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ABSTRACT 
In the force-free approximation, an electron-positron jet is shown to be stable to 
axisymmetric perturbations for all velocities of longitudinal motion and rotation. The 
stability of the jet is a result of the shear of the magnetic field, which prohibits the 
convective motion of a charged fluid in the radial direction. The dispersion curves 
o) = (^{k^ have a minimum for - 1 ¡R, where R is the jet radius. This results in the 
accumulation of perturbations inside the jet with wavelengths of the order of the jet 
radius. This type of oscillatory structure is observed in kiloparsec jets, in particular in 
3C 273, which is evidently an electron-positron beam. 
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1 INTRODUCTION 

One of the important problems in the physics of extragalactic 
jets is their stability. The stability of jets has been investigated 
in many previous works, with different assumptions for the 
velocity of matter in a jet and for the influence of the mag- 
netic field on the dynamics of the flow. Perturbed modes 
have been considered both for the cylindrical geometry of 
the jet, and for the plane boundary between the jet and the 
outside medium if the wavelength is small enough [see, for 
example, the paper by Torricelli-Ciamponi & Petrini (1990) 
and the literature cited therein]. Many papers devoted to jet 
stability are cited by Begelman, Blandford & Rees (1984), 
and the recent paper by Appl & Camenzind (1992) also 
discusses the stability of a jet carrying electrical current in the 
magnetohydrodynamics (MHD) approximation. The effect, 
however, of a strong electric field on the stability of a 
relativistic flow of magnetized plasma is not yet clear. Indeed, 
at the speed of the hydrodynamic flow, v — c, the electric 
field in a plasma with a high conductivity is very close to the 
magnetic field, i.e. E= -vxB/c. The charge density q is 
equal to V-E/4n-E/L and the current density j in a 
stationary flow, or for a small non-stationarity, is 
7 = c-(V xB)/4ti-cB/L. The ratio of the electric force per 
unit volume, qE, to the magnetic force, jx B/c, is therefore 
of the order of E2/B2-v2/c2-l for the relativistic case. 
When considering relativistic models with a significant 
magnetic field it is thus necessary to involve the electric force 
and, for the non-stationary case, to add the displacement 
current. 

On the other hand, stationary axisymmetric hydrodynamic 
flows with strong electric currents have long been investi- 
gated in connection with the problem of the central engines 

in active galactic nuclei (Blandford 1976; Blandford & 
Znajek 1977; Macdonald 1984; Camenzind 1987) and also 
in connection with the structure of neutron-star magneto- 
spheres (Michel 1969, 1973). It is of interest to examine the 
stability of the solutions obtained. 

The simplest case for investigation is apparently the so- 
called force-free approximation, i.e. the case where the 
energy density of electromagnetic fields is much greater than 
the energy density of matter (including the rest energy). The 
terms in the momentum equation, which are proportional to 
the mass and pressure of the liquid, are therefore small 
compared to the electromagnetic force qE +j x B/c, so it 
is possible to obtain qE +jxBlc=zQ. The force-free 
approximation, together with the ideal hydrodynamics 
approximation (which represents an infinite conductivity of 
the plasma and consequently an absence of electric field in 
the frame moving with the element of the medium), can be 
applied to the neighbourhood of a massive black hole, which 
is thought to be the central engine of an active galactic 
nucleus. Such an approach was developed by Blandford & 
Znajek (1977) and Macdonald (1984) [see also chapter 4 of 
the book ‘Black Holes: The Membrane Paradigm’ by 
Thorne, Price & Macdonald (1986) and chapter 7 of the 
book ‘The Physics of Black Holes’ by Novikov & Frolov 
(1986), and references therein]. The force-free approxi- 
mation is apparently also valid for the inner parts of the jet, 
which are close to the axis of symmetry and are connected 
with the black hole (Lovelace, Wang & Sulkanen 1987). Here 
the strong magnetic field is expected to be of the order of 104 

G, large enough for the electron density to be 1 cm-3 and to 
screen the longitudinal (along the magnetic field) electric 
field component so that the MHD approximation is valid. We 
assume the black hole to have typical values for its mass and 
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its rotation parameter, namely M- 108 M0 and a =J/M<1, 
respectively. In this case the energy density of the fields is 
1013 times greater than the rest-energy density of e+e “ pairs, 
and so the force-free approximation is adequate. In the inner 
part of the flow, which is connected to the black hole by 
magnetic field lines, the particle density cannot exceed the 
value g je significantly because the particles do not escape 
the black hole, and e+e~ pair production is only made 
possible by the existence of the longitudinal electric field, 
which vanishes for 

