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ABSTRACT

Two-dimensional numerical simulations are used to investigate how fully compressible nonlinear convection
penetrates into a stably stratified zone beneath a stellar convection zone. Estimates are obtained of the extent
of penetration as the relative stability S of the stable to the unstable zone is varied over a broad range. The
model deals with a perfect gas possessing a constant dynamic viscosity. The computational domain is divided
into regions of initially stable and unstable polytropic stratification by varying the thermal conductivity with
depth. Effects of compressibility are accentuated by considering cases where the mean density ratio across the
unstable zone is initially 6, and as much as 114 across the entire domain. The dynamics is dominated by
downward-directed plumes which can extend far into the stable material and which can lead to the excitation
of a broad spectrum of internal gravity waves in the lower stable zone. The convection is highly time depen-
dent, with the close coupling between the lateral swaying of the plumes and the internal gravity waves they
generate serving to modulate the strength of the convection. The depth of penetration A, determined by the
position where the time-averaged kinetic flux has its first zero in the stable layer, is controlled by a balance
between the kinetic energy carried into the stable layer by the plumes and the buoyancy braking they experi-
ence there. A passive scalar is introduced into the unstable layer to evaluate the transport of chemical species
downward. Such a tracer is effectively mixed within a few convective overturning times down to a depth of A
within the stable layer. Analytical estimates based on simple scaling laws are used to interpret the variation of
A with §, showing that it first involves an interval of adiabatic penetration if the local Peclet number of the
convection exceeds unity, followed by a further thermal adjustment layer, the depths of each interval scaling in

turn as S~ ! and S~ /4. These estimates are in accord with the penetration results from the simulations.
Subject headings: convection — hydrodynamics — methods: numerical — stars: interiors

1. INTRODUCTION

Thermal convection can be effective at redistributing energy,
angular momentum and chemical elements in stellar interiors.
Mixing-length approaches have provided the primary means
for describing the heat transport achieved by such convection
in stars and thus are one of the mainstays of stellar structure
and evolution theory. These mixing-length treatments are
often lamented, for the assumptions upon which they are based
are rather simplistic and are difficult to confirm experimen-
tally. Yet such local mixing-length descriptions of convection
prevail because of the ease with which they can be implement-
ed, and it may well be that they treat some aspects of the
mixing achieved within convection zones quite adequately.
However, such approaches have real problems in treating
motions that penetrate into the stably stratified layers which
surround convection zones. Efforts at rendering local theories
nonlocal in order to describe such penetrative convection have
led to uncertain results, as discussed in turn by Renzini (1987)
and Zahn (1991), for the predictions about the extent of pen-
etration vary widely depending upon the assumptions made.
The nonlocal mixing-length models typically determine the
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convective velocities from an integral of the stratification with
depth, with work done by buoyancy leading to changes in the
kinetic energy of a fluid element. Though such nonlocal
approaches permit motions to extend well beyond the unstable
zone, the extent of penetration depends sensitively on the
imposed integral scale (or mixing length) with depth, and
attempts to calibrate that integral scale have yielded diverse
conclusions. Further, the role which compressibility plays in
the highly nonlinear flows of stellar convection is still unclear
and deserves particular attention.

Numerical simulations of convection have been pursued as
an alternative means of trying to assess the properties of vigor-
ous compressible convection in stellar settings. Early nonlinear
studies were carried out within the anelastic approximation in
which the dynamical equations are filtered to remove effects of
sound waves, and with the further assumption that the hori-
zontal structure of the convection could be expressed as a
Galerkin expansion involving a truncated set of horizontal
planforms or modes (Latour et al. 1976). Such anelastic modal
equations in their simplest form, involving only a single mode,
such as a hexagon in the horizontal but having excellent
resolution in the vertical, were used to study compressible con-
vection in the entire outer envelope of A-type stars (Toomre et
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al. 1976; Nelson 1980; Toomre 1980; Latour, Toomre, & Zahn
1981). Using realistic equations of state and opacities, these
modal studies revealed that cellular flows of large horizontal
scale, driven principally in the lower helium convection zone,
would penetrate substantially above and below that region,
leading to dynamical coupling of the two zones of instability in
A stars, contrary to what had been inferred from mixing-length
models. Such penetrative convection serves to preclude gravi-
tational diffusive separation of elements in what was sup-
posedly a quiescent stable region between the hydrogen and
helium zones. Further, those modal solutions showed that the
large-scale upward-directed flows were deflected sharply side-
ways by effects of major pressure fluctuations as they
approached the hydrogen ionization zone, leading to strong
shearing flows below the surface, with only a faint signature of
the flows getting through into the atmosphere.

Anelastic modal equations were also used by Massaguer &
Zahn (1980) to study nonlinear convection in a simpler
unstable layer of a perfect gas initially stratified as a polytrope.
They found that effects of compressibility could yield substan-
tial buoyancy braking at the top of the layer due to pressure
fluctuations modifying the density fluctuations (see also Glatz-
maier & Gilman 1981). Further, the net pressure work
extracted from compression and dilation of the fluid could well
exceed the net work by buoyancy forces when the convection
cells are of large horizontal extent and the density contrast
across the layer, g, is large. Massaguer et al. (1984) extended the
anelastic modal studies to consider penetrative convection in
three initially polytropic layers, finding that penetration into
the lower stable layer by downward-directed plumes from the
middle unstable one is considerably greater than that which is
achieved in similar three-layer systems of Boussinesq fluid
(Zahn, Toomre, & Latour 1982).

