 1988), a presently
favored model of DAC creation is by corotating interaction re-
gions (CIRs; Mullan 1984, 1986). 2. Saturated UV P Cygni
profiles often show variability of the blue absorption edge (Hen-
richs 1991; Kaper 1993), and the appearance of broad and black
absorption troughs (Prinja & Howarth 1986; Kaper 1993). The
blue edge variability is believed to be caused by (rarefied) high
speed material in the wind. The black troughs are thought to be
due to a multiple non-monotonic velocity field of the wind (be-
cause of, e.g., the occurence of shocks), which in consequence
induces a very effective back-scattering of the photopheric ra-
diation (Lucy 1982a, 1983; Puls 1993; Puls et al. 1993b). 3. The
X-ray emission from OB stars (EINSTEIN: Harnden et al. 1979;
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Seward et al. 1979; Cassinelli & Swank 1983; Chlebowski et al.
1989; ROSAT: Hillier et al. 1993; Cassinelli et al. 1994; Drew
et al. 1994) was first proposed to stem from coronal emission
regions just above the stellar photosphere (Hearn 1972, 1975;
Cassinelli & Olson 1979). These coronal models were subse-
quently ruled out for mainly two reasons: (i) The deep-seated
origin of the X-rays would lead to strong K-shell absorption in
the overlying wind material, which is not observed (Cassinelli
& Swank 1983; Hillier et al. 1993; Cassinelli et al. 1994). (ii)
The green coronal emission line [Fe XIV]5303 A is not found in
high S/N spectra of ¢ Pup (Baade & Lucy 1987). The presently
favoured model of X-ray emission is therefore by strong shocks
in the wind; this is discussed below. 4. A non-thermal compo-
nent in the radio emission of many OB stars (Abbott et al. 1981,
1984b; Bieging et al. 1989) is interpreted to be synchrotron
radiation by shock-accelerated particles (White 1985). This in-
terpretation is supported by the correlation found between X-ray
emission and non-thermal radio emission (Chlebowski 1989).
5. With mass loss rates inferred from radio data, the observed
thermal IR emission of winds is often too large when a smooth,
stationary wind model with a 8 < 1 velocity law is applied
(Abbott et al. 1984a). Because the free-free IR emission is a
density-squared process, this enhanced flux can be explained
by clumpiness of the winds in the region of the IR formation
(Abbott el al. 1984a; Lamers & Waters 1984; Puls et al. 1993a).
Clumpiness close to the stellar photosphere may also influence
the formation of optical transitions such as Ho (Ebbets 1982;
Wolf et al. 1994; Kaufer et al. 1994; Puls et al. 1995) or He
I A5876 (Prinja & Fullerton 1994a,b). 6. Finally, recent obser-
vations by the Gamma Ray Observatory of a WR star (White
1994) suggest that the postulated y-ray emission from hot star
winds (White & Chen 1992a,b) has readily been detected. The
v-rays should stem from pion decays, where the pions in turn
are produced by collisions of thermal ions with protons Fermi-
accelerated in shocks. The energies of these -rays are ~ 5
decades higher than observed X-ray energies.

The major cause of wind structure is thought to be the strong
hydrodynamical instability intrinsic to the line driving of the
wind. (Possible exceptions to this are the DACs, the appear-
ance of which might be connected to photospheric perturbations,
where the latter induce stable, large scale structures propagating
through the wind.) Milne (1926) proposed in essence this insta-
bility (or runaway) mechanism for the first time, for single ions
in a static atmosphere. However, these runaway ions would lose
their excess energy by Coulomb collisions with surrounding
ions. Contrary to this, the wind instability proposed by Lucy &
Solomon (1970) does not apply to single ions, but instead to hy-
drodynamical fluid particles. The mechanism of this instability
is discussed extensively by Owocki & Rybicki (1984; hereafter
OR) and by Rybicki (1987). OR succeeded in the unification
(the so-called “bridging law”) of the disparate results of Mac-
Gregor et al. (1979) and Carlberg (1980), who proposed a strong
wind instability, and Abbott (1980), who proposed stability in-
stead. Following OR, unstable growth should only occur for
optically thin perturbations of optically thick lines, whereas op-
tically thick perturbations should be stable. A further twist came
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into the stability vs. instability discussion by Lucy’s (1984) dis-
covery of the line drag effect. This effect stabilizes the flow due
to the enhanced backscattered flux from larger radii which is
experienced by a particle with outward directed velocity per-
turbation. This leads to zero growth rates very close to the star;
but already within one stellar radius (Owocki & Rybicki 1985)
the growth rate has reached again half the value of the pure
absorption case considered by Carlberg (1980) and OR.

Since the typical growth rate within a characteristic wind
flow time is of the order of 100 e-folds, the growth of perturba-
tions will quickly reach the non-linear regime. Phenomenologi-
cal models of the fully developed wind structure were proposed
by Lucy & White (1980), Lucy (1982b), and MacFarlane &
Cassinelli (1989), and are discussed below. The first consistent
numerical simulations of the unstable growth were presented by
Owocki et al. (1988; hereafter OCR). The three central assump-
tions underlying their work are: (i) one-dimensional spherical
symmetry of the flow; (ii) isothermality; and (iii) pure photon ab-
sorption in spectral lines (no re-emission). The latter assumption
has been dropped in subsequent work (Owocki 1991, 1995) by
the approximate inclusion of line scattering using the so-called
smooth source function method (SSF). The principal wind struc-
tures of pure absorption models and SSF models (but not the
location of onset of the structure) are identical: the stationary
wind at time ¢t = O is transformed into an outward migrating
sequence of very narrow and dense shells, which are enclosed
by a strong reverse shock on the starward side and a weaker
forward shock on the outer side.

The central part of the present paper deals with relaxing the
above assumption of isothermality, (ii). There are mainly three
reasons for doing so: 1. To calculate the X-ray emission from a
time-dependent wind model one needs to know the temperature
distribution of the wind material. 2. Isothermality should be a
good approximation only for dense winds with efficient radia-
tive cooling, where cooling zones are short enough to have no
influence on the wind dynamics. On the other hand, radiative en-
ergy losses are small in the thin winds of B near main sequence
stars (Lucy & White 1980), and also in rarefied regions of OB
supergiant winds. Besides at large distances from the star, such
regions possibly also exist at small radii due to the extreme di-
lution of the intershell medium in time-dependent wind models.
3. The EUV radiation of shock heated matter has an important
influence on the ionization balance in the wind (Pauldrach et al.
1994a,b).

The energy transfer and X-ray emission is also the concern
of most phenomenological models of the wind structure so far:
Lucy & White (1980) proposed the X-rays to originate from bow
shocks surrounding radiatively driven blobs ploughing through
rarefied, shadowed, and therefore not radiatively driven wind
material. The energy dissipation due to the friction between
these two components is accomplished in the shock fronts. In
this model, X-rays from blobs lying close to the star should
experience strong K-shell absorption in the overlying wind ma-
terial, which is not observed (Cassinelli & Swank 1983). Lucy
(1982b) simplified the 2-D blob model to a 1-D model of a saw-
tooth like sequence of forward shocks. Within this model, the
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mutual shadowing of shocks (“blobs”) is included. Because of
this shadowing, the distance between shocks is larger; therefore
shocks can exist up to larger radii and K-shell absorption has
almost no significance, in accord with observations. The short-
coming of this model is that the resulting X-ray spectrum is too
soft and too weak (Lucy 1982b; Cassinelli & Swank 1983). Fi-
nally, MacFarlane & Cassinelli (1989) proposed a model for the
X-ray emission from the main-sequence BO star 7 Sco, which
is able to reproduce the observed EINSTEIN data well. In this
model, the propagation of a single shell through the wind is
followed. The radiative line force is assumed to be stable, and
consequently the shell does not evolve from an initially small
perturbation, but instead is created by a strong, arbitrary per-
turbation of the boundary (MacFarlane & Cassinelli 1989) or
the initial (Cooper & Owocki 1992) conditions of the wind.
The importance of single, strong shocks for the X-ray emission
from winds has already been noted by Lucy (1982b) (cf. also
Cassinelli et al. 1994).

The first hydrodynamical wind models including the energy
transfer of the unstable growth of initially small perturbations
were presented by Cooper & Owocki (1992). These authors en-
counter a numerical shortcoming due to the radiative cooling of
the gas: cooling zones behind strong shocks are not resolved, in-
stead the shocks become isothermal again. This is the case even
on a very fine spatial grid. Because of this problem, Cooper &
Owocki (1992) neglected completely the radiative cooling in
thin winds. The X-ray flux from these models was found to be
typically a factor of 10 smaller than the observed flux. Cooper
& Owocki (1994) therefore concluded that a large fraction of
the (thin) wind material above a certain radius is heated to X-
ray temperatures, which was also suggested by Cassinelli et al.
(1994). For dense winds with their efficient cooling, on the other
hand, Cooper (1994) and Cooper & Owocki (1994) suppose the
cooling zones behind shocks to be steady (i.e., the cooling time
is much shorter than the time-scale for changes in shock param-
eters). The X-ray spectrum from the shocks of an isothermal
wind model is then found by using a tabulation of the emission
as function of post-shock temperature. Contrary to the case of
thin winds, the calculated X-ray flux from dense winds is found
to be typically a factor of 10 /larger than the observed flux.

In the present paper, we concentrate on the consistent inclu-
sion of the energy transfer in time-dependent hydrodynamical
wind simulations. To this aim, the origin of the above collapse
of the radiative cooling zones is revealed and a method proposed
to hinder it. Besides the assumption of 1-D spherical symmetry
still remaining, the further main restrictions of our calculations
are: 1. Only dense winds of O supergiants are considered, leav-
ing the study of thin winds of B main sequence stars to future
work. 2. Only the wind dynamics is considered. The calcula-
tion of X-ray emission from the models and comparison with
ROSAT observations will be given in a follow-up paper.

The rest of this paper is organized as follows: Sect.?2 de-
scribes the numerical technique applied in calculating time-
dependent wind models. In Sect. 3, an isothermal model for
a supergiant wind is presented and compared with results by
Owocki (1992, 1994). Section 4 discusses the numerical prob-
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lem of the collapse of the radiative cooling zones behind strong
shocks by means of a simple test flow problem and proposes a
method to hinder this collapse. In Sect. 5, wind models including
the energy transfer are examined. Section 6 gives a summary of
results.