This paper investigates the stability of a force-free axisym- 
metric MHD jet. The geometry of the flow is cylindrical. We 
suggest that the jet propagates in a medium whose density is 
greater than that of the jet but whose temperature and pres- 
sure are small, so the condition of impermeability is fulfilled 
and the boundary is at rest. The poloidal magnetic field is 
assumed to be uniform and parallel to the jet axis. The fluid 
moves along spirals as a result of the radial electric field. We 
will show that under such conditions the relativistic flow is 
stable for axisymmetrical modes (m = 0, where m is azi- 
muthal wavenumber). We find the dispersion curves for such 
modes, w = co(&), and investigate the appearance of the 
standing wave when z;g = d /d /c = 0. 

2 EQUILIBRIUM CONFIGURATION 

Let us consider a flow of liquid in a force-free cylindrical jet. 
The Maxwell equations are 

V-Zs = 4jrp, (1) 

V-Z? = 0, (2) 

V xE= - 
dB 
dt ’ (3) 

^ ^ dE 
V x B = 4jt/ + —- . J dt (4) 

Here we use units for which c = 1. The condition of an ideal 
flow is 

E=-vxB, (5) 

where v is the plasma velocity. The force-free approximation 
is guided by the relation 

qE-\-JxB = 0. (6) 

First we will find the stationary configuration of the jet. In 
this case V x is = 0 and the velocity v can be written as 

v = KB+Q Fre^. (7) 

Here and below, r, z and ÿ are cylindrical coordinates, en e7 

and are unit vectors in the cylindrical coordinate frame, 
K =K(r),andQF=QF(r).Then 

E=-QFr(e^xB) (8) 

and Q F can be treated as the angular rotation velocity of the 
magnetic field lines (Thorne et al. 1986). In the cylindrical 
configuration, B = Bz(r) ez+B^r) e^, so equation (2) holds 
automatically. Substituting into equation (6) the p-value from 
( 1 ) and j from (4), we obtain 

E(V'E)-Bx(VxB) = 0. (9) 

According to (8) the only non-zero component of equation 
(9) is the r-component. This implies 

QFBz±(QFr2B
z) = Bz^ + ±B^r(rB,). (10) 

Integration of ( 10) gives 

r^F2 4 d2 2 d2 . Q r B7 = r Bd + (ID 

Equation (11) defines all possible solutions for the force-free 
electromagnetic fields for a cylindrical configuration of the 
magnetic tubes. If we know any two of Q F(r), Bz(r) and B^(r), 
we can find the third from equation (11). Thus in the cylin- 
drical geometry the solution for the fields depends on two 
arbitrary functions. 

Equation (11) can be rewritten in terms of the charge of 
the jet per unit length Q(r) inside a cylinder of radius r, the 
current I(r) flowing in the negative direction along the z-axis, 
and the poloidal magnetic field Bz(r). From equations ( 1 ) and 
(4) we obtain 

Q = kr2QFBz, I = 2KrB^. 

Thus equation (11) takes the form 

(B2
z)dr\ (12) 

We integrate equation (11) considering the fields as con- 
tinuous functions and taking into account equation (8): 

r2(B2 —E2) — 2 rBidr\ 

where 52 =5^+5^ and E = Er= - QFrBz. We see that the 
condition \E\<\B\ is fulfilled, i.e. there is no light surface 
inside the jet on which \E\ = \B\ and \v\ = l. For all solu- 
tions of ( 11 ) the velocity of the plasma flow v does not there- 
fore exceed the velocity of light. Let us note that in the 
force-free approximation the velocity v is formally defined 
by equation (5), and for the solution of equations (l)-(6) it 
can be greater than unity. The light surface exists, for 
example, in the force-free configuration found by Blandford 
(1976) and in the pulsar magnetosphere described by 
Beskin, Gurevich & Istomin (1983). 