The fully compressible equations, admitting sound waves
and with no restrictions on y or the flow Mach number M,
were first used in two-dimensional simulations of convection in
unstable layers of a perfect gas extending over multiple scale
heights and revealed in unstable layers of a perfect gas extend-
ing over multiple scale heights and revealed distinctive asym-
metries between upward and downward flows (e.g., Graham
1975; Hurlburt 1983; Hurlburt, Toomre, & Massaguer 1984,
Toomre, Hurlburt, & Massaguer 1984; Sofia & Chan 1984;
Yamaguchi 1984, 1985; Porter et al. 1990; Cattaneo, Hurlburt,
& Toomre 1990; Porter, Woodward, & Mei 1991; Xie &
Toomre 1991, 1993; Porter & Woodward 1993a; see also Rast
& Toomre 1993a, b for effects of ionization on the dynamics).
The pressure fluctuations work in concert with temperature
fluctuations to accentuate buoyancy driving in regions of
descending motion but can even lead to buoyancy braking
within the ascending motions, thereby yielding strong and
narrow downward-directed plumes and weaker and broader
upflows. Such asymmetries result in large downward-directed
kinetic fluxes that partly counteract the upward-directed heat
or enthalpy flux. The resulting flows are characterized by
strong, narrow downward plumes surrounded by broad
upflows, both extending over the entire depth of the convection
zone. These fast-downflow plumes are realized in all the two-
dimensional simulations of compressible convection, and thus
one anticipates that such asymmetrical vertical flows could
yield considerably greater penetration of convection into
stable regions below an unstable zone rather than above it.

Two-dimensional compressible simulations of penetrative
convection sought to make detailed contact with the earlier
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anelastic modal studies by adopting similar three-layer con-
figurations (Hurlburt, Toomre, & Massaguer 1986, hereafter
HTM), with the sequence of stable-unstable-stable layers
achieved by specifying a varying thermal conductivity with
depth. That study showed that the prominent downward-
directed plumes could overshoot a substantial distance into the
lower stable region, exciting a broad spectrum of internal
gravity waves there, which in turn deflect the plumes laterally
and yield a rich time dependence as they modulate the ampli-
tude of the convection. In contrast, the extension of convective
motions into the upper stable layer is far gentler, involving
broad billowing flows accompanied by modest gravity wave
excitation. Comparable behavior is reported from two-
dimensional simulations by Porter et al. (1991) and Porter &
Woodward (1993b) and further by Roxburgh & Simmons
(1993) when employing a more general function of conductivity
with temperature.

Since the penetrative properties are dominated by the pres-
ence of downflow plumes, it is essential to understand whether
such up-down asymmetries arising from compressibility effects
survive as the convection is allowed to be three-dimensional
and to involve far more spatial degrees of freedom than
allowed in the simpler modal treatments. The third spatial
dimension permits vortex stretching mechanisms and associ-
ated shear instabilities which are precluded in two dimensions,
and thereby provides one essential route to turbulence. Indeed,
these instabilities might serve to disrupt the coherent downflow
structures so evident in the two-dimensional simulations.
Further, the enhanced degrees of freedom can yield flow topol-
ogies unattainable otherwise. Three-dimensional modeling of
compressible convection necessary to answer such questions
have gradually become available as the simulations have pro-
ceeded apace with advances in computer speed and memory.
The three-dimensional compressible simulations fall broadly
into two classes. In the first approach, the physics is simplified
by using perfect gases (e.g., Graham 1977; Chan & Sofia 1986,
1989; Cattaneo, Hurlburt, & Toomre 1989; Malagoli, Catta-
neo, & Brummell 1990; Hossain & Mullan 1990, 1991;
Toomre et al. 1990; Cattaneo et al. 1991; Bogdan, Cattaneo, &
Malagoli 1993; Porter & Woodward 1993a). In the second
approach, granulation near the surface of the star is sought to
be modeled, and thus realistic equations of state, opacities
influenced by ionization effects, and radiative transfer pro-
cesses are incorporated, along with outflow boundary condi-
tions (e.g., Nordlund 1982, 1984, 1985 using anelastic
equations; Stein & Nordlund 1989, 1991; Nordlund & Stein
1990; Rast et al. 1993). The two approaches have been comple-
mentary, with the simpler models used to search for generic
properties of flow topologies and structures and transitions to
turbulence and the more realistic models to see if such features
survive in the presence of more intricate physics.

The three-dimensional simulations possessing adequate
spatial resolution confirm that compressible convection
involves distinctive asymmetries in its vertical flows. For mod-
erate density contrasts y of order 11, the convection near the
top of a layer (where the scale height is small) is characterized
by networks of narrow, cool sheets of fast downflow which
surround isolated regions of broad, warm upflow. Thus the
flow asymmetries seen in two-dimensional simulations, involv-
ing strong downflows and weaker upflows, are still very much
in evidence. However, the topology of the cellular flows
changes with depth: the sheets of downflow at cell peripheries
near the top of the layer become concentrated into discrete
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plumes at greater depths. These may coalesce into larger and
larger plumes to form treelike structures (e.g., Stein & Nord-
lund 1989), or they may continue to descend into the layer,
generating an increasingly turbulent flow as they go (e.g., Cat-
taneo et al. 1991). In the latter case, the coherent plume struc-
tures can coexist with intense small-scale turbulence, and there
the plumes contribute little to the overall convective (enthalpy
plus kinetic) energy transport, despite their vigor. Three-
dimensional compressible simulations have also been used to
study a few examples of penetrative convection within a two-
layer configuration involving a stable layer positioned below
an unstable one (Cattaneo & Malagoli 1993). The penetrating
flows are again dominated by the discrete plumes interacting
with the internal gravity waves they excite, leading to an extent
of penetration of flows downward into the lower stable region
which is roughly comparable to that obtained in the two-
dimensional simulations by HTM for the same parameter
values.