2. Technique

2.1. The hydrodynamical equations

The radiation hydrodynamical wind equations are, assuming an
inviscid, one-component flow,

op ..
5 +div(p v) =0, o
0 .

(8PtV) * le(pV ® V) = —gradp — P8grav + 0 8line (2)
% +div(e v) = —pdivv — A. 3)

ot

The thermal energy density, e, of an ideal gas is e = p/(y — 1),
where v = 5/3 is assumed in the following.

The expressions for the radiative line acceleration gy, and
for the radiative cooling function A (~ p?) are given below.
The temperature dependence of both the line force and the ra-
diative cooling rate should in principle be found from a time-
dependent, non-LTE treatment of the wind plasma. At least the
first of these will likely remain beyond the capacity of comput-
ers for the foreseeable future. Here we simply parameterize the
temperature dependence as found from stationary equilibrium
calculations by Raymond et al. (1976) [cooling function] and
MacGregor et al. (1979) [radiative force].

In the following, we will restrict ourselves to 1-D spherical
symmetry: the calculation of the radiative line force in 2 or more
dimensions is beyond current computer capabilities. Physical
justification for assuming a spherically symmetric flow comes
from the fact that the unstable growth of waves with “lateral
velocity polarization” is damped because of Lucy’s (1984) line
drag effect (Rybicki et al. 1990). As long as the amplitude of
photospheric perturbations, which are assumed in the present
paper to seed the wind structure, has no strong dependence on
latitude or azimuth, one then would expect the appearance of
shell-like structures in the wind. In more realistic 2-D and 3-
D models, however, even weak azimuthal perturbations could
grow nonlinearly and break the shells into clumps due to in-
stabilities of the Rayleigh-Taylor or the Kelvin-Helmholtz type
(cf. Chandrasekhar 1961).

2.2. The hydrodynamical scheme

Equations (1) to (3) are discretized using an operator-splitting
time-explicit, finite differences Eulerian scheme on staggered
grids (cf. Reile & Gehren 1991a,b). The advection terms in in-
tegral form are solved on the control volumes of these grids
(see, e.g., Roache 1982). This automatically ensures the correct
Jjump conditions at shocks (and the correct shock positions), if
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the hydrodynamical equations are in conservative form. How-
ever, Eq. (3) is the thermal (not the total) energy equation, which
is not conservative. We will return to this point in the next sec-
tion. The advection fluxes are calculated using van Leer’s (1977)
monotonic interpolation. For the calculations in the present pa-
per we applied the consistent advection scheme of Norman et
al. (1980), since otherwise spurious spikes would show up in
the velocity field (Owocki 1991).

The consistent advection scheme after Norman et al. (1980;
see also Norman & Winkler 1986, and Stone & Norman 1992)
may be described as follows. Let IF be a conserved quantity like
mass, momentum (in the absence of forces), or total energy;
let f = dIF/dV (with volume V') be the IF-density, and let
F(f) = f v be the corresponding flux vector. The circumflex in
the last expression indicates that the f value is interpolated, e.g.,
using either the donor cell scheme, the van Leer scheme, or the
piecewise parabolic scheme (Colella & Woodward 1984). This
is necessary since f and F are defined at different locations on
the staggered grids, i.e., f at volume centers and F on volume
boundaries. Consistent advection now means the replacement
of the above (“standard”) flux expression by
F(f)=fv— f/pF(p), @
with mass flux F(p) = pv.

Finally, the pressure terms in the momentum and the energy
equation, as well as ggray and giine in the momentum equation,
are discretized in a straightforward manner. — The boundary
conditions at Ry, and Ry are fixed via Riemann invariants.
Rmin is the stellar photosphere. Here, an isothermal exponential
density stratification through which a sound wave propagates
into the wind is assumed as boundary condition. At Ry,,x, Hed-
strom’s (1979) nonreflecting boundary conditions are applied
using the formalism described by Thompson (1987, 1990).

2.3. The energy equation

In supergiant winds with flow speeds of a few thousand km/s
and thermal speeds of about 3 km/s for ions like Fe and Ni, the
ratio of the thermal energy of these ions to their macroscopic
flow energy is of the order of 10~¢. However, behind strong
shock fronts this ratio can approach unity. Hence, the thermal
energy is an ill-conditioned part of the total kinetic energy of
the wind plasma. For this reason we solve the thermal energy
equation instead of the conservative total energy equation.

To ensure correct shock jumps, artificial viscosity is used
in the tensor formulation of Schulz (1964) and Winkler & Nor-
man (1986). In this formulation, only the viscosity coefficient
is “artificial”, in that it depends on the velocity gradient.

To solve for the adiabatic part of the energy equation plus
the contribution from artificial viscosity (but without the ra-
diative cooling), the operator splitting scheme of Norman &
Winkler (1986) is used. The central part of this scheme is an
implicit expression for the pressure, which should “optimize”
energy conservation. In contrast to this, the scheme proposed
by Hawley et al. (1984) only ensures positivity of the thermal
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energy. After this adiabatic + viscous step, all variables are up-
dated and the radiative cooling rate is calculated. Other possible
operator splitting schemes include: (i) the one after R6zyczka
(1985), where adiabatic terms and radiative cooling terms are
mixed; and (ii) the scheme after Mair et al. (1988), where the
radiative cooling is calculated in two half-steps, i.e., before and
after the solution of the adiabatic part of the energy equation.
We use the simple scheme described above because it makes
a clear distinction between adiabatic and non-adiabatic terms,
and thereby allows a simple analysis of the numerical behaviour
of the radiative cooling. Assuming the cooling function to be of
power law form, A = Ap?*T'®, the equation for radiative cooling
in this scheme is (cf. Eq. (3)),

dT

— = _BT“ 5
& ) &)
with constant B,

B= w Ap. (6)

w1 and k are the mean molecular weight and the Boltzmann con-
stant, respectively. Note that p in Eq. (6) is a constant, since the
density is updated only once during the numerical time step, in
solving the continuity equation. The solution of the differential
equation (5), for a # 1, is

1
At ] T=
T =T, [1 -(l-o } , Q)
Te,n
with the cooling time (at time step n)
Tl—a
Ten = % . (8)

From the requirement that the term in square brackets in (7) is
positive, one finds the time step limitation
Te,n

At <

1.
T 1-« @<

for ©)]
For a > 1, on the other hand, there is no limitation on the time
step.

For time-explicit differencing of (5) (instead of solving the
differential equation directly), one finds the time step limitation,
again requiring positive temperatures, At < 7 ,,. For the semi-
implicit and fully implicit differencing of (5) (see Roache 1982)
the time step limitation has to be calculated separately for each
value of a. For the case o = —1/2, which is of interest here

(see below), one finds At < ﬁgn,n (semi-implicit), and At <

#Tc,n (fully implicit).

These time step limitations from the demand for positive
temperatures are to be distinguished from time step limitations
from numerical stability. A linear stability analysis of the ex-
act solution (7) of (5), as well as of the time explicit and time
implicit versions of (5) all lead to the following result: For
a < 0, temperature perturbations always grow in course of
time, |AT}+1/AT,| > 1, even for an arbitrary short time step
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At . However, this does not indicate numerical instability, but
instead is a simple manifestation of Field’s (1965) cooling run-
away: material which becomes cooler than its surroundings will
usually enlarge this temperature difference in time, since ra-
diative cooling proceeds more efficiently for cooler material.
Field’s isochoric instability criterion (the density is constant in
(5)) is precisely a < 0, see his Eq. (4a). It therefore appears to
us that for o < 0, no time step limitation can be drawn from a
linear stability analysis of the radiative cooling equation.

For the calculations in this paper, we have chosen a time
step

At = min (AtCFL: Atvis, ZXtcool)y (10)
where
. Ar
Atcp, = o glr}c%m’ o =0.5,
2
Atyis = min (Ar) ,  v=—(bAr)*min(0,divv), b=1,
(grid) 2v

1 .

Ateoor = max (§ gﬁl‘%%a T2)- 11

Here, Atcgy is the Courant et al. (1928) time step, with a the
sound speed. Aty is the time step limitation from linear vis-
cosity (cf. Roache 1982), which is also applied to (nonlinear)
artificial viscosity (Stone & Norman 1992). 7. /3 in the radia-
tive cooling time step At oo corresponds to half the maximum
allowed time step (9) for o = —1/2. 7, is a lower cutoff time to
prevent the resolution of prohibitively short cooling intervals.
Under very general assumptions one can easily show that for a
post-shock cooling time 7, < Atcp the corresponding cooling
zone behind the shock front cannot be resolved since it is shorter
than the grid distance. Therefore, it should be safe to assume
T, = AtcgL, i.€., to neglect the limitation on the time step from
radiative cooling altogether. Proceeding in this way, negative
temperatures occur frequently; however, they can simply be re-
placed by some arbitrary floor value for the temperature. Test
calculations we have performed for the extreme cases 7, = 0
and 7, = Atcp indeed gave essentially the same results.

2.4. The radiative line force

The radiative acceleration in the radial direction (spherical sym-
metry is assumed) in an isolated spectral line of frequency vy,
and constant mass absorption coefficient & is,

1
4 1
I (1) = _CE'KLVL'Uth{‘z'IVL(R*) /d/LND(N) X
0

[ee)

/ dz ¢($ _ ;w(r)) P(z)e—(TL(T,M,Z)—To)
. Uth
1 [e's)
+ l/duu /d:cd)(m—m)
2 Uth
—1 —00
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TL(r, 1, T)
dr' S, (r'(1')) e~ It =Tl } (12)

To

Here, z is the normalized frequency variable of the line (assum-
ing pure Doppler broadening with normalized profile function
@), x,, = v — v, /Avp, where Avp = v vy /c. The mass ab-
sorption coefficient &1, (in cm?/g) is taken to be constant, which
is a good approximation for resonance lines. A core-halo ap-
proximation (optically thin continuum) has been applied in the
above expression, where the function D(u) describes the an-
gle dependence of the photospheric intensity, and P(x) is the
photospheric profile of the line (the transmission of a Schuster-
Schwarzschild layer is proposed by OCR). 7y is the optical depth
atrT = R, orr = 00, depending on whether the ray hits the stel-
lar core or not.