We shall make an additional remark. The case where the 
total charge of the jet is equal to zero is probably the most 
natural, i.e. Q(Æ) =0, where R is the jet radius. If the jet has a 
charge that is not equal to zero, the electric field penetrates 
into the surrounding medium. This results in charge motion 
in the plasma and in a decrease of the charge of the jet. The 
absence of an electric current through the surrounding 
medium means that /(/?) = 0. The current is closed inside the 
jet: it flows in different z-directions for various r-values. The 
conditions Q(R) = 0 and 7(7?) =0 impose limitations upon 
the functions QF(r) and Bz(r). From (12) it is seen that the 
following condition must be fulfilled: 

R2B2
z(R)=2 rB2

z(r)dr’. (13) 

The demand that Q{R) = d means that either QF(7?) = 0 or 
Bz(R) = d. The latter possibility is in contradiction with the 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

4M
N

R
A

S.
26

7.
.6

29
1 

Æz(r) 7^0 found from relation (13). Consequently, in addition 
to (13) we need 

QF(R) =0. (14) 

For such a jet the boundary conditions are BZ{R)¥^Q, 

For Bz = constant, from equation ( 11 ) we have 

Bl/,= ±QFrBz. (15) 

Relation (13) is fulfilled. The criterion of zero total charge 
and current for the jet is given by relation (14). If Q F(R) = 0 
then I{R) = 0 and also <2(Æ) = 0, but if QF(R)^0 then 
I(R)já0 and Q(R) ^ 0. When we later consider fluctuations, 
we adopt the limiting condition Bz(r) = constant. We shall not 
demand that condition (14) be satisfied, and the results of 
our investigation do not depend on whether or not the 
requirements Q(R) = 0 and I(R) = 0 are fulfilled. 

The equilibrium stationary configuration of the jet is 
shown in Fig. 1. 

3 STABILITY 

Let us start with an analysis of the stability of the jet confi- 
guration described above. In subsequent formulae, values 
referring to a non-perturbed solution will be denoted by the 
subscript ‘O’, while those referring to perturbation will be 
denoted by the subscript T. After removing the quantities q, 
E and j from the initial system of equations (l)-(6), there 
remain only three resultant equations: 

V'Z? = 0, (16) 

= V x(vx B), (17) 
ot 

0 
{vxB)V-(vxB)-Bx(VxB)-Bx — (vxB) = 0. (18) 

ot 

The quantities B and v can be represented as B = B0 + Bl 

and v = v0 + vl.In first-order perturbation theory, equations 
(16)-(18) then imply 

V-Æ^O, (19) 

^1 = Vx(i;1Xß0) + Vx(i;0Xß1), (20) 

(vqX-B0)V-(vl'x B0) + (v0'x B0)V'(v0'x 

+ (vlxB0)V-(v0xB0)-B0x(VxBl) 

0 
+ (vqX B^V-(vqX Bq) — B0x — (vqX Bi) 

-B0x-(vlxB0)-Blx(VxB0) = 0. (21) 
ot 

We consider perturbations of the form 

Z?i = ô1(r)-exp(-ift>i+ ife +im^), 

t>i = fli(r)-exp(-ia)i Fife+im^), 

where m is an integer. Substituting this expression into 
equations (19)-(21) and using relation (7) for v0, equation 

Stability of an electron -positron jet 631 
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Figure 1. The equilibrium stationary configuration of a jet with a 
uniform poloidal magnetic field Bz. The frequency of rotation in the 
dimensionless units described in Section 3 is = 27r(l — r). The 
jet boundary for r = 1 and three magnetic tubes for r= 1/4, 2/3 and 
9/10 are shown. The magnetic field lines are spiralling on a mag- 
netic tube. Since QF(1) = 0, the total current through the jet is equal 
to zero and the magnetic field is purely poloidal both at the 
boundary and at the axis of symmetry. The curling of magnetic field 
lines is a maximum for r=2/3, decreasing for smaller and larger 
radii. The density of the poloidal current jz is negative when r<3jA 
and positive when 1 >r>3/4. The electric field E induced by jet 
rotation is radial. The plasma velocity v along the magnetic tube 
consists of two components: rotation with angular velocity 
and motion along the magnetic field lines with a speed i>y = KB. We 
see that the rotation velocity rQh can exceed the speed of light c (in 
our case the maximum value of rQh is 4c at r = 2/3); nevertheless, 
the quantity v is restricted by c due to the existence of a predomi- 
nantly toroidal magnetic field. The dispersion curves o) = o)n(k) for 
perturbations of this equilibrium state are plotted in Fig. 3. 