The emphasis upon plumes controlling the extent of pen-
etration below a convection zone has also been employed in
several promising analytical approaches. Schmitt, Rosner, &
Bohn (1984) developed a model of stellar penetrative convec-
tion based upon isolated downward-directed plumes. With the
assumption of self-similarity in the dynamics, they reduced the
problem to a set of ordinary differential equations. Their
numerical solutions of these equations determined that the
depth of penetration scaled as W32, where W is the velocity of
the plume as it enters the stable region beneath the convection
zone. More recently, Zahn (1991) developed a related simple
model of penetration through the detailed application of
scaling arguments to convection dominated by plumes. He
posits that there are two distinct parts to the region of pen-
etration in stellar interiors. The first is a region within the
stable layer where the convection remains vigorous enough to
modify the thermal stratification significantly, bringing it
toward an adiabatic stratification. The second is a thermal
boundary layer which forms to match the radiative flux deeper
within the stable layer to that carried by the active convection
at its base. The latter boundary layer will always be present,
while the former will only be realized if the convection is rea-
sonably efficient and possesses a sufficiently large Peclet
number. Zahn assesses how these two elements will scale with
the vigor of the convection and with the relative stability of the
stable region, thereby providing estimates for the extent of
penetration that may be achieved under varying conditions. In
particular, Zahn explains why the depth of the adiabatic layer
should scale as W32, which was the numerical result of
Schmitt et al. (1984).

We shall here turn to a suite of two-dimensional simulations
of fully compressible penetrative convection, extending the
studies of HTM to examine the effects of varying the relative
stability S of the stable to the unstable layer, while dealing with
greater density contrasts y across the unstable layer to accen-
tuate effects of compressibility. These direct simulations can
then be used to judge the efficacy of the simpler analytical
models and possibly serve to calibrate them, thereby providing
a route by which they may be more reliably employed to esti-
mate the extent of penetration achieved under realistic stellar
conditions. We shall simplify the task by working with just a
two-layer system, concentrating on the penetration achieved
by the downward-directed plumes plunging into a region of
stable stratification positioned below an unstable layer of
convection.
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The studies by HTM suggest that the presence of an upper
stable layer is relatively benign if compared to that of the lower
stable layer upon the overall convection, and thus we shall here
confine attention to just a two-layer system. As in HTM, we
shall impose upper and lower boundaries for the computa-
tional domain that are impermeable to flows and reflective to
waves, rather than seeking to devise some form of open or
transmitting boundaries, for we believe that the plumes and the
associated penetration are insensitive to those boundary con-
ditions, provided that the lower boundary is positioned suffi-
ciently deep so as to not be impinged upon by the plumes.
However, the detailed acoustic and gravity wave fields coupled
to the convection are influenced by the character of those
boundaries, and thus inferences about the associated wave field
must be treated cautiously. We shall here concentrate on
understanding how the dynamics of the plumes are influenced
by the stability of that lower stable layer. To further simplify
our surveys, we shall keep the properties of the unstable layer
the same while varying the properties of the stable layer. These
simulations will yield estimates of the extent of penetration
achieved by such compressible convection. The results from
our modeling can be used as test beds for scaling laws, such as
those of Zahn (1991). These may then be applied more con-
fidently to stellar parameter regimes which remain far away
from that attainable by direct numerical simulation.

We believe that the two-dimensional simulations here which
survey a range of parameters should be viewed as precursors
to more proper three-dimensional modeling that should be
carried out as computational resources permit, recognizing
that it is only the latter that have the potential of describing
fully turbulent processes with some modicum of accuracy.
Nevertheless, recent progress with three-dimensional modeling
of compressible convection suggests that the earlier two-
dimensional approaches do capture many of the dominant fea-
tures of such nonlinear dynamics, and this serves to encourage
consideration of the computationally far less demanding simu-
lations that are feasible when ignoring the third dimension. We
shall pose the problem in § 2, discuss the results from surveys
of solutions in § 3, then in § 4 develop scaling laws for a simple
model of penetration and compare them with that achieved by
the nonlinear simulations, and, finally, in § 5 assess what has
been learned.

2. POSING THE PROBLEM

2.1. The Model Atmosphere

We shall consider penetrative convection in a compressible
atmosphere consisting of two layers with differing initial strati-
fications. In keeping with the notation developed in HTM, the
two layers are numbered sequentially in depth as 2 and 3 (the
upper stable layer 1 is absent), with the upper layer 2 having an
unstable stratification and the lower layer having a stable one.
We control these stratifications by specifying the variation of
the thermal conductivity K(z) with depth z and assert that it is
unaffected by the ensuing motions. The function K(z) assumes
differing constant values K, within each layer and changes
rapidly near the interface between them. Since the total energy
flux Fr in a static state is independent of depth, the different
thermal conductivities in each layer would produce different
thermal gradients f; = F/K; and hence control their stability
to convection. For a perfect gas experiencing a constant gravi-
tational acceleration, each initially quiescent layer has a poly-
tropic stratification in which the temperature T, density p, and
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pressure P can be expressed as

T\™ Tm.'+1
T=Bz-z)+T, P=P\T] > P=R*Pi7;5:_ >

@.1)

where m; is the polytropic index, R, is the gas constant, and
m; + 1 = g/R, B;. The top of each layer i is positioned at z;, and
the temperature T; and density p; are constants chosen to make
T and p continuous in z; the chemical composition is taken as
uniform. The top of both the unstable layer and of our compu-
tational domain is located at z,, and the top of the lower stable
layer is located at z3 =z, + d, where d is the depth of the
unstable layer. Hence the density contrast across the unstable
layer is y, = ps/p,. The bottom of the computational domain
is located at z,.