For simplicity, it is assumed that the line corresponds to a
singlet transition, and that the line is isolated, i.e., no line overlap
effects are considered. For a discussion of the latter, see Owocki
& Rybicki (1985), Puls (1987), and Puls et al. (1993b).

The total radiative force from a large number of wind driving
lines is found by integration of the single-line force over the
truncated CAK line distribution function (cf. OCR),

Giine(T) = /OO ds /oo dv N(k, V) (1),
0 0

N(k,v) = l i (@)2 “ e“/‘i/ﬂmax, (13)
V Ky \ K

where a < 1. The cutoff kmpx < Ko is introduced to suppress
unstable growth on length scales shorter than the grid resolution,
which is due to (very) strong lines.

The idea of the Smooth Source Function method (Owocki
1991, 1995) is to assume that the line source function S, ()
is “insensitive to the details of dynamical variations” (Owocki
1991), so that one may adopt the source function for a stationary
flow. However, for a non-monotonic velocity field (due to, e.g.,
shocks), radiative couplings occur between different locations
in the wind. In case of spatially separated, coupled resonance
zones (i.e., if there exists a location r in between two coupled
regions R and R, such that |(uv), — (uv)R, ,| > nom, withn =
O(1)), an iteration procedure within the generalized Sobolev
approximation of Rybicki & Hummer (1978) could be used to
calculate the source function. This is done in Puls et al. (1993b)
for line formation calculations in structured winds, and could
be applied in future hydrodynamical simulations. In the present
paper, only a local source function is used.

In both cases of optically thin and thick lines, simple ana-
Iytical expressions can be given for the source function in lo-
cal Sobolev approximation. For reasons of computing time, the
calculations in the present paper are done using an opacity in-
dependent source function, which is taken here to be the source
function for an optically thin line only, corresponding to pure
geometric dilution of the radiation field. Calculations using the
source function for an optically thick line can be found in Puls
et al. (1994). Wind models using a source function which fixes
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2 the growth rate to the value predicted from the linear stability

analysis of Owocki & Rybicki (1985) are discussed by Owocki
(1994).

Again for reasons of computing time, the angle integration
in (12) is replaced by a one-ray quadrature (Owocki 1991). The
different domains of integration over solid angle in the direct
and diffuse terms are accounted for by a scaling factor (r/ R.)?.
Using the Stefan-Boltzmann law, neglecting limb-darkening,
and integrating over the truncated line distribution function one
finds (see Owocki 1991 or Feldmeier 1993 for some missing
steps),

fcovm)l-a (%)a R2 g

c 72

T4
gine(r) = () ( .
T po(r)\ g
dx ¢ T — Vih 77+ (7‘, ,LL, ZE)

T pu(r)
/ dxqﬁ(m— o )

— 00

[77:&(7', 1y iL’) - 77+_a(7', My x)] } (14)

S(r)r?

"R

Here, I" is the Gamma function, and S = f dvS,, I, =
JdvI, .. In addition, Sin(r)/I. = W, with W = %(1 — hs)

the dilution factor, and p. = /1 — (R /r)?. The functions 74
are given by:

(s @) = KL LT phy T) = M0(T) + Kiay + 0, $(),
n- (’I", My 33) = nR(x) - "QL_ITL(Tv K, :E) + K/x;;:x (15)
The term ¢(x)/o. (with o, the Thomson scattering coefficient)
in the expression for 7, arises from the Schuster-Schwarzschild
photospheric layer (cf. OCR). The boundary conditions used
are 19 = 0 at the stellar core and nr(z) = R p(R) ¢(x — prvR)
at the maximum radius R, see Owocki (1991).

In the expressions for the line force up to now the wind
was assumed to be isothermal. The temperature dependence of
the force from an optically thin line can be written in the form
Guhin(T, T (1)) = F(T)guin(r, Tege). The function F' then enters
the total force from all contributing lines (optically thin and
thick) in two ways: (i) as a multiplicative factor, as just defined;
and (ii) in the expression for the optical depth, since hot material
is more transparent (F' < 1) than cold material. Finally, one has
to account for the temperature dependence of vy, in the profile
function. This latter step is accomplished in (12) by noting that
both the products kvy, and zvy, are independent of temperature,
and therefore can be replaced by the corresponding products at
Tess-

For the function F' we use the fit by MacFarlane & Cassinelli
(1989) to the numerical results of MacGregor et al. (1979). We
then have F' = 1 below a certain cutoff temperature T,,. Above
T, F' drops exponentially.

A. Feldmeier: Time-dependent structure and energy transfer in hot star winds

2.5. The radiative cooling function

The radiative cooling function from Raymond et al. (1976) for
an optically thin gas can be approximated in the temperature
range 10°K < T < 107 K by a power law (IV; and Ny being
the electron and hydrogen particle densities, respectively),

A = NeNHARTa, (16)
where

1
a=—7, ad  Ag=164 107 ergem® K2 s~1. (17)

A better fit to the Raymond et al. cooling function is achieved
by assuming distinct power laws in 5 temperature sub-intervals
(Rosner et al. 1978). However, in the present framework we
use the simple fit (16), (17) only. The reason is that, depending
on the value of «, two different thermal instabilities possibly
complicate the wind dynamics: (i) Field’s (1965) local runaway
instability; and (ii) the global oscillatory instability of Langer et
al. (1981, 1982). Therefore, using only one value for « certainly
helps to keep the calculations more lucid, and at the same time
should be a sufficiently good approximation for our present pur-
pose, namely to investigate the principles of the energy transfer
in the winds.

2.6. The wind model

Since ¢ Puppies is a well-studied O supergiant, stellar parame-
ters close to the ones of ¢ Pup are used in the following calcu-
lations. Table 1 lists the stellar and wind parameters.

The line force instability has a significant growth rate only
for velocity perturbations with a wavelength shorter than % to
1 the Sobolev length Lsgy, = vy /(dvsie/dr) of the stationary
wind (OR). The numerical grid therefore has to be fine enough
to resolve these very short length scales. We use 3 000 logarith-
mically spaced grid points out to 10 R,, i.e., Ar/r = 7.68 1074,
The worst resolution of the Sobolev zones occurs in the region
of maximum velocity gradients, i.e., close to the sonic point,
and is min(Lsop star. /AT) S 3.

The formation of structure in the wind is triggered by a
photospheric sound wave which propagates out into the wind,
acting as a seed perturbation there. Other photospheric trigger-
ing mechanisms, especially non-radial pulsations (see Baade
1991; Gies 1991) and strange mode oscillations (see Gautschy
& Glatzel 1990; Kiriakidis et al. 1993), will be studied in fu-
ture work. The dispersion relation for isothermal sound waves
of period P in an isothermal atmosphere of scale height H is
(Lamb 1932),

A= Ao with

V1= (o/arHY?'

a is the isothermal sound speed in the limit of A <« H. Even for
sound waves with a wavelength somewhat larger than H, the
linear dispersion relation A = a P still holds approximately: In
our model, A\/H = 5.2, but still \/Aq = 1.1. The acoustic cutoff

Xo = aP. (18)
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Table 1. Stellar and wind parameters. The stellar parameters are taken
from Kudritzki et al. (1983).

Parameter Symbol Value
Mass M 42 Mo
Temperature Tese 42000 K
Radius R. 19 Rp
Luminosity L 1.010°Le
Helium fraction Y = Nge/Nua  0.16
Ionization degree Iu; Ine 1;2
Thomson coefficient Ce 0.32cm?g™!
Eddington factor r 0.59
Scale height (isoth.) H 3.1107% R,
CAK exponent « 0.72
Line force constant Ko U/ c 1800 cm?® g~
Line strength cutoff Kmax / K0 1073
Mass loss rate M 31078 Mg yr~!
Escape velocity Vese 580 kms™!
Terminal speed Voo 2000 kms™!
Sound speed (isoth.) Giso 23 kms™!
Thermal speed Vth 0.3 aiso
Sound wave: Period P 5000 s
Amplitude at R. A =68p/p 0.01
Wavelength A 87107 R,

period, on the other hand, at which the wavelength of a sound
wave becomes infinite (i.e., the denominator in (18) becomes
zero), is Py = 6.2 h for the stellar parameters of Table 1.

3. Isothermal wind models

In this section, the energy equation is trivially solved by setting
p = a*p. This corresponds to the calculations by OCR and
Owocki (1992, 1994). The reason to assume supergiant winds
to be dynamically isothermal is their high density, which implies
that radiative cooling should be efficient enough to keep cooling
lengths short compared with dynamical length scales.

Figs. 1 shows the wind structure 10 days after model start.
We have followed the calculation for this long time interval
for two reasons: (i) To make sure that the wind has completely
settled in its response to the photospheric sound wave. As will
be seen below, this may sometimes take =~ 1 week. (ii) To permit
us to perform a Fourier transformation of the wind velocity (at
fixed locations r) as a function of time.

As in the models by OCR and Owocki (1992, 1994), the
wind in Fig. 1 consists of a sequence of very narrow, very dense
shells. The shells are enclosed by a reverse shock on the starward
facing side. On the outward side, it can actually not be decided
from the rather poor resolution whether the shells are bounded
by a forward shock or by a continuous, forward-facing com-
pression wave (as opposed to a rarefaction wave; see Courant &
Friedrichs 1948, Chap. III). Density contrasts of a few thousand
occur at the reverse shocks, corresponding to Mach numbers
of 30 and more. Because of these large compression ratios, the

2 4 6 8 10

1 0—11 7 time step 123203 ; time = 240.00 hours ; 35154.9 cpu sec.

P77 IITTTTE
!

6 8 10

4
Stellar Radii

Fig. 1. Isothermal wind 10 days after model start. The values of p and
v at each grid point are plotted. Dashed line: Stationary start model

dense shells in Fig. 1 are very narrow and the reverse and for-
ward shocks that enclose a shell propagate at about the same
speed (cf. Sturrock & Spreiter 1965). The forward (reverse)
shocks are faster (slower) in any reference frame than both the
in- and outflowing material. Because of this, every wind parti-
cle passes at most through one shock; or, stated differently, a
particle cannot leave a shell once it is in it.