(19) becomes 

\kBzX + i — B^ + —+ - J5rl = 0. (22) 
r or r 
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We obtain the following expressions for components of 
equations (20) and (21): 

\Br-\ I a) - kKBz0 - — KB^0 - mQ F 

for the r-component of (20), 

i(oj — kKBzo) B^ 

-ikB?avr,-\ — BÁñvr r 
(23) 

= 0r^rl^^° BriKB^Q BrlQ r) B^v^) 

Of the seven equations (22)-(28), only five are independ- 
ent. If we add equation (27), multiplied by B^, to equation 
(28), multiplied by Bz(), and take into account the relation 
(10) between B^ and Z?z0, we obtain that this sum vanishes 
identically. Thus equations (27) and (28) are linearly depend- 
ent. Expression (19) follows from (20), so we need not con- 
sider (22). Thus we have a system of the five equations 
(23)-(27) for five variables Brl, Bzl, B^, vrl and 

Yrom equations (23), (27) and (25), we 
express vrl in terms of Brl and Bzl, and B^v^ -B^0vzl in 
terms of Brl and B^. Equation (24) then gives an expression 
for in terms of í?rl: 

-ik(KB^ + QFr)Bzl 

for the ^-component of (20), 

(Ï71 I 
0)-— KB^-mQF\ 

1 0 
= -^(rBz()v,] -rKBz()Brl) r or 

(24) 
B, 01 2 ; 2 2/2 co ~k -m I r 

--^-(QFr2BzQ)Brl r or 

œ — mQ k Brl kBz0 + mBJr r Bz0dr 

QF rkB7Ç) + coB â 0^ I aa rrvLJz{) i 
(X) dr \ rl kBz0 + mB^jr j r¿ dr 

m 0 . 
~2 ~ \rBr\) (29) 

r [BzQV<I>\ B(/>QVz\ KBzQB) 

for the z-component of (20), 

1 0 
r B^BtfV^—B^Vtf 

+ KB^Bzl-KBz,B^ + QFrBzl)] 

+ ivn{B2
z0(w-mQF) + B^(u)Bi,<)

JrkBzaÇlFr)} 

+ iBr, ■ KB2J(0-mQF)- BJKBM, + QF
r 

B 
x\w + k~QFr\ + kBzQ + - B^q 

<f>Q I r B, 
m 

(25) 

0 10 
--(ßzOJ5zl)--p-(/-25^ß^) = 0 (26) 

for the /--component of ( 21 ) after some reduction, 

10 10 
~ TT (£2 r Bz0)( — vrl + KBrl) Bz0 + Brl - — (rB^) 
r dr rdrf 

-\-\o)Bzq{BzqV01 — B 0^1) zx) + iB zQB ^(k — a)KBzQ) 

+ i5z0ßzl|ü/Qf/- + a/^0-yj = 0 (27) 

for the ^-component of (21 ), and 

-r^r[Q
Fr2Bza){vAB^-KBi0BA-ÇlFrBA) + BA ^ 

— ic^0(£zo^i — B<f>oVz\) ~ lB <t>nB i/tiik — o)KBz0) 

-iBiaBz, [m&r + aiKB^-^Q (28) 

for the z-component of (21 ). 

Substituting into equation (26) the expressions for B^v^ - 
B0{)vzl, Bzl and vrl, and making some reductions, we obtain 

II 
r2 dr 

QFr3B7l 
Mr i ‘ 9 Iß Qf^o + wg(>o) 1 
k kdr\ r] kBz0 + mB^/r j\\ 

m 0 /1 
kdr\r 

BzOB0, 
1 1 
r^ dr 2 bm 

-lJ-\Bza-^{rB
rM-xBri — 

1 

kdr\ r dr ] kBz0 + mB0O/r 

B2
7(]{co -mQF)2 + B20O ( co QFr 

m 
— I kBz0 + — B^q = 0. 

B, <t>0 

(30) 

When (29) is used to express B^ in terms of Brl, equation 
(30) becomes the second-order ordinary differential equa- 
tion of the variable Brl. Solving this equation, we can find the 
radial dependence of perturbations propagating along the jet. 
Bn(r) must fulfil the boundary conditions for r = 0 and r=R. 
For r = 0, BrX must be regular. If | m | ^ 1, this condition can 
be strengthened to become Brl | r=0 = 0. The latter expression 
follows from the continuity of the vector Bx near the sym- 
metry axis, and must be automatically fulfilled for solutions 
in which Brl is regular when r=0. Straightforward analysis of 
the behaviour of the solutions of the system (29), (30) near 
r=0 confirms the two kinds of boundary conditions 
mentioned above. The boundary condition for r = R must be 
derived from the rigidity of the jet wall vrl\r=R = d, which has 
been assumed above. Taking into account (23), this gives 
Br\\r=R = 0- Thus we have to investigate the solutions of the 
system (29), (30) taking into account the boundary condi- 
tions 