For a fluid layer to be stable against convection, the
Schwarzchild criterion requires the local polytropic index to be
greater than the adiabatic polytropic index m, = 1/(y — 1),
where y = c,/c, is the ratio of the specific heats. As initial con-
ditions, the polytropic index in the upper layer of our two-layer
system is always taken less than m,, whereas that in the lower
layer is always greater. We find it useful to measure the relative
stability S of these two layers by the positive parameter

m, —msy

S = 2.2)

m, —m,

We assume that the gas is monatomic, so that y takes a con-
stant value of 5/3. Therefore, stratifications with polytropic
indices greater than 3/2 are convectively stable. We shall keep
m, = 1 in the unstable layer and study the consequences of
varying S by taking different values of m; > 3/2 in the stable
layer.

We adopt the same scalings as in HTM. Namely, we scale
length by d, fluid density by p,, temperature by its difference
across the unstable layer f§,d, and time by d//R, fB,d,
which is related to the sound travel time across the unstable
layer. The energy fluxes and rates of working will be scaled
with respect to the total energy flux F; as imposed on the
lower boundary of the domain. All variables will be expressed
in their dimensionless form hereafter.

2.2. Equations

We have solved the equations for fully compressible, nonlin-
ear convection under the assumption that the motions are two-
dimensional, with no variations or velocities in the second
horizontal dimension. Hence our flows will depend upon time
t, the horizontal coordinate x = x,, and the vertical coordinate
z = Xx,, where z increases downward. The horizontal velocity
in turn is u = u, the vertical velocity is w = u,, and we assume
u; = 0. Fully compressible motions are described by the equa-
tion for the conservation of mass

dp 0
—+—(puy) = 23
o o ) =0 23)
the momentum equations
0 0 0P 01
—(pu) + — (pu; — R Vpd,=0, (24
% (puy) + 0%, (pu;w) + ox,  ox, (my + Dpdj, (24)
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where the last term is the buoyancy force, and the energy equa-
tion

L S W
a Ply—1 T e T

a yT 1
+ 6_)6,‘ {pl:y_—l + 5 uju; — (my + l)Z]uk

10T
— é 5_x,; - uj‘ckj} =0, (2.5

where the elements of the viscous stress tensor t are

o, (Ou; Ou 2 ou
=2 (2, 25 )
Q\0x, Ox; 3 0x,
with all indices j, k, | = 1, 2. These equations are supplemented
by the equation of state for a perfect gas
P=pT. 2.7

Here we assume that the shear viscosity u of the fluid is con-
stant so that the Prandtl number in each layer, ¢; = uc,/K,, is
constant. The ratio of the sound travel time to the thermal
diffusion time atz = z, is

(2.6)

(Ry B2 d)*p, dc
——kP27 FP277p 2.8
o 28)
which is related to the midlayer Rayleigh number R by

(my + 1)(m, — my) Q_2 (22 + 1/2)>m 1
(m, + 1) gma '

02 z2

We assume that the horizontal surfaces at z, and z, are
impenetrable and stress-free, with the temperature fixed at z,
and its vertical derivative (and hence F;) imposed at z,. We
impose periodic conditions for all the variables on the bound-
ing surfaces at x = 0 and x = A, where A is the aspect ratio of
the horizontal to the vertical dimension of the unstable layer.

Interpretation of the solutions is aided by equations describ-
ing the horizontally averaged work terms and fluxes of energy.
The evolution of the kinetic energy E can be obtained by
forming the dot product of the velocity vector with the
momentum equation (2.4), followed by a horizontal average, to
yield

R= 2.9)

0E 0
E-i_E(FK+FP+FV)+EB+EP+EV=O’ (2.10)

involving in turn the kinetic, pressure, and viscous fluxes,

1y+1 y+1 ——
F = —_— - — s U; F = Pl,
K 2 y prutuz’ P y QW

y+1

Fy =

Qu; Ty , (2.11)

and the buoyancy, pressure, and viscous rates of working,

y+1 y+1 uy
E;, = —_— ’ E, = P’
B (m2 + 1) y pr > P y Q axl’
» y+1 ou
E,=———Q0—r1y. 2.12
14 ,y Q axj Tu ( )

The overbar denotes horizontally averaged quantities, the
prime denotes the fluctuations about these averages, and angle
brackets will be used to denote time-averaged quantities. The
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total energy flux is the sum of the kinetic flux Fy, the viscous
flux F, the convective flux F, and the radiative flux Fp, with
the latter two expressed as

K(z) 0T

FC=_QpWT/> FR:K oz
2

(2.13)

2.3. Transport of a Passive Scalar

We will wish to assess the ability of the penetrative convec-
tion to mix material in the stable region. We will do so by
introducing a passive tracer element into the flows at some
time when the convection has arrived at a mature state in
which it is statistically steady. We then introduce into the flow
a horizontally uniform distribution of this passive element with
a specific concentration (by unit mass) of C, taking C =0
outside of the unstable layer and C = 1 within it. We study the
temporal evolution of C by solving the evolution equation

apC) 0 ¢ o°C
o Tox, POt =0
together with our equations (2.3)—(2.5). A modest diffusion
operator is included solely to stabilize the numerical scheme:
we typically take the constant diffusion coefficient to be
{ = 0.1, namely 1/10 of the thermal diffusion.