It is interesting that the wind structure in Fig. 1, which re-
sults from the unstable amplification of the periodic base per-
turbations, appears itself to be quite stable. This is despite the
fact that the material in front of the reverse shocks (i.e., on
their left side) shows large velocity gradients, and thus might
be expected to be subject to further, smaller scale instability.
However, this material is strongly rarefied, so that no optically
thick lines are present, which is the other prerequisite for un-
stable growth to occur. Inside the shells, on the other hand, the
material is extremely dense, but here the velocity gradients are
negative, which means these regions are stable as well. The re-
gions in front of the forward shocks (i.e., on the right) are stable
because of a combination of small velocity gradients (due to
shadowing by material at smaller radii) and the depletion of the
pre-shock gas. — In effect, the unstable amplification of the driv-
ing perturbations suppresses the formation of structure on other
scales.

A striking fact about the wind model of Fig. 1 is its strong
periodicity at radii larger than 4 R,.. The cause for the seemingly
chaotic structure in Fig. 1 up to about 4 R, is the creation of the
shells in triples per period of the photospheric sound wave, with
subsequent collisions among their members. n-tuples are indi-

cated in the density run of Fig. 1 by M. The triple-wise creation
of shells and their collisions thereafter are also clearly seen in
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Fig. 2. Wind structure from Figs. 1, plotted against mass coordinate

Fig. 9 for a wind model including the energy transfer, and will
be discussed further in Sect. 5.

From about 5 R, on, the shocks which enclose the shells be-
come weaker with increasing distance from the star. The reason
for this is twofold: (i) The instability is strong only close to the
star, where the velocity gradient is large. (ii) Shocks far out in
the wind are shadowed by material close to the star. This shock
decay is not present in models by Owocki and Cooper, where
instead the shock amplitude stays almost constant as function
of radius. The observable X-ray emission should depend sensi-
tively on the maximum radius for formation of strong shocks.
As found by Hillier et al. (1993) for ¢ Pup, X-rays with en-
ergies below 1 keV originate from radii (much) larger than
10 R... Detailed modeling of the X-ray emission from time-
dependent winds has to clarify the extent to which weak shocks
(still present at large radii) are able to produce the observed soft
X-ray component.

Following OCR, we introduce the mass coordinate

T
M(r,t) =47 / dr' v p(r' t). (19)
R*
Figure 2 shows density and velocity of the wind model of Fig. 1,
now plotted against M. The mass is given here in units of the
“photospheric mass”,

Mpnor = 4TR2 /0, (20)

which is derived by assuming an isothermal, plane-parallel ex-
ponential density stratification, with the location of the photo-
sphere at optical depth unity for Thomson scattering.

Figure 2 shows that only a tiny fraction of the wind mass
is actually accelerated to high velocities in front of the reverse
shocks. Furthermore, almost the whole wind mass is localized
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Fig. 3. Time series of the velocity at the fixed location 7 = 3 R, in the
wind, plotted against the phase of a wave with period P = 5000 s.
48.3 wave cycles are shown
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Fig. 4. Power spectrum of the time series of Fig. 3. Upper panel: Har-
monic domain of the frequency f = 1/5000s™' (leftmost peak). The
first 50 overtones of this frequency are clearly seen. Lower panel: Sub-
harmonic domain of f = 1/5000s~" (right peak)

within the dense shells. In the velocity run of Fig. 2, the reverse
and forward shocks enclosing a shell are clearly separated.

A powerful method to test for the periodic vs. chaotic nature
of the wind structure is to analyze time series of hydrodynam-
ical quantities at fixed locations in the wind. Figure 3 shows
a time series of the velocity at r = 3 R,, plotted against the
phase of a wave with period P = 5000 s. The time series starts
at t = 7.20 days and ends at t = 10.00 days, i.e., shows 48.3
wave cycles. It is striking that even within this spatial region,
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which in the snapshot of Fig. 1 appears to be rather chaotic, the
temporal signal is very nearly periodic. As in Fig. 1, one sees 3
shells passing by per 5000 s period. Figure 4 shows the power
spectrum of this time series. In the power spectrum, besides
the frequency of the photospheric sound wave the first 50 har-
monic overtones, ™ = (n + 1)v, of this frequency are seen.
The reason for the excitation of these overtones is the (nonlin-
ear) wave steepening due to the instability (Landau & Lifschitz
1991, p. 494): though the sound wave is deformed, it keeps its
period, so that the Fourier spectrum consists of (all) the har-
monic overtones of the wave’s frequency. In the subharmonic
domain of this frequency no signal is found, see the lower panel
of Fig. 4. In particular, no period doubling occurs, which would
be a very first hint of a realization of the Feigenbaum route to
deterministic chaos (see, e.g., Schuster 1989) in the wind. Fur-
thermore, the acoustic cutoff frequency of 1/6.2h~! does not
show up. While a corresponding wave is present in early times
of the simulation, it is damped within a couple of days. This is
one reason for the rather long time it takes the wind to settle to
a periodic response driven by the explicit base perturbation.

4. Collapse of the radiative cooling zone

Trying to repeat the above wind calculations including the en-
ergy equation results in the shortcoming that no radiative cool-
ing zones are resolved. The shocks enclosing the shells appear
to be isothermal again, whereas simple estimates show that the
cooling zones behind strong reverse shocks should be resolved
quite well by the numerical grid. In this section, we discuss the
two major causes of this behaviour for a simple test flow, and
present a method to hinder these defects.

4.1. The thermal instability oscillation

Consider the highly supersonic, plane-parallel flow of an ideal
gas against a wall. A shock wave forms which propagates into
the gas. Due to radiative cooling of the shock-heated gas the
shock comes to a stop and the flow becomes stationary (where
o < 3inEq. (16)is necessary for this). The gas accretes onto the
wall in an infinitely thin, infinitely dense layer. The analytical
solutions for the stationary cooling zones, for different values of
a, are listed in the fundamental paper by Chevalier & Imamura
(1982; CI in the following).

A new kind of thermal instability due to radiative cooling
was discovered by Langer et al. (1981) in numerical simula-
tions of white dwarf accretion columns (AM Her systems). The
linear analysis of this instability was performed by CI. The ori-
gin of the instability is the nonlinear dependence of the total
cooling length on the immediate post-shock temperature. De-
tailed descriptions of the mechanism are given in Langer et al.
(1982), Gaetz et al. (1988), and Wu et al. (1992). This insta-
bility is termed “global thermal instability” since it concerns
the cooling zone as a whole, in contrast to the “local” thermal
instability of Field (1965), which leads to a runaway cooling of
single fluid particles. The instability is an oscillatory one (cf.
Chandrasekhar 1961), with the cooling zone contracting and
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expanding periodically, and with the shock front at the very be-
ginning of the cooling zone oscillating around its stationary rest
position. The period of this oscillation can be estimated to be
(Langer et al. 1982)
tose = b, e2))
where ¢, is again the cooling time. This estimate for the oscilla-
tion period is in very good agreement with results from the exact
linear stability analysis, which typically gives tosc =~ 5t., with
a slight dependence on «. It is more difficult to derive the max-
imum value of o for which the oscillatory thermal instability
still occurs, since this value depends on the detailed dynamics
of the expanding and contracting cooling zone. CI as well as
Imamura et al. (1984) find instability for o < 0.4 in the funda-
mental mode, and for o < 0.8 in the higher modes (see CI for
the definition of the different modes). Bertschinger (1986) finds
instability for o < 1.

We suggest (cf. Feldmeier 1993, 1994) that the global ther-
mal instability is the major cause for the numerical isothermality
of strong shocks in wind simulations including energy transfer.
Even if the numerical grid is fine enough to resolve the station-
ary radiative cooling zone, the cooling zone of minimum extent
during the contraction phase can fall below the grid resolution.
The numerical scheme “forgets” about the existence of the cool-
ing zone then, and the shock becomes numerically isothermal.
The reversible oscillation has thereby turned into an irreversible
collapse.

To test this hypothesis, we consider the above plane-parallel,
radiatively cooling gas flow. The pre-shock density and velocity
are fixed to be 1 and —1, respectively. The cooling constant A
is chosen so that the stationary cooling zone has an extent of
L. = 1. The adiabatic exponent is v = 5/3, and the Boltzmann
constant as well as the atomic weight are both taken to be k =
= 1. The wall is located at z = 0.

Numerical results for the stationary cooling zones in case
that there is no instability (o > 1) are found to be in good
agreement with the analytical solution given by CI. Figure 5
shows a calculation for @ = 1, and for a Mach number at the
shock front of 10'° (which is meant to simulate an arbitrarily
strong shock; the Mach number of the shock is controlled by
the temperature assumed for the pre-shock gas). The position
of the shock at = 1 in Fig.5 is wrong by 1 grid point. This
is due to solving the non-conservative thermal energy equation
including artificial viscosity.

We define the number “Res” to be the ratio of the length of
the stationary cooling zone to the length of a grid interval,
Res= L./Az 22)

For the unstable case o = —1/2 now, Fig. 6 shows the run
of density, velocity, and temperature at subsequent moments of
the oscillation cycle. The left column is for a calculation with
Res = 30, the middle column for one with Res = 8; the rightmost
column will be discussed below. The snapshots are separated by
time intervals At = 4, which is the approximate cooling time,
te & L¢/Vpost, Where Le = 1 and |vpose| = 1/4. (Note that the
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Fig. 5. Normalized (according to Appendix A) stationary radiative
cooling zone for the test flow problem described in the text, with a
cooling exponent « = 1. Full line: Analytical solution after Chevalier
& Imamura (1982). Crosses: Numerical solution

time axis in Fig. 6 is in units of ¢; = 4.) The last snapshot is for
t = 60, corresponding to 2 oscillation cycles.