Brl\r-<i is regular, 

£riU* = 0. (31) 
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It is noteworthy that more real boundary conditions must 
be considered at the perturbed surface of the jet by writing 
the pressure equality on both sides of the jet surface and the 
continuity of the displacement of any fluid elements across 
this surface, which is similar to the treatment by Appl & 
Camenzind (1992) of the non-relativistic flow without an 
electric field. When considering a complete system of hydro- 
dynamic equations, however, we need at least one non-force- 
free medium on both sides of the jet surface in order that 
such a boundary condition might be written. This is beyond 
the scope of this paper. In the framework of the force-free 
approximation, the conditions noted above will be automati- 
cally fulfilled for all solutions of equations (29) and (30). For 
this reason one cannot investigate the possible development 
of Kelvin-Helmholtz instability on the boundary between a 
jet and ambient material if the force-free approximation is 
adopted. 

In equations (29) and (30) there is no parameter K(r) 
which determines the component of v{) parallel to B(). This is 
why the results of our investigation of stability do not depend 
on the values and profiles of the longitudinal velocity. 

We further restrict ourselves to the jet model with a homo- 
geneous magnetic field BzX) = constant, and hence use expres- 
sion (15) for The choice of the sign in formula (15) 
depends on the choice of the direction of the poloidal com- 
ponent of the flow in the jet. This keeps equations (29) and 
(30) unchanged under reversal of the signs of B^ and k. For 
definiteness we adopt the sign ‘’ in ( 15 ) and consider arbi- 
trary values of k. A substitution of (29) into (30) using (15) 
then leads to the following second-order differential equa- 
tion, where the prime denotes differentiation with respect to 
r. 

2m 
1 dQ 1 

- m - 
r r a) — k - m jr dr k + raQ 

+ i?r o2 - k2-^y — m(k + mQ1') — | 
d / 1 dQ1 

1 
k- co-\-2mQ —Q r (co + k) 

The quantities A{ and A2 are 

A{ = —2Qf r(co+k)-l   j 
dr k + mQf 

x(m — mQF r2 —2kr2QF), 

dr\(k + mQF)2 dr 

(AX+A^^O. (32) 

A? =2m 
dQ A2 QFr2(co + k)-m dQF 1 
dr / k + raQ dr k + mQ 

2m 1 
2 7 2 2 / 2 2 r co -k — m /r [r 

—j (3mQF-co + k) 

— QFr2{co2 -k2) Q (co + k) +— 
r 

m / 
+ —(co — k) 

r 

+ 2Q,Frk(co+ k)+lQF rm(co+k) 

(33) 

Stability of an electron -positron jet 633 

2m 1 
—j'Q + — (co — A:) 4-3Q (co+k)+2 

1 
r co+k 

+ 2 2 2 ; 2 2/2 r co — k —mir 
m 

r (co+k) 
Qf (co + k) • (34) 

In the case of axisymmetric modes, when ra = 0, this equation 
is substantially simplified and can be reduced to the form 

co + k 1 d 
co—krdr 

d ll 
Qf r5 — \ — Br dr \ r dr 

1 d_ 
r dr 

(rBn) 

+ Bn[co2 — k2 + Q.f r2(co +k)2] — 0. (35) 

We will demonstrate that the edge problem for equation (35) 
with the boundary conditions (31) has a trivial solution when 
the imaginary part of co does not vanish and k is real. This 
implies that the jet is stable with respect to the axisymmetric 
modes. In order to prove this, we multiply (35) by the com- 
plex conjugated value Æ* and integrate the expression 
obtained over r with a weight r from r = 0 to r = Æ. 

Let us introduce the new dimensionless variables o' = oR, 
k! = kR and r' = rjR, which will be written henceforth with- 
out the primes. We obtain the following equation: 

o+k 
co - k 

* 1 d 
r dr 

Q-2A 1« 

* d 
B*'rT dr ~d(rBrl 

dr \ r 

dr 

dr 

r| Br \o -k2 + Q,f r2(o +k)2]dr = 0. 