(2.14)

2.4. Numerical Methods

We have obtained our fully nonlinear solutions by numeri-
cal finite-difference techniques using a two-step Lax-Wendroff
scheme, modified to include diffusion of vorticity and heat (see
HTM and Graham 1975 for details). We have carried out the
majority of the computations with 161 mesh points in the verti-
cal and 121 points in the horizontal. Given our uniform verti-
cal grid and its typical spacings, we are restricted in the degree
of nonlinearity and stratification that we can attain by the need
to maintain adequate spatial resolution of the decreasing scale
height at the top of the layer and of the associated boundary
layers. Thus the Rayleigh numbers are typically R = 10°. The
small vertical scale heights near the top of the computational
domain mean that y, should be no larger than about 21 in
these simulations. We have found that the solutions are gener-
ally time dependent.

Once the convective motions set in, the stable and unstable
layers approach overall thermal equilibrium only very slowly.
While the thermal stratification in the region of strong convec-
tive motions has an initial adjustment which is relatively quick
(only a few overturning times), the final thermal equilibration
proceeds on a much longer timescale, which is comparable to
the Kelvin-Helmholtz time. Further, the lower stable layers
have a far greater heat capacity than the unstable layer and
consequently possess thermal adjustment times that are several
hundred times longer than that of the unstable layer. Since the
response times of the two layers are thus quite disparate, we
have accelerated the overall thermal relaxation by readjusting
the mean temperature gradient occasionally, and thus the radi-
ative flux, within the quiescent region to be that specified at the
lower boundary. Such incremental but smali adjustments were
imposed a few times early within a given simulation, leading to
time-averaged total fluxes, (F ), which varied at most by a few
percent over the full range of depths. The times indicated here
in displaying the solutions correspond to the elapsed time over
which we have explicitly computed the solutions from the last
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discrete adjustments made to the thermal stratification early in
the evolution.

3. RESULTS

The structure of convection both within the unstable zone
and in the stably stratified layer beneath it is influenced both
by effects of compressibility and by the relative stabilities S of
the unstable and stable regions. Here we will focus on the
influence of the latter, fixing the initial density contrast across
the unstable layer (ratio of density at the bottom to that at the
top) at x, = 6. This value of y, is large enough to exhibit the
effects of compressibility (see Hurlburt et al. 1984) without
taxing our computational budget. A few simulations with y,
ranging up to 21 were carried out which show behaviors much
like the ones to be displayed here (see HTM for solutions with
smaller y,). All simulations discussed here possess the same
Rayleigh number, R = 105, and polytropic index, m, = 1. We
will investigate how the structure of the convection is modified
as we change the aspect ratio A from 4 to 8 and the relative
stability S from 1 to 15 (and, correspondingly, m; from 2 to 9).
We have found that the lower stable layer must have at least
twice the depth of the unstable layer for there to be sufficient
room for the penetrating flows over this range of parameters.

3.1. Linear Stability Analysis

We have performed linear stability analysis of such two-
layer systems to determine the critical Rayleigh numbers R, for
the onset of direct (nonoscillatory) convection as a function of
both S and horizontal wavenumber a = 2n/A4. Figure 1 maps
out these linear stability boundaries for three values of S. For
large a (narrow cells in the horizontal), the convection rolls
have negligible penetration into the stable layer, and thus the
three neutral stability curves nearly coincide. For small wave-
numbers (cells of large horizontal extent) the effects of pen-
etration on the convection rolls cause the three curves to
diverge, and for A = 4 (a = =/2) the critical Rayleigh number
R, for S = 15 is roughly 4 times that for § = 1.

107+

102 PR .‘..4 PSR .ll P e

107!

F1G. 1.—Neutral stability curves for the onset of convection, showing the
Rayleigh number R vs. horizontal wavenumber a for the onset of convection
within an unstable layer of density contrast y, = 6 and polytropic index m, =
1, bounded below by a stable layer whose polytropic index is my = 2, 3, and 9
(correspondingto S = 1, 3, and 15).
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3.2. General Features of Penetrative Convection at S = 3

We shall begin our nonlinear survey by considering the
behavior of the penetrative convection with S = 3, and subse-
'quently turn to cases with other relative stabilities S. Figure 2
f-.’: displays a typical sequence of events at three successive
instants in time in an evolved solution. The velocity fields are
shown in the left panels, using randomly positioned arrows
which possess lengths proportional to the local velocities and
which parallel the local instantaneous streamlines. The associ-
ated relative density fluctuations A = p’/p are displayed as
surface perspective plots in the right panels. The motions here
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are quite complex and show rapid variations with time. The
penetrative convection is characterized by narrow and fast
plumes which descend across the unstable layer and well into
the stable one. These represent coherent flows that span multi-
ple scale heights in the vertical, but the plumes tend to tilt and
turn as they descend, and this may confuse the assessment of
vertical correlation lengths for such convection. The gravity
waves are revealed in Figure 2 both by the oscillations of the
density surfaces and by reversing circulations deep within the
stable layer. Indeed, the overall time dependence here is much
like that in HTM : analysis of the wave field in the middle of the
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FiG. 2.—Time-dependent nonlinear penetrative convection in an unstable layer bounded below by a region of stable stratification, with a relative stability
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The time interval spanned by these three samples corresponds approximately to one overturning time of the convection. The extent of penetration (as measured by A)

is indicated by the triangular pointer.
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lower layer 3 reveals that most of the power resides in fre-
quency v between 0.03 < v < 0.10. This indicates that internal
gravity waves are clearly present, for such waves are con-
strained to have frequencies less than the typical Brunt-Vaisala
buoyancy frequency N; ~ 0.10 at that depth. Further, linear
wave analysis reveals that several peaks in the spectrum corre-
spond to the eigenfrequencies for internal gravity modes of the
stable layer. In contrast, the time dependence in the unstable
layer 2 is representative of slowly modulated convection.