Immediately after ¢ = 0, a shock front is created which prop-
agates away from the wall. The density on the first two or three
grid points is much too low, whereas the temperature is too high.
This is Noh’s (1987) artificial wall heating, caused by the use
of artificial viscosity. During the first 3 cooling times, the run of
velocity, density, and temperature within the cooling zone ap-
proaches the analytical solutions for a stationary cooling zone.
Yet, after about 4 to 5 cooling times both the velocity and density
become nonmonotonic, and secondary shocks (cf. Falle 1975,
1981; Gaetz et al. 1988) form close to the wall. The cooling
zones of these secondary shocks are not resolved in the present
calculation, so they appear to be isothermal shocks; however,
their resolution could easily be achieved by using a finer grid,
(see Feldmeier 1993). After 5 cooling times, the primary shock
at the very beginning of the cooling zone starts to propagate
in direction of the wall. The maximum possible shock speed
is the speed of the inflowing material, since otherwise the pre-
and post-shock domain would interchange. The shock in fact
almost reaches this maximum speed, at which moment hardly
any temperature jump is seen (¢ = 7t.). At t = 8¢, the cool-
ing zone has its minimum extent. Since the shock speed is zero
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Fig. 6. Global thermal instability oscillations for o = —1/2 at grid
resolutions Res = 30 (resolved; left panel) and Res = 8 (collapsed;
mid panel). The snapshots are separated by the cooling time t. = 4.
The right panel is for the same resolution as the mid panel, but now
using Towi/Tese = 20, resp. Tpost/Tewi = 5. This hinders the collapse of
the cooling zone

then, the temperature jump is the same as for a stationary shock,
Thost = 3/16. On a sufficiently fine grid, the shock starts propa-
gating away from the wall again (left column of Fig. 6), whereas
on a coarse grid the shock collapses at the wall (mid column).
In the latter case, the temperature jump of 3/16 is still found, but
over the next 2 (or 3) grid intervals the material cools again to
T = 0. Since already the (artificial) viscous shock layer is ~ 3
grid intervals broad, this cooling zone is not resolved, hence the
shock must be considered as a numerical isothermal shock.

4.2. Shock front cooling and advective diffusion

There is another numerical defect which might be responsible
for the collapse of the cooling zones. The material of inter-
mediate temperatures within the artificially broadened viscous
shock layer cools more efficiently than the hot post-shock ma-
terial. This could lead to an “eating” of the shock front into the
cooling zone, and therefore a collapse of the latter. However, in
appendix 6 it is shown that for a cooling exponent a = —1/2,
strong cooling within the viscous layer only takes place if the
post-shock temperature implies that the cooling zone is narrower
than the viscous layer. In this case, the cooling zone cannot be
resolved on the grid anyway, since even the viscous layer is un-
resolved. Consequently, no enhanced cooling problem should
exist in shock fronts followed by a cooling layer broader than a
few grid distances.
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Yet another mechanism which is possibly related to the
cooling zones’ collapse is advective diffusion (Owocki, priv.
comm.). This defect would explain the observed influence of
advection on the collapse (Feldmeier 1993, p. 185). We suggest
that advective diffusion occurs at the cold end of the cooling
zone, instead of occuring at the shock front as proposed by
Owocki. Our reasoning has two parts: (i) Due to Field’s (1965)
cooling runaway, the temperature (and density) gradient is in-
finite at the cold edge. Therefore, a positive feedback between
the diffusive errors of the numerical advection scheme and en-
hanced radiative cooling occurs. Interpolation errors of the ad-
vection scheme smear out the edge; since for small & the cooling
rate is larger at smaller temperatures, the smeared out edge be-
comes steep again, thereby “eating” a certain distance into the
cooling zone. At the sharp edge, then, new diffusive errors build
up, etc. (ii) The speed is continuous at the cold edge, i.e., the
same material always lies there (with new material being added
constantly), and so the errors are additive. This is in contrast
to shock fronts, where new particles always pass through, and
errors converge to a certain value.

Loosely speaking, the cooling zone is destroyed from both
ends: (i) from the oscillating shock side, due to the collapse dur-
ing the contractional phase of the global thermal instability; and
(ii) from the cold edge, due to the interplay between numerical
diffusion and radiative cooling.

4.3. Modification of the cooling function

To hinder the collapse of the cooling zone caused by the oscil-
latory thermal instability, we propose the following procedure.
The radiative cooling function is modified in the way shown in
Fig.7, namely: (i) Below a certain temperature T; the cooling
function is assumed to have a stable slope o = +2. (ii) At Tgy;
itself, the cooling function must be continuous, and this defines
the cooling constant A below Ty,

A= AT (23)

The most critical time interval during the contraction of the
cooling zone is defined by the following two instants: It starts
at about the moment when the shock has almost disappeared
because of propagation in the direction of the cold edge with
the same speed as the incoming material; and it ends with the
ultimate collapse of the cooling zone due to the shock approach-
ing the cold edge. During the first moments of this time interval
the material within the whole cooling layer radiates energy ac-
cording to the stable cooling function with o = 2 slope; at later
times, it is still the material sufficiently close to the cold edge ra-
diating according to an & = 2 power law. Therefore, the shock’s
propagation in the direction of the cold edge is decelerated by
the build up of excess pressure, so that the shock cannot ap-
proach the edge too closely. In addition to the stability of the
a = 2 slope, a further deceleration of the shock is caused by
the lower cooling rate at T' < Ty, of the modified as compared
to the original cooling function — necessitating broader cooling
zones.
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Fig. 7. Modification of the radiative cooling function at low tempera-
tures, to hinder the collapse of the cooling zone

The right column of Fig.6 shows a calculation with
Towi/Tese = 20. The collapse is hindered, and the cooling length
as well as the structure of the cooling zone agree well with those
in the left column of Fig. 6, where the original cooling function
with & = —1/2 slope has been used on a finer grid.

Since hot gas radiates energy according to the original cool-
ing function, the influence of the modified cooling function
on the observed X-ray emission from the gas behind strong
shocks in time-dependent stellar wind simulations should be
small. More critical is the influence of the modification on the
total cooling length. Since the material cools inefficiently at low
temperatures, the cooling zones might be broadened artificially.
We will now show that the influence of the low-temperature
a = 2 slope on the total cooling length is small.

The time needed for hot, shocked material to cool down
again to wind temperature 7o is,

Tegr
/ dt.
Tposl

te = (24)

The thermal energy equation for a fluid particle is (with d/dt the
Lagrangian derivative, and € = e/ p the specific thermal energy),

de
Pat
It is well known (e.g., Langer et al. 1981; CI) that the diver-
gence term in (25) leads to near pressure constancy within the

cooling zone. We therefore drop this term and instead assume
the pressure to be constant,

de
Pa

= —pdivy — Ap*T*. (25)

= —Ap*T?, with P = CONSt = Ppog- (26)
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This leads to

K, dTT'-®
R R

dt. = @7

where the kinetic equation, € = ¥T'/ u(y — 1), and the ideal gas
equation have been used. The cooling length is

Teﬂ
L.= / dt. lvrel '7
Tposl

(28)

where the relative velocity between shock front and material
behind the shock, v, can be approximated by vy, SO that

L.= Upost Le- 29

Let R be the ratio of the total cooling length using the modified
cooling function to the cooling length using the original cooling
function, i.e., without the modification below T5y;. The velocity
Upost then cancels in R. Using (23) for the constant A, one has

Tswi Te —_ 5 2
o dT T3+ [ 4T T A
R= — . (30)
Jrt aT T3/

Introducing dimensionless quantities,

t=T/Teff, ts=Tswi/Teff, tp =Tpost/nff1 (€29)]
this becomes finally
t/? — t32 + 352 Int,
R = tp5/2 — (32)
5/2
ts 5
=~ 1+ — = Inty—1 33
@) e @

where in the last equation the strong shock approximation, £, >
1, has been used. Table 2 lists R as function of ¢, and t;.

The physical reason for the weak dependence of the total cooling
length on T,; found in Table 2 is that the extent of the cooling
zone is fixed mainly by the material immediately behind the
shock, which cools according to the original & = —1/2 slope:
since this material is thin (cooling rate ~ p?) and hot (cooling
rate ~ T~1/2) it cools very inefficiently. Altogether, because of
the dominance of the hot post-shock material (i) on the X-ray
emission from stellar winds, and (ii) on the total cooling length,
the modification of the cooling function below Ty; has actually
only little influence on the model results.

Finally, we note that the a = 2 slope below Ty also hinders
the collapse of the cooling zone due to the positive feedback
between diffusive errors and enhanced radiative cooling at the
cold edge of the cooling zone: As was shown by Field (1965),
runaway cooling only occurs for o < 2 if the gas cools iso-
barically. By this, using & = 2, cooler material no longer cools
more efficiently. Therefore, the cold edge remains smeared out,
instead of being steepened again (which would cause new ad-
vective errors, and the edge to “eat” into the cooling zone).

A. Feldmeier: Time-dependent structure and energy transfer in hot star winds

Table 2. Dependence of the total cooling length on the temperature
Tiwi. R is the ratio of the cooling length using a modified cooling
function below Ty, to the true cooling length.

Tpost /T:’.ff Tswi/Teﬂ“ R= %i'ﬁ
300 10 1
20 1
30 1
200 10 1
20 1
30 1.1
100 10 1
20 1.1
30 1.4
50 10 1.1
20 1.7
30 3.1
40 10 1.1
20 2.1
30 4.7
30 10 1.3
20 34
30 8.5

5. Wind models including energy transfer

In this section, we use the same stellar, wind, and numerical pa-
rameters as in Sect. 3, and discuss three different wind models:

1. A model using the radiative cooling function (16) with an
overall & = —1/2 slope.

2. A model where this slope is changed to be oo = +2 below
Towi / Tegr = 10.

3. The same model as in 2, but with an amplitude of the pho-
tospheric sound wave of 25% instead of 1%.

5.1. Estimate of cooling lengths

We use Eq. (A9) from appendix A to estimate whether the spa-
tial grid in wind simulations is fine enough to resolve typical
stationary cooling zones. With the parameters from Table 1 we
find

2 B 2
Le 147107 2 <1 - Ei) hont/ Te)” (34)

T Ppre / Pstat

* *

We use 3 = 0.8 (Pauldrach et al. 1986) for the underlying mean
wind velocity law. Actually, the stationary velocity run in the
snapshots of the wind structure in Figs. 1, 2, 8, etc. is, beyond
the sonic point, the one of a 8 = 0.8 law. Table 3 lists the total
cooling length (34) as function of the post-shock temperature
and the depletion of the wind material relative to a stationary
wind model, at the location r = 4 R,,. The number of grid points
per cooling zone is given in brackets. According to this table,
all stationary cooling zones behind strong shocks should be
resolved on the grid.
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Table 3. Total cooling length (in units of R.) as function of the
post-shock temperature and the depletion of the wind material rela-
tive to a stationary wind model, at the location r = 4 R.. The number
of grid points per cooling zone is given in brackets.

| Fm=25 50 100 200

eff

fre—1 | 0.0012(0.4) 0.0047(1.5) 0.019(6) 0.075 (24)
1/10 | 0.012 (4) 0.047(15)  0.19(62) 0.75 (240)
1/100 | 0.12 (39) 047 (150)  1.9(620) 7.5 (2400)
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Fig. 8. Snapshot of the wind structure with energy equation included,
but without modifying the cooling function at low temperatures. All
cooling zones behind shocks are collapsed

5.2. The wind models

Figure 8 shows a snapshot of the wind 10 days after model
start. The cooling function used is the one of Egs. (16) and (17).
Figure 9 shows the subsequent evolution of the density in the
course of 20000 s, i.e., four cycles of the photospheric sound
wave.