After partial integration of the first and second terms, and 
taking into consideration expression (31) in its stronger form 
Brl\r=Q> = 0, we arrive at the expression 

/i — /2 + (ft>2 ~ k2) I3 + (o + k)214 = 0, 
o —k 

where 

11 Qf r5 d 1 
dr [ r Brl dr, 

1 1 

o r 
UrBn) 
dr 

dr, 

U = r\Bn\2 dr, 

Qf r3|5J2dr 

Transformation of this equation to make it cubical with 
respect to o leads to 

3 2, 1,2 1 + y o — o k   o \ k + a  
i+ß i+ßi 

+ k3^~+ak^~ = 0, 
l+ß l+ß 

(36) 
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where a = I2/J3, ß=I4II3 and y The integrals /1? /2,13 

and /4 are real positive values depending on co and k by 
means of Brl. If there exist a co and a k at which the edge 
problem (35), (31) has a non-trivial solution, then this w must 
be the root of the cubical equation (36) with real coeffi- 
cients, and, moreover, none of the integrals /i, 2,3,4 can be 
equal to zero. We need to prove that the cubical equation 
(36) has no roots with non-zero imaginary parts when a, ß, 
y > 0 and k is any real number. Let us replace co by 
a)' +k(\-ß)J3{ 1 + ß). Expression (36) then becomes 

a)'3 + p(t)' +q=0, 

where the coefficients p and q have the forms 

P = 
1 
3 

\-ß 

{i+ßi 

i-ß 

-k-a 

l + ß 9\l + ß 

1 + y 
Ï+/T 

21 2 qfc 
+ 3(l+ßf 

(l-2y + 2ß-rß). 

The reduced cubical equation obtained above would have 
only real roots if (2 <0, where 

Substitution of the expressions for p and q, after some simple 
but cumbersome calculations, gives 

Ô [-*3(i + y)3( i+ß)2-(i+ß)uß2 

+ ^sA+s2(\+ß)B], (37) 

where5= a//c2>0, 

A=3ß(l-ß)-12ß3-6ß4-6y-l2yß-3yß2 + 3yß3, 

B= -l-20y-38yß + 8ß + 8ß2 + 8y2 + 8ßy2 

- y2ß2-20ß2y. 

The sign of Q depends on the sign of Q' = 27(l + ßYQfk6. 
The expression for Q' can be transformed to the form 

Q'- —(1 + ß)s[y(sy-4)2 + (s—4ß)2 + 3s2y(l + y)] 

- (syß +5 ~4ß)2 - s2y(20 + 36ß + 20ß2). (38) 

For all s,y, ß> 0, one can see from (38) that Qr is negative, as 
required. 

4 DISPERSION CURVES 

The boundary conditions for Brl cannot be satisfied for all 
values of (o and k. It is necessary that some dispersion relation 
o) = oj{k) is obeyed, where œ and k are real, in accordance 
with the existence (proved above) of a non-trivial solution of 
the edge problem for equation (35). When QF=0, equation 
(35) reduces to the Bessel equation 

B"rl +-B'rl-\ Brl +Brl((o2 -k2) = 0. 
r r 

Its solutions that satisfy the boundary conditions have the 
form (in dimensionless variables) 

Brl =CJßXnr), 

where C== constant, and Xn is the nth root of the first-order 
Bessel function J\{x). In this case the dispersion relation is 

a)2 = k2+k2
n. 

Every number n corresponds to the nth branch of the disper- 
sion curve a)n{k) = (jD. In the case Q^r^O, the dispersion 
curves have been calculated numerically by solving equation 
(35). The results of calculations for two distinct profiles 
Q r(r) are shown in Figs 2 and 3, where the first three 
branches of the function a)n(k) are plotted. Equation (35) 
does not change when œ and k are simultaneously replaced 
by - co and - k, so we have plotted the dispersion curves for 
positive frequencies of co only. The branches situated in the 
lower half of the ( co, k) plane can be obtained from the ones 
situated in the upper half by means of central symmetry 
reflection with respect to the origin. Q F(r) = Q( 1 - r2) in Fig. 
2, while QF(r) =Qr(l -r) in Fig. 3. Here Q is a parameter 
that can vary from 0 to + °o. The curves are plotted for three 
values of Q. 

The notable feature of these curves is the existence of a 
minimum in the dependence co = co(ä:), where /c^O. This is a 
common phenomenon for all the branches, and is caused by 
the terms in equation (35) depending linearly on co and k. 
Because of this, perturbations with k « kmxn do not propagate, 
since the group velocity dco/d/c vanishes for k = kmm. This 
wave packet undergoes only diffuse broadening due to the 
finite value of d2a)/dk2 for k = kmin. Let us consider an 
example of disturbance propagation along the jet. Suppose 
that at the moment i = 0 and at the point z = 0 a source of 
perturbations with a spectrum A((o) starts to operate. A 
mode with a dispersion relation œ = a){k) is excited by this 