A downward-directed plume (labeled B) persists for a
lengthy interval, continually swaying to and fro. The plume B
is surrounded by much gentler and broader upflows A. The
asymmetries in the vertical flows come about because the pres-
sure fluctuations work in phase with temperature at the sites of
downflow to accentuate the density fluctuations and thereby
enhance the buoyancy driving, while they work against tem-
perature at the sites of upflow to reduce the driving (see also
Massaguer & Zahn 1980; Hurlburt, Toomre, & Massaguer
1984). Such plumes penetrate well into the stable layer and
generate a broad spectrum of internal gravity waves there, and
these waves in turn deflect the plumes laterally back and forth
in time. Overall, the velocity fields here are similar to those
found in HTM, even though the initial density contrast has
increased by a factor of 3 to x, = 6, and the density contrast of
the stable layer has nearly doubled to y; = 6.2. The density
and pressure contrasts across the computational domain are
x = 37 and y, = 407, respectively, or 6 pressure scale heights.
One significant difference with results from the previous simu-
lations in HTM at lower density contrasts is that here the
Mach number attained by the flows is considerably greater, for
the plumes can reach vertical Mach numbers of about 0.6, and
the incoming horizontal flows which feed such plumes
occasionally approach total Mach numbers of order unity. We
expect such flows to become supersonic for even larger density
contrasts and Rayleigh numbers (e.g., Cattaneo et al. 1990;
Malagoli et al. 1990).

It is interesting that individual plumes, once established, are
able to survive for many convective overturning times. The
persistence of some of the plumes is aided by the sweeping
away of potential competitors, much as that of eddy C in
Figure 2. This eddy begins as a disturbance in the upper
thermal boundary layer at t = 133 and grows into a plume by
t = 138. However, before it can fully establish itself, it is swept
into the established plume A by the rapid horizontal motions,
and thus has nearly vanished by ¢t = 143. Hence the evolution
of the horizontal scale of the convection is influenced both by
the growth rate of small eddies that might grow into full-blown
cellular flows (few make it) and the time taken to horizontally
advect such competing eddies into the established plume.

The surface plots of the relative density fluctuations A in the
right-hand panels of Figure 2 reveal two aspects of the
dynamics within the unstable layer. First, large density fluctua-
tions are associated with the plume B and eddy C and also with
the upflow A near the upper boundary. The latter is a signature
of buoyancy braking in the upflows, and this comes about
because pressure fluctuations associated with deflecting the
vertical flows laterally as they approach the upper stagnation
point serves to overwhelm the effect of temperature fluctua-
tions on density there. Second, the eddy C at t = 133 possesses
a density fluctuation A somewhat like that of plume A,
although shallower in extent. By ¢t = 138 their density pertur-
bations are comparable throughout the unstable layer, but by
t = 143 these two density features have nearly merged. Thus
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the plume B has survived, though with modulation in its
strength. During the course of such adjustments, the upflow A
is in turn modified, accentuated by changes in the recirculation
as the plume B swings laterally.

3.3. Time-averaged Convective Properties

Although such penetrative convection displays vigorous
time dependence involving swaying plumes and gravity waves,
it also possesses time-averaged properties which are sta-
tistically stable. In Figure 3 we present time-averaged mean
fields, energy fluxes and rates of working, indicating those by
angle brackets. The radiative flux (Fz) in Figure 3b
approaches unity both at the bottom (at z,, where it is imposed
as a boundary condition) and at the top (z,). Indeed, we find
that the sum of (F ), {(F¢) and (Fy) is almost constant across
the computational domain, with the small variation compen-
sated by the small viscous flux (not shown). Similarly, time
averages of the total work done on the system should be in
balance, with the net contributions of the buoyancy, pressure,
and viscous rates of working vanishing. An explicit integration
of those terms in Figure 3¢ shows this to be the case.

In analyzing the dynamics of such penetrative convection in
Figure 3, it becomes clear that there are three distinctive
regions of behavior with depth. Namely, an unstable layer
extending from z = 0.2 to z = 1.2, then a region of active pen-
etration by the plumes from z = 1.2 to about z = 1.88 (denoted
by the triangular pointer), and finally a deeper region below
that depth which is dominated by the field of gravity waves.
The superadiabatic and subadiabatic stratification that is
achieved is evident in Figure 3a, which shows profiles with
depth of time averages of both the mean density {(p) and of the
vertical gradient of mean entropy {d5/0z), where the entropy
s = In(T™/p). The time-averaged radiative flux (Fz) in Figure
3b is near its adiabatic limit of 0.8 throughout much of the
unstable layer, as is expected of efficient convection. The
remaining energy flux in this layer is carried upward by the
convective or enthalpy flux {(F ), which is counteracted in part
by the energy carried downward by the kinetic flux (Fy). The
latter arises from the asymmetry of the vertical flows, with the
fast downflows serving to control the sense of the kinetic flux.
These two fluxes reach their extrema at the base of the unstable
layer, attaining there {(F¢) = 0.39 and (Fg) = —0.20, which
agree well with results from the single-layer simulations of
Hurlburt et al. (1984). Hence, much of the transport within the
unstable layer is unaffected by the presence of the stable layer
beneath it.