No cooling layers behind shock fronts are resolved in Fig. 8.
(Since already in this snapshot no hot gas is present, we do not
show the run of temperature during the wind evolution in Fig. 9.)
This is in accord with our expectation of the cooling zones’ col-
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Fig. 9. Evolution of the wind structure from Fig. 8 (using an unmodified
cooling function with slope a = —1/2) during the next 20000 s, i.e.,
4 cycles of the photospheric sound wave

lapse. In Figs. 10 and 11 then, where a modified cooling function
is used below Tyi/Teir = 10, i.e., 420,000 K, this collapse is
hindered and the cooling zones are well resolved. Figure 1 and
Fig. 8 show almost identical wind structures; this is clear from
the fact that both models are isothermal calculations in the end.
(Small differences occur in extremely rarefied intershell regions,
which contain hardly any material.)

Up to about 4.5 to 5 R, the isothermal wind model(s) and
the model with resolved cooling zones are also very similar. The
reason is that the cooling zones are short compared with dynam-
ical length scales, which supports the assumption of dynamical
isothermality for dense supergiant winds in this spatial domain.

However, the cooling layers in this model are (much) shorter
than what would be expected from Table 3. This is (mainly) due
to the fact that the dynamical time required to deplete the inter-
shell regions by adding the material located there to the narrow
shells (which is accomplished by the radiative shocks) is shorter
than the cooling time. The analytical solution for a stationary
cooling zone from Appendix A therefore does not apply. Due to
this intershell depletion, the pre-shock density becomes smaller
with time, so that a broader cooling zone has to be established.
The time necessary for this is of the order of the period of the
thermal instability oscillation — which in turn is a few cooling
times —, i.e., (much) larger than the dynamical time. Therefore,
the cooling zones lag behind the actual dynamical situation, and
one should observe them to be shorter than stationary cooling
zones — as is actually the case.

Beyond about 5 R, the model with energy transfer differs
drastically from the isothermal model. Consider the four rar-
efied intershell regions marked (a) to (d) in Fig. 10. It is within
this sequence that all shocks in the wind are destroyed, leaving
behind only previously heated material: At (a), a pronounced
radiative shock is present; the material is heated in a front, and
afterwards cools by radiative energy losses. Since the cooling
zone is approximately isobaric, the density rises with falling
temperature, which leads to the final compression of the mate-
rial into a narrow, dense shell. From (a) to (b), the pre-shock
density drops by about a factor of 6 due to the intershell de-
pletion. This causes a broadening of the cooling layer, whereby

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995A%26A...299..523F

3F.

FTY9O5ACAT & ZZ997 !

536
: £ 8 8 10
) ] time step 123068 ; time = 240.00 hours ; 42087.7 cpu sec.
og 1o-lzikﬂ;‘!“
E ™
N 1
0 —16q
~107"%
o)
e e
@ il @
2000
@ P v
g i
2 1000 ,(,i}
N
>
~—~
»
~ 3 ,
o 10°; Pl
&
3 ’
«
: :
a,10°%4 .
5 BUN S I S N S N (S N ST
(3)
) ' ) ' T T
i N 8 8 10
Stellar Radii

Fig. 10. Snapshot of the wind structure, where the cooling function is
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the temperature axis indicates Tyy;

the shock front is driven in the direction of smaller radii, into
the unshocked material. The pre-shock velocity and post-shock
temperature therefore get slightly larger from (a) to (b). How-
ever, for later times the inward moving front passes regions of
always slower material, until finally the front speed equals the
speed of the inflowing material and the shock vanishes at (d):
the temperature “jump” at (d) is about 10 grid intervals broad,
instead of 3 intervals at a shock front; furthermore, no velocity
jump is found at (d). The propagation of the front to smaller
radii is directly seen in the sequence from (b) to (d), where the
shock passes from the right side of the density minimum of the
intershell region to its left side. The hot material at (d) (and at all
larger radii) is the remnant of previously shock-heated material.
This interpretation is supported by the fact that the density and
temperature at (d) and at all larger radii are anti-correlated, as is
the case in the isobaric radiative cooling zone behind a shock.
The hot material then cools steadily by radiative energy losses
and spherical expansion work during its further advection to
larger radii. (We finally note that due to intershell depletion, the
cooling zone at (a) is already broader than the corresponding
one at (0); but not yet broad enough to destroy the shock front.)

The observational consequences of this shock destruction
for the X-ray emission properties can only be tested by quanti-
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Fig. 11. Evolution during the next 20 000 seconds (after ¢ = 10 days)
of the model with Ty /Ter = 10 and amplitude A = 1%

tative modeling of the X-ray spectra from structured wind mod-
els — this work is in progress now. We recall that already in the
isothermal wind model shock decay (as opposed to shock de-
struction) sets in at about 5 R,. In all models up to now therefore
the bulk of X-ray emitting material is at small radii. This is in
contrast to what is derived from ROSAT X-ray observations:
Hillier et al. (1993) find that in the wind of ¢ Pup, material with
temperatures 7' = 3 10° K has to be present up to radii of 20
to 50 R,. One reason for the failure of our models to produce
hot material beyond a few R, is the small amplitude of only
1% of the photospheric sound wave. This will be seen below
from a model with an amplitude of 25%. Besides that, the pe-
riod of the sound wave also has an influence on the maximum
temperatures that occur (Owocki 1992; Feldmeier 1993): for
large periods, the shell distances are larger, and the material in
between the shells can be accelerated to higher velocities be-
fore it finally encounters a reverse shock. So, at present we do
not expect a real conflict between X-ray observations and the
time-dependent wind models.

The mean velocity of the model with resolved cooling zones
is somewhat smaller than the stationary wind velocity. This is
mainly due to the fact that radiative driving is shut off for hot
material. Furthermore, shadowing by material close to the star
might be slightly more efficient in this model.

Up to about 4 R, the wind structure in the model with re-
solved cooling zones seems to be as chaotic as in both isother-
mal models. However, from Figs. 9 and 11 it is evident that the
cause of this are shell-shell collisions. The shells are created at
~ 1.5 R, in triples, where the members of these triples collide
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Tewi/Te = 10. The amplitude of the photospheric sound wave is 25%
now instead of 1% in the foregoing model

with each other, leaving only one shell per cycle of the pho-
tospheric sound wave beyond ~ 6 R.. There are no collisions
between shells steming from subsequent cycles of the sound
wave. We note that the shells would not collide if they simply
“ride” the wind (Waldron et al. 1992, 1994). For shell collisions
to occur, two requirements have to be met: (i) The shells influ-
ence each other (“‘non-local coupling”). This is actually the case
in the time-dependent models since shells lying close to the star
shadow, and therefore decelerate, shells at larger radii. (ii) The
shells do not follow each other at constant time intervals. This is
realized in the wind because of the triple-wise creation of shells;
which, in turn, is connected to the excitation of harmonics of the
photospheric sound wave that triggers structure formation. — It
is easily seen that if either of these prerequisites is not fulfilled,
shell collisions cannot occur; instead, all shells would follow
(almost) the same path 7spen(?).

To test the influence of the amplitude A of the photospheric
sound wave on the shock strength, Figs. 12 and 13 show a snap-
shot at ¢t = 10 days and the subsequent evolution over 20000 s
of a model with A = 25%. Maximum temperatures are now a
factor of 10 higher than for A = 1%, and reach 2 107 K between
3 and 6 R,.
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Up to about 6 R, dynamical isothermality should be a good
approximation for this model. However, shock destruction due
to the broadening of cooling zones occurs around ~ 7 R,, see
the sequence from (a) to (d) in Fig. 12. At (a) and (b) radiative
shocks are found, where the pre-shock density falls by a factor of
16 from (a) to (b). The corresponding broadening of the cooling
zone is obvious from the temperature run of Figs. 12 and 13. The
shock is driven to smaller radii, until it finally disappears at (d).
The velocity jumps separating cold, dense gas from hot, thin gas
(formerly heated in shocks) are due to the fact that the hot gas is
no longer radiatively driven, wherefore the cold, fast gas rams
into it supersonically. (Since post-shock temperatures are much
lower in the previous A = 1% model, the corresponding drop
in the radiative acceleration is not so significant there.) These
forward shocks heat the already hot material to even higher
temperatures; thereafter, the gas is cooled and compressed by
radiative energy losses. The forward shock transition + radiative
cooling zone is best seen in the temperature spike at the left
verge of the hot, thin regions at 7 > 7.5 R... (These points were
brought to our attention by S. Owocki.) — Note that the hot gas
left over at 10 R, still has a temperature of ~ 10® K. This is not
too different from what is needed to model the ROSAT X-ray
observations of ¢ Pup (Hillier et al. 1993).

The structure formation in this model sets in closer to the
star, at about 1.2 R, instead of 1.5 R, in the previous model.
The shells are created in quadruples close to the star, where
the members of these quadruples collide up to 3 R... There is
some dynamical coupling between shells corresponding to sub-
sequent cycles of the sound wave now: Relatively dense material
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' in front of the forward shock side of one shell can be acceler-
ated, after which it moves through the strongly rarefied intershell
medium and finally collides with the reverse shock side of the
next-outer shell. The last shell collisions occur between 6.5 to
7R,.