Figure 2. The dispersion curves w=a)n(k) for Q^(r) =Q(1-r2). 
The first three branches are shown. The solid line corresponds to 
Q = (3 y[3)/4, the dashed line to Q = 6 J3, and the dot-dashed line to 
Q = 60j3- For Q = (3j3)/4 the values of kmin and Aco/k^ are, 
respectively, in the dimensionless units described in the text, 0.23 
and 0.12 for the first branch, -0.07 and 0.07 for the second 
branch, and - 0.09 and 0.049 for the third branch. For Q = 6 >/3, the 
values are 0.89 and 0.24 for the first branch, 0.21 and 0.07 for 
the second branch, and 0.02 and 0.15 for the third branch; for 
Q = 60 >/3, they are 0.35 and 0.77 for the first branch, 0.07 and 0.06 
for the second branch, and 0.06 and 0.056 for the third branch. The 
values of the parameter Q are chosen such that the maximum 
rotational velocities of the magnetic field fines inside the jet are c/2, 
4c and 40c, respectively. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

4M
N

R
A

S.
26

7.
.6

29
1 

Figure 3. The dispersion curves co = (on(k) for QF(r) =Qr(l-r). 
The solid line corresponds to Q = 27/8, the dashed line to Q = 27, 
and the dot-dashed Une to Q = 270. The values of the parameter Q 
are chosen such that the maximum rotational velocities of the mag- 
netic field lines inside the jet are c/2, 4c and 40c, respectively. For 
Q = 27/8 the values of fcmin and Aco/k^ are, respectively, in the 
dimensionless units described in the text, 0.11 and 0.12 for the first 
branch, -0.06 and 0.08 for the second branch, and -0.035 and 
0.05 for the third branch. For Q = 27, the values are 0.95 and 0.23 
for the first branch, 0.23 and 0.07 for the second branch, and 0.02 
and 0.14 for the third branch; for Q = 270, they are 0.35 and 0.80 
for the first branch, 0.06 and 0.07 for the second branch, and 0.04 
and 0.06 for the third branch. 

source, i.e. at the point z = 0 the disturbance can be written 
as 

Br,= A{co) exp(-ia)t) dco, (39) 

where the r-dependence of Brl is omitted for simplicity. 
Strictly speaking, expression (39) is valid only for fixed r, and 
A{co) is the coefficient of the expansion of a harmonic with a 
given frequency co to the radial modes, which are determined 
by solving the edge problem (35), (31). When the braiich 
(o = co{k) is given, the main contribution to Brl is provided by 
the frequencies near cumin, so the dependence a) = a)(k) can 
be approximated near /cmin by the quadratic law 

. {k-1 cu = a>0 + Aco —— 
\ K 

The minimum value oí o){k) is attained for k = k{) and equals 
oj{) . In the neighbourhood of the minimum point, 

d 60 _ 2 A to k~k() d2co_^Aco 
dÄ: Ä;0 k0 ’ d&2 

For perturbations propagating in the direction of positive z, 
we may write 

Br A{ü))oxp — i(o/+ik0z+i/c0z I co-(Op 
Aco 

dco 

Stability of an electron -positron jet 635 

and, when co = co0 + cOi is substituted, the integral becomes 

Br] A(co0 + Wi) exp — ico^+ikoZ 
CO 

' Aco/ 
dco! 

Xexp(-ico0i+iA:0z). (40) 

In expression (40) we should take the branch that has the 
positive imaginary part of the square root when col < 0, so 
that the waves with co < co0 decay as they propagate to z > 0. 
A(a)) must have no irregularities at Imco > 0 when considered 
as a function of the complex argument of co. Only in such a 
case, according to (39), does the source induce no pertur- 
bations at ¿<0. When ¿<0 one can obtain from (40) that 
Bri{t, z) =0, while at i> 0 

Brl = 2i 
* 00 

A{a)0 + Wi) Qxpi-icuxt) sin 
Jo 

dcoj 

xexp(-ico0i+ik0z) -2jti exp(-ico0i+ik0z) 

X 2 resL^. 
Ima/ <0 

A(c0i + C00) 

x exp — icoji+ikoZ (41) 

where the sum is taken at irregular points of A(a>) when 
lmco<0. Suppose that the spectrum A{(jd) is regular for 
0)1 = 0; then the coefficients in (41) will decay exponentially 
when t-*°o and z 00. It is therefore only necessary to 
consider the first term on the right-hand side of (41) to 
obtain Brl at large t and z. Equation (41) transforms here to 
the form 