We see in Figure 3¢ that the buoyancy work (Eg) in the
unstable layer is the primary source of kinetic energy, attaining
there a peak value of 0.38, whereas viscous dissipation {E ) is
the primary sink of energy, possessing values of about —0.16
near the base of that layer. The pressure work {E,) is modest,
with a peak of 0.05, but it is positive throughout the unstable
layer and hence assists buoyancy in driving the flows. Clearly
the three rates of working do not sum to zero in the unstable
layer. Hence, the kinetic and pressure fluxes must serve to
transport mechanical energy into the stable domain below;
that flux {(F) directed downward into the stable region has a
crucial role in the extent of penetration achieved by the con-
vection.

Turning to the region of active penetration, we see that (Fg)
rises rapidly to a peak value of 1.38, which, though consider-
ably greater than that in the static state, is still somewhat
below the adiabatic limit of 1.60 for such an m; = 3 polytrope.
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FiG. 3.—Time-averaged convective properties with depth z for the S =3
simulation depicted in Fig. 2. Displayed in (a) are the time-averaged mean
density {p) and the vertical gradient of mean entropy {05/0z); in (b) are the
time-averaged radiative flux (Fg), convective flux (F.), kinetic flux (Fy),
and pressure flux (Fp); and in (c) the associated time-averaged buoyancy
{Epg, compression { Ep), and viscous {E, ) rates of working. The total flux F .
has been subtracted from {Fg», and {Fp) and (E) have been multiplied by a
factor of 4 to make their variations more evident. The time averages are
formed over the interval t = 115 to ¢t = 190, which is also the interval shown in
Figs. 7and 8.

This increase in the upward-directed radiative energy flux is
counteracted both by the downward-directed kinetic flux {Fy)
and by the convective flux {F)» which has changed its sense. It
is interesting that {F) changes its sign at a short distance into
the stable region rather than at the interface itself. This comes
about from advective effects within the descending flows in the
plume which delay the change of sign of temperature fluctua-
tions beyond that interface. The viscous dissipation {E;)
attains its extremum near the interface between the layers and
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is almost constant over much of the region of penetration. The
buoyancy work (Eg) changes sign close to the interface, thus
leading to a pronounced decrease of kinetic energy with depth
as the flows are being decelerated. Indeed, by a depth of
z = 1.88 the plumes have been stopped or turned aside, if we
are to judge from {Fy), and below that depth there is only a
small convective flux {F.) and pressure flux {F,) associated
with the internal gravity wave field. One estimate of the pen-
etration depth A may be the distance below the interface z,
where the first zero of the kinetic flux (Fy) is achieved and
that yields a value of A = 0.68 for this case. Such a penetration
depth is indicated on all the figures by a pointer triangle.

3.4. Effects of Aspect Ratio A

The simulation described above effectively contains one
evolving convection cell within its computational domain, and
hence may not be representative of dynamics in an infinite
horizontal domain. To assure ourselves that our choice of
aspect ratio is not influencing our conclusions unduly, we have
also considered differing values of A. A complete exploration is
beyond the scope of this study. However, we present in Figure
4 one simulation with 4 = 8 which was begun from the same
initial conditions as that of Figure 3 and evolved until the flows
attained a statistical steady state.

The increase in aspect ratio by doubling the lateral extent of
the domain has clearly led to more complex flows. The velocity
fields, again displayed through randomly positioned streak-
lines in Figure 4, reveal the presence of at least one persistent
plume at B and one persistent site of upflow D. Hence, we can
argue that the overall flows once again have an aspect ratio
comparable to that of the computational domain. However,
the two secondary eddies at A and C are significant com-
petitors. Both are relatively long-lived structures, though both
are seen to be gradually advected away from the upflow site D
into the established plume B during this time sequence. At
some other intervals there were two plumes in residence, but
typically one was more persistent. Clearly the apparent hori-
zontal scale of such two-dimensional convection is dominated
by the positioning of the plumes, and with wider domains they
can be distributed more randomly; this affects the manner
in which secondary eddies survive, and may even end up
prevailing.

Although the change in aspect ratio modifies the scale of
flows within the unstable layer, it has a much weaker influence
on motions within the stable layer. As the competing plumes
and eddies merge there are occasional events of apparently
deep penetration, as at t = 163, but these have little impact in
the long run. The spectrum of the gravity wave field in the
stable layer is still dominated by waves with a = 1.57 (such as
fit into the 4 =4 domain), and the depth of penetration
A = 0.62 is quite close to the value found above for 4 = 4.
Thus we conclude that the primary mechanisms of penetration
in such nonlinear flows are reasonably captured by simulations
with 4 = 4.

3.5. Effects of Relative Stability S

We now turn to the primary goal of this paper, which is to
assess how changing the relative stability S of the lower layer
influences the extent of penetration into that layer and may
modify the vigor of convection in layer 2. We shall consider five
simulations with S rangmg from 1 to 15. We recall that we are
keeping R fixed, and since R, increases somewhat with S, there
may be a small effect because the ratio R/R, changes. The
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Fi1G. 4—Velocity fields for time-dependent penetrative convection for § = 3

with a wider computational domain of 4 = 8, with all other parameters identical to

those in Fig. 2. The larger aspect ratio admits larger scale flows in the horizontal, and they are more complex, but such convection has penetrative properties similar

to the A = 4 solutions in Fig. 2.

characteristic wave field induced in the lower layer will be
altered, noting that the buoyancy frequency at the top of the
stable layer, N = (4S/[S + 5])'/?, increases by about a factor of
2 as S increases from 1 to 15.