There is a definite temporal non-periodicity in Fig. 13. Fig-
ures 14 and 15 show the time series of wind velocity at 3 R,
(plotted against the phase of a wave with period P = 5000 s)
and its power spectrum. The time series starts at 7.82 days and
ends at 10.00 days, i.e., shows 37.7 wave cycles. The contrast to
Figs. 3 and 4 for the time series and spectrum of the model with
a base perturbation amplitude of A = 1% is striking. A major
effect in Fig. 14 seems to be a drift of the wave. Since in the
power spectrum of the A = 1% model signals (i.e., the harmon-
ics of the sound wave) and noise (if there is any) are separated
by 4 orders of magnitude, we must conclude that the “noise” in
Fig. 15 has physical meaning and is not caused numerically. The
source of this non-periodicity is not exactly clear at the moment,
but seems to be connected with the coupling of shells from sub-
sequent wave cycles. It is found (Owocki & Feldmeier, in prep.;
Owocki 1995) that without any explicit perturbation at the base,
small-scale structure develops in the wind from about 2 R, on.
This structure also shows a continuous spread of wave frequen-
cies. In the cases of no perturbation, a broad-band perturbation,
or a large-amplitude periodic perturbation, frequencies over a
broad interval may principally grow on equal footing, since:
(i) The instability growth rate is constant for all wavelengths
shorter than a certain fraction (= % . %) of the Sobolev length
(Owocki & Rybicki 1984, 1985). (ii) For zero perturbation am-
plitude it seems natural to assume that numerical noise (showing
acontinuous spread of frequencies) is created and amplified. On
the other hand, for large base perturbation amplitudes, we spec-
ulate that some kind of overmodulated amplification occurs,
again creating noise.

Whether a periodic or a stochastic (“turbulent’) wind struc-
ture is realized depends fundamentally on the value of the non-
dimensional “Reynolds” number connected with the wind insta-
bility. While the radiation field is the central quantity entering
this number, to our knowledge no precise definition of the latter
has been given up to now. However, the strong periodicity of the
wind structure induced by small (here: A = 1%) perturbations —
as they are considered in linear stability analysis — gives a hint
that the radiation Reynolds number of our models is still below
the threshold(s) required for multi-mode excitation or stochastic
behavior.

The question remains whether the contraction and expan-
sion of the cooling zones due to the oscillatory thermal instabil-
ity can be seen directly in the wind models. The period of this
oscillation is tosc = 20 Lc /Vjump, Where L is the cooling length,
and Vjunp is the velocity jump at the shock front. For the model
with A = 1%, the oscillation periods should be about 10 to 30
hours, and for the A = 25% model = 3 to 10 h. Each shock in
Fig. 11 (A = 1%) could be followed over = 7 h, which is less
than ¢,sc. Furthermore, the dynamical time scale for shell-shell
collisions, t.op = 5...6 h, is shorter than t,s.. Hence, the ther-
mal oscillation is also unobservable since changes in the shock
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properties due to shell-shell collisions take place in shorter times
than ¢,s. In Fig. 13 for the A = 25% model, each shock could
be followed over almost 15 hours before it is finally destroyed
at 2 7 R,.. During that time, 1 to 2 thermal oscillations should
occur. However, toy is even shorter in this model (shell quadru-
ples instead of triples; interaction between shells from different
cycles of the sound wave), and ranges from = 1 h close to the
star to 4 h at larger distances. The thermal oscillation is there-
fore interrupted again. — To be more precise, o5 and teq of the
very narrow cooling zones, L. ~ 0.02 R., at = 4 R, are about
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equal (few hours). But these cooling zones are only resolved by
~ 10 grid points, and numerical insufficiency becomes prob-
able: as is found in simulations of the test flow problem from
the previous section, modifying the cooling function below Ty
hinders the collapse of the cooling zone during the first oscil-
lation cycle. Thereafter, a more or less stationary cooling zone
often remains. Furthermore, we observed a strong damping of
the thermal oscillation due to the advection of the shock across
the numerical grid.

In summary, we believe that a mixture of physical and nu-
merical effects causes the thermal oscillation to be unobservable
in our calculations.

6. Summary

In this paper we have discussed time-dependent radiation driven
winds of hot, luminous stars, where flow structures are due to
the nonlinear, unstable growth of initially small, periodic base
perturbations. We have found the following results for the fully
developed wind structure:

1. Our models are in good general agreement with the ones
by OCR and Owocki (1992, 1994): The wind consists of a se-
quence of dense, narrow shells which are enclosed by a reverse
shock at the starward-facing side and by a forward shock at the
outer side. The reverse shocks can have Mach numbers from
30 to 100, implying density contrasts of up to 103 to 10*. The
latter value is close to the principal upper limit for a wind with
Mach number =~ 100. The jump velocities of about 500 km/s
at the reverse shocks agree well with the shock temperatures of
some million degrees K as deduced from X-ray data (Cassinelli
& Swank 1983; Hillier et al. 1993).

2. Shell-shell collisions are frequent up to 6...7 R,. For
these collisions to occur, it is necessary: (i) that the shells in-
fluence each other, e.g., by shadowing of the radiation field;
and (ii) that the shells do not follow each other at constant time
intervals.

3. The wind structure induced by a periodic base pertur-
bation of small amplitude is also periodic. The power spectra
of long time series of hydrodynamical quantities at fixed loca-
tions in the wind indicate the existence of only discrete har-
monics (up to 50 and more) in this case. In contrast, for a large
amplitude base perturbation, and also for the case of no ex-
plicit perturbation at all, the power spectra of the wind structure
show a continuous spread of excited frequencies. The hierar-
chy of shock-shock mergers (or, stated differently: shell-shell
collisions) occuring then resembles the picture of compressible
turbulence as discussed by Burgers (1950) and Tatsumi & Toku-
naga (1974). Empirical evidence for turbulence in dense Wolf-
Rayet star winds in the form of a mass hierarchy of clumps is
described by Moffat (1994a,b).

4. Inclusion of energy transfer in the hydrodynamical sim-
ulations results in the numerical shortcoming that no radiative
cooling zones are resolved. The main cause of this collapse is
the oscillatory thermal instability of Langer et al. (1981, 1982).
During the contraction phase of this oscillation, the extent of the
cooling zone may fall below the grid resolution. Consequently,
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the numerics “forgets” about the existence of the cooling zone,
and the shock becomes a numerical isothermal shock. The re-
versible oscillation has turned into an irreversible collapse. —
Furthermore, at the cold, dense end of the cooling zone, a pos-
itive feedback between advective diffusion errors and radiative
cooling might occur. This leads to an “eating” of the cold edge
into the cooling layer, accelerating the destruction of the latter.

5. Both the collapse caused by the oscillatory thermal insta-
bility and by the advective diffusion can be hindered by mod-
ifying the cooling function at low temperatures. Because the
extent of the cooling zone is predominantly fixed by the hot and
thin post-shock material — which is also responsible for the X-
ray emission —, this modification at low temperatures has minor
influence on the derived model results.

6. Up to about 5 to 7 R, (where the exact value depends on
the base perturbation), the assumption of dynamical isothermal-
ity is found to be valid in our models of an O supergiant wind:
radiative cooling zones behind strong shocks are short com-
pared with dynamical length scales, and therefore have little
influence on the wind dynamics. However, beyond these radii
dynamical isothermality breaks down completely: all reverse
shocks are quickly destroyed due to a broadening of the cool-
ing zone, leaving behind previously heated hot, thin material.
This material cools on its further advection through the wind.
The question arises whether there is enough hot gas left at large
radii to account for the observed soft X-ray component.

7. Quite independent of the amplitude of the base pertur-
bation, the final shell-shell collisions occur between 6 to 7 R,.
Together with the results from the item (6) above, the wind can
therefore be divided roughly into two distinct regions: an in-
ner, active one with frequent radiative shocks, where shell-shell
collisions occur; and an outer, quiescent region with “old” hot
material left over from former shock heating, and where the
shells follow each other without further collisions. Since the
wind dynamics is rather predictable at large radii, the results
computed explicitly here up to 10 R, could be extrapolated to
larger distances from the star (e.g., to permit the calculation of
X-ray spectra from a very large volume of the wind).

Our two main directions for future work on the radiation
hydrodynamics of hot star winds are the following:

(I) While the modification of the cooling function below
Tewi can hinder the collapse of cooling zones, we also plan to
incorporate a local mesh refinement method (Berger & Oliger
1984; Berger & Colella 1989) in our code as an. independent
way to avoid the collapse. Applying the latter method, two other
resolution problems occuring in time-dependent wind calcula-
tions could possibly be solved too: (i) The dense shells, in which
most of the wind mass is localized, are poorly resolved in present
calculations. (ii) The arbitrary exponential truncation of the line
distribution function at Ky is needed to artificially suppress un-
stable growth on very short length scales. The correct treatment
of the latter small-scale structure might influence the large-scale
dynamics of the wind, as is well known from turbulent flows.

(II) At present, using the SSF method, the source function
is not calculated consistently from the actual wind dynamics. In
particular, the perturbation of the diffuse radiation field is not
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accounted for. As found by Owocki & Rybicki (1985), this per-
turbation has a large influence on the phase relationship between
perturbations in velocity, density, and the radiative force, i.e., on
the propagation and growth characteristics of waves in the wind
(a fact recently emphasised by Puls 1993). For wavelengths on
the order of the Sobolev length, correlated density and velocity
perturbations may thereby grow at an enhanced rate. These out-
ward propagating sound waves ultimately steepen into forward
shocks. It is not quite clear at the moment whether the non-
linear growth of these waves saturates more quickly than the
growth of inward propagating waves — so that reverse shocks
still would dominate the wind structure —, or whether forward
and reverse shocks possibly are of about equal strength in the
fully developed wind structure.

Finally, diagnostic tools to analyze the degree to which these
hydrodynamical models can reproduce the observed variability
features of hot star winds are currently being developed in the X-
ray domain (Hillier et al. 1993; Pauldrach et al. 1994a,b; Cooper
& Owocki 1994; Feldmeier et al., in prep.) and for UV and
optical spectral lines (Puls et al. 1993b, 1994). Only by detailed
comparison between observed and computed diagnostics can we
learn which dynamical structures out of a variety of theoretically
possible ones are actually realized in these winds.
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Appendix A: estimate of the cooling length

The radiative cooling function in the form defined by Chevalier
& Imamura (1982; CI) is,

A=p*A (’—’).
Pc1p

Consider the flow problem of Sect.4.1, where an ideal gas
streams highly supersonically against a wall. The analytical so-
lution for the stationary, plane-parallel cooling zone, assuming
acooling exponent o = —1/2, is

(A1)
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3 (A2)

with the total cooling length,

=50

4
B3 _ 2) — (A3)

320 8/ Actppre’
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and the total cooling time,

3
5 Ve

te= — .
¢ 224 Ac Ppre

(A4)

Here, £ = z/L. is the normalized spatial variable, and w =
v /Upre is the normalized velocity. £ = 1 is the position of the
shock front, with £ = 0 the location of the wall, where the cooled
gas accretes in an infinitely thin, infinitely dense layer. pp. and
Upre are the pre-shock density and velocity, respectively. We
follow the convention of CI to take vpe as a positive quantity,
whereas the velocity v itself is a negative quantity; therefore, w
is always negative.