1 / n2_ 

(Op + -{s-p) 

x(s-p) exp(-is2) ds, (42) 

where p = k0zl2 jAœt. Only values of | s | - 1 contribute to 
the integral in (42). This corresponds to the fact that only the 
frequency interval from a)0 to co0 + max{l,p2}/t is involved in 
the calculation of Brl in expression (42). When t^>l/o)0 and 
z/t^j4A(joa)Q/k0, the width of this frequency interval is 
much smaller than cd0, so one can use an approximate 
expression for co{k), as was done in equations (40)-(42). 
When p^l, the frequencies near a)0 + p2/t make the main 
contribution to (42). This corresponds to the propagation of 
perturbations with a group velocity of z/t=d(o/dk. When t 
increases at a fixed z, p diminishes and the frequencies 
making the main contribution to Brl approach a)0; dw/dk 
diminishes too. When p<^l, the frequencies involved 
approach a)0 with a width of the order of 1 /¿, and the point z 
is situated in a region of diffuse broadening of the perturba- 
tions produced by the source at z = 0. Thus the parameter p 
determines the source of the contribution to Brl(t,z): if 

1, the wave propagates with a group velocity of dco/dk, 
and if /? 1 it gradually broadens with a diffusion coefficient 
of Aco/kl for a wave packet with a frequency o)0. 
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Let us, for example, consider the propagation of the dis- 
turbances when /?, ! i::i is given by the following expression: 

/0 t<0, 

£nUo= exp(-iio0t) 0<t<tQ, 
^0 t> t0 

for Z?,, ¡,._n = 0. One can obtain for Brl(t, z) 

Brl{t,z)=A0e.xp[-\(a0t+ik0z) 

l_k^\ 
C xl  

1+i 

when 0 < r< and 

2A 
z)= exp( - ic^o^ + i^0z) 

hz 

+ iS 
'JItcAcoíI \j2nAüjtl - 

hz 

x C 

+ iS 

-sl2nAw(t -10) 

k0z 

C 

J2jiAa)(t -10)- 

l Kz \ 

w2jtAftU' 

W2jtAc6)// J 

when t> t0. 
Here 

C(x) = 

and 

S{x) = 

cos x2 ) dx 

sin 1^ x21 dx 

are Fresnel integrals. This example clearly illustrates the 
behaviour of small perturbations, as described above. 

In general, the source produces disturbances that corre- 
spond to all branches of the dispersion curve œ(k). For the 
branches with higher frequencies the diffusion coefficient 
Aœ/kl diminishes, and the amplitude of perturbation must 
decrease too because of simultaneous excitation of several 
modes, of which only one has doj/dk = 0 for a certain value 
of k. 

The quantities kmin and Aœ/kl for the first three branches 
are shown in Figs 2 and 3 (in the dimensionless units intro- 
duced above). The characteristic values of kmin are of the 
order of 1/R. The wavelength of the stagnant disturbance 
accumulated inside the jet is therefore of the order of R. 
Such a phenomenon is observed in the optical band for a jet 
in 3C 273, where a modulation of the brightness with a wave- 
length comparable to the jet radius is clearly visible (see the 
paper by Morrison & Sadun 1992 and fig. 2 therein). The 

model of the spectrum of the jet radiation in a broad fre- 
quency range (from X-rays to radio) described by Morrison 
& Sadun (1992) implies that the 3C273 jet is an 
electron-positron beam. The results of our consideration of 
the behaviour of small perturbations can be applied to such 
beams. 

5 SUMMARY 

We have shown that a jet with a longitudinal electric current 
is stable within the force-free approximation for all velocities 
of motion and rotation. The current flowing along the jet 
creates a toroidal magnetic field and the field lines become 
spiral. The curling of the magnetic field lines changes with 
radius. We therefore have a shear of the magnetic field which 
prevents a possible instability. The important point is that the 
fluid pressure is low compared to that of the electromagnetic 
field. Even a small shear stabilizes the convective motion. We 
also find that the dispersion curves a) = (on(k\\) have minima 
for certain values of /hi = A:ii0. This means that such oscilla- 
tions form a standing wave with a wave vector k][Q. The 
amplitude of the standing wave will be larger than the ampli- 
tudes of other waves because it experiences a dispersion 
spreading only. This phenomenon is caused by the fact that 
oscillations with wave vectors less than and greater than kh 

propagate in opposite directions. A standing wave with a 
wavelength of the order of the jet radius is obviously 
observed in 3C273. 
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