To estimate the extent of the stationary cooling layer behind
a stellar wind shock, we change from the above CI definition of
the cooling function to the standard definition (cf. Raymond et
al. 1976),

A= N, NyAr T¢, (AS)
so that

_ NeNH A%
A== (E) Ag. (A6)

Let Iy and Iy, be the hydrogen and helium ionization degrees,
and Y = Nye /Ny be the helium fraction by number. Using (i)
the strong shock jump conditions, (ii) the continuity equation for
astationary wind, (iii) a 8-velocity law vgar = Voo [1—(Ra /)17,
and (iv) the fit (16), (17) to the cooling function, one finds from
(A3) that

Lo _ | sg10-17 ¢ LenvooRe
R,
2 B T 2

% (1 . _R_*) ( pOSt/Teff) 7 (A7)

Rz T Ppre / Pstat
where a constant C of order unity has been introduced,

3/2 1/2

C=(1+IH+Y(1+IHe)) (1+4Y) ‘ (A8)

IH + IHeY

This can also be expressed in typical units for an O supergiant
wind,

L T \°
== = 1.741070C | ==
R, 410770 <IOOOOK>
Voo M ' R,
1000kms—! \ 10~ Mgyyr—! Ry
T_Z (1 _ &)ﬂ (Tpost/iz'laff)2
R% T Ppre/pstat '

The total cooling length (A3) is now compared with the common
estimate

(A9)

e
L‘l;/e ~ “g Upost s (A10)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995A%26A...299..523F

3F.

FTY9O5ACAT & ZZ997 !

A. Feldmeier: Time-dependent structure and energy transfer in hot star winds

where ¢ is the energy loss due to radiative cooling. Using the
strong shock conditions again, this leads to

93 Ype

Ll/e
2048 Ac ppre

(Al1)

This is a factor of 2.2 larger than the fotal cooling length (A3).
The reason is that Field’s (1965) thermal runaway is not included
in the estimate (A 10): the latter assumes “only”” an exponentially
growing cooling rate, whereas due to the runaway the slope in
density and temperature at the end of the cooling zone is infinite.

Appendix B: radiative cooling within the viscous shock layer

The viscous layer of a strong shock has a thickness on the order
of a particle mean free path. Competing with this is the length
scale, over which radiative energy exchange plays a role, which
is given by the usually much larger mean free path of a photon
(cf. Zel’dovich & Raizer 1967, Sect. 14). Therefore, the viscous
layer of a radiative shock (= shock front + cooling zone) is
usually much narrower than the radiative cooling zone, over
which the shock heated gas loses its thermal energy again. In
contrast, for a numerical shock the viscous layer is smeared out
over a few grid points by artificial viscosity, or by the numerical
diffusivity of the scheme. It is therefore possible that the cooling
layer becomes shorter than the viscous layer.

For a sufficiently small cooling exponent o (for the exact
value see below) the material within this viscous layer, where
T < Tpost, cools more efficiently than the post-shock material.
If the cooling time within the shock front is shorter than the time
it takes the particle to pass the front, severe numerical errors in
the structure of the radiative shock will occur. Enhanced cooling
within the viscous layer may therefore be the reason for the
collapsed cooling zones in stellar wind simulations.

However, we show in this appendix: For a cooling exponent
a = —1/2, and for a post-shock cooling layer which is broader
than the shock front, radiative cooling within the latter is of
minor importance. Therefore, cooling zones which are princi-
pally resolved on the grid, i.e., are at least of the thickness of
the viscous layer, are free of the numerical defect of enhanced
cooling.

Let 7. vis be the local cooling time for a fluid particle at a
certain location within the viscous layer. (We use the abbrevi-
ation “vis” for quantities within this layer.) Let (7 vis) be the
cooling time of this particle, averaged over its trajectory through
the front, and let 7 pos be the cooling time corresponding to the
post-shock temperature. Finally, let tcs be the time it takes the
particle to cross the viscous layer. Then, if

(Tc,vis> _
= Ke

Tc,post <F
—_ b

tCI'OSS

B1)

tCl’OSS

where k¢ = (Te,vis)/Te,post> and F' is a number of order unity,
cooling within the shock front will influence the appearance of
the radiative shock.
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Mihalas & Mihalas (1984, p. 243), give the temperature
stratification within the viscous layer,

+3r0 - (22

where vy, is the upstream velocity (i.e., the high velocity at the
shock), and a is the sound speed at the pre-shock side. For a
strong shock and v = 5/3, we have then (with v,;s the velocity
relative to the shock front),

T(v)
Tpre

=1+(y

(B2)

1u
T=zEm-v’= —%(vp,e ~ vyie)?. (B3)
Behind the shock, we have the well-known relation,
1p
Toost = 37 Yamp: (B4)

Since we allow for radiative cooling within the viscous layer,
Eq. (B3), which was derived for a purely viscous layer, is only
approximately valid.

The velocity run within the front is approximately linear.
Therefore, the flow time for a particle through this layer (of
thickness 6) is,

; d ; d 6
x xr
teross = / — = / 3o = In4.
) Uvis . 'Upre(l - ZE) Ujump

Here, vpost = %vpre = %vjump was used for a strong v = 5/3
shock. teross i short compared with dynamical times, i.e., sta-
tionarity and plane-parallel geometry can be assumed,

(B5)

Pvis Upost

= . (B6)
Ppost Vvis
The cooling time is of the order
e 3kT!-«
=_-=-Z B7

hence the ratio of the local cooling time inside the front to the
post-shock cooling time is given by

Te,vis _ ( Tois )l—a Ppost (B8)
Te,post Thost Pvis
Collecting these results together, one has
teross Jo Tec,post
_ 1 /6 (Upre — Uyis )2—20’ Uyis d_.’l:
teross Jo Vjump Upost Uvis
3 1
= — . B9
In4 3 -2« (B9)

Here, it has been assumed that o < 3/2: for larger values of
« the integral diverges since the average cooling time inside
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the shock goes to co. From (B9) it follows that only for a <
%(1 — ﬁ) ~ 0.418 is k. < 1: Only for these values of
the averaged cooling time within the front is shorter than the
post-shock cooling time.

For a cooling exponent & = —1/2 one has from (B9),

Ke = 0.541, (B10)

i.e., @ = —1/2 is still not critical for enhanced cooling within
the shock front, since the cooling time is on average only a factor
of = 0.541 shorter than the post-shock cooling time.

From (B1) one has, again using o = —1/2, that cooling
inside the viscous layer may modify the structure of the whole
radiative shock only for

Te,post < 256 F (B11)
Vjump

The post-shock cooling length is of the order

L post = Te,post * Upost (B12)

therefore only shocks with a radiative cooling zone of extent

—L—}ﬂﬂ <086F (B13)
can be influenced by this defect. Since F’ ~ 1, this is no limita-
tion at all. Radiative cooling within the viscous layer is therefore
of no importance for those cooling zones which are principally
resolved on the numerical grid.

Appendix C: resolution of the dense, cold domain
of a radiative shock

Within a radiative cooling zone, Field’s (1965) local thermal in-
stability will generally occur: The subsonic post-shock domain
is nearly isobaric (pressure differences will be compensated by
sound waves), so that cooling leads to a compression of the
gas. For isobaric cooling and a cooling exponent o < 2 (Field
1965), material cools more efficiently at lower temperatures.
This implies a cooling runaway, which shows up in the station-
ary Cl-solutions for the radiative cooling zones in the infinite
density and temperature gradients at the very end of the cooling
zone (termed “ce”, cold edge, in the following). This appendix
deals with the numerical resolution of the infinite gradients at
the “cold edge”. For this, we demand the density to change from
one grid point to the next by at most a factor of F' = O(1. .. 10).
If ¢ denotes the grid index, this implies

Piv1 — Pi ~

e < F

Pi - (Tiv1 — T5)

— lee P —
Pi Pi
The flow within the cooling zone is assumed to be stationary
and plane-parallel, d;(pv) = 0, hence (p'/p)lcc = W'/V)ce
(a minus sign has been dropped which is of no significance in
the following). With the normalized variables w and £ from
appendix A, the velocity gradient is given by

d_’U _ d(wupre) _ Upre g !
dzr = d(¢L.) ~ L. \dw ’

(€1

(C2)
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The differential d¢ /dw can be calculated from Eq. (A2). Since,
for strong shocks, wee — 0, only the lowest order in w is kept.
From (A2) it is

d
% lwo = 722.82w>~ . (C3)
Furthermore,
Fpee Fvee FueL:. d§
Az < = = — ..
Lee = . v Vore dw ' (c4

The radiative shock can be considered as an isothermal jump.
Using the corresponding jump conditions (Majs, being the
isothermal Mach number), we have

Pee _Ma2 = e _ gy
e = Maj, - W', (C5)
and therefore
FL.C
Azee < Mat—2a (Co6)

This is the expression for the grid resolution necessary to resolve
the cold edge of the radiative shock.

Assuming F' = 10, o = —1/2, an equidistant spatial grid
from 1 to 10 stellar radii, and a shock with cooling length
L, = 0.1 R, and Mach number Ma;;, = 10 (resp. 30), a to-
tal of 1.2 10° (resp. 2.7 108) grid points would then be needed
to resolve the cold edge. These numbers are far beyond present
computational capabilities. — In contrast, Fig. 5 shows a station-
ary cooling zone for a = 1, L. = 1, Maj, = \/56, where only 1
point per L. should guarantee resolution. Instead, 50 grid points
per L. were used in this calculation.

We conclude that in wind calculations it is not possible to
resolve the domain of steep gradients that define the end of
the radiative cooling zones. This is a further justification for
modifying the cooling function at low temperatures to hinder
the collapse of the cooling layer, since this low temperature
domain cannot be handled correctly anyway. On the other hand,
a conservative numerical scheme always guarantees the correct
total jumps in the hydrodynamical quantities across a radiative
shock.
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