3.5.1. Changes in the Flow Structure

Figure 5 shows the velocity field at two instants in time for

=15 (m3 = 9) in which the lower layer possesses the most
stable stratification. Once again the flows are dominated by
strong, narrow, downward plumes and broad regions of
upflow. The strength of the plume is comparable to that dis-
played in Figure 2 and, hence, the increased stability of the
stable layer appears to have little influence on the development
of such plumes in the unstable layer. It does, however, have a
significant influence on the ability of the plumes to penetrate
into the stable layer. Here we find a reduced penetration depth
with A = 0.31. Further, the wave field below appears much
weaker. This is partly due to the rapid increase in density with
depth in this solution, but we will see below that the mechani-
cal energy of the wave is also very small there. Hence the

coupling between the convection and the gravity wave field has
decreased as S has increased.

One intriguing feature of convection in such stiff systems can
be seen in the second panel (t = 128) of Figure 5. The plume
there is turned sharply as it enters the stable layer and, indeed,
is deflected back into the unstable layer as an upward-directed
plume. The plume conserves most of its mechanical energy and
returns it into the unstable layer. Thus it is not surprising that
little energy is transferred into the wave field below.

At the other extreme, we show in Figure 6 the velocity field
for S =1 (m; = 2) in which the stable layer is nearly adia-
batically stratified. The plumes extend far into the stable layer
under these conditions. In order to accommodate this
increased depth of penetration, we have increased the compu-
tational domain to z, = 4.2. The character of the flows has
changed significantly from the previous cases. There is much
more interaction and competition between the plumes gener-
ated within the unstable layer. We can see two plumes (A, C)
and two sites of upflow (B, D) at t = 154. By t = 164 the site of
upflow B and the plume A have collided as plume A is being
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slowly advected toward plume C. This advection is slow com-
pared to the dynamics of the flow, and it is not obvious which
plume will win; typically, for S = 1 several plumes are present
at any given time.

The concept of cellular convection is considerably taxed by
these flows for S = 1. It may be more useful to consider the
flow as a set of thermals or plumes (some short-lived, others
more persistent) which transit the unstable layer and plunge
deep into the stable one. These thermals are closely coupled to
the gravity wave field below, and it is quite difficult to make a
clear distinction between a region dominated by penetrative
convection and a region dominated by waves. Using the pre-
vious definition of penetration depth, we find here that
A =185.

3.5.2. Changes in the Dynamics

The differing dynamical behavior in the previous two simu-
lations can be interpreted by turning to the variations with
depth and time of the kinetic energy density E and the kinetic
energy flux Fy. Although these two quantities are closely
related, the kinetic energy density E oc u? + w? is dominated
by the horizontal component of velocity u, which is significant
over much broader regions than the vertical component. In
contrast, the kinetic flux Fg oc w(u® + w?) is dominated by the
contributions of the vertical velocity w due to the weak spatial
correlation between it and the horizontal component u. That
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F1G. 6.—Velocity field for S = 1 at three instants in time ¢ for convection
penetrating into a mildly stable layer where m, = 2. The computational
domain is here deeper to be able to accommodate the extensive penetration
and strong gravity wave field in the region of weak stratification. Here R ~
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flux will be directed downward, reflecting the asymmetry of the
vertical flows which involve fast downflowing plumes.

We present in Figure 7 the kinetic energy density E, and in
Figure 8 the kinetic energy flux Fyg, as functions of time ¢t and
depth z for three values of S. Each curve in depth is offset
vertically by a distance proportional to the time. Hence struc-
tures propagating downward in the simulations appear in
these figures as features traveling upward and to the right.
When the relative stability is large (S = 15), we see in Figure 7¢
that the kinetic energy distribution E varies only moderately
with time; its peak is located at a depth z ~ 1.4. The sharp
peak is due to the strong horizontal flows generated there as
the plume is turned abruptly by the stiff stratification. Virtually
all of the energy resides in the unstable layer and in the rela-
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F1G. 7—Kinetic energy density E as a function of time ¢ and depth z for the
simulations in Figs. 2, 5, and 6. For clarity, each successive curve in time is
offset upward from its predecessor by a fixed increment. (a) For S = 1, the
convective flows penetrate very deeply (with that depth of penetration delin-
eated by the triangular pointer), with E exhibiting major pulses far into the
stable layer. (b) For § = 3, E varies prominently in time, with noticeable fluc-
tuations in the deeper regions due to the wave field. (c) For S = 15, the kinetic
energy peaks near the interface between the unstable and stable layers and
then falls off rapidly with depth.
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FiG. 8—Comparison to Fig. 7, showing the kinetic flux F as a function of
time ¢ and depth z for the § = 1, 3, and 15 simulations.

tively shallow region of penetration just below it. The energy
density below z = 1.7 is negligible, for the wave field is very
weak there. The kinetic flux Fg for S = 15, displayed in Figure
8¢, is somewhat more dynamic; pulses of moderate amplitude
repeatedly transit the unstable layer. Since E is largely a
measure of the horizontal velocity and Fy that of the vertical
velocity, taken together they suggest that the horizontal veloc-
ities are reasonably steady for S = 15 and that the flows are
only slightly modulated by pulsations in the vertical plumes.
There is little interaction between this convection and the weak
gravity wave field beneath it.

The picture changes significantly as we turn to the S =1
solutions in Figures 7a and 8a. (Whereas the lower computa-
tional boundary for these solutions is located at z, = 4.2, we
only display the region above z = 3.2 for comparison with the
other simulations.) Here we find large variations of the kinetic
energy E with both time and depth, and these profiles for E
extend far below the unstable layer. Indeed, both the peak
value of E and the bulk of the total kinetic energy reside well
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within the stable layer at all times. Descending pulses in E
repeatedly cross the unstable layer and travel into the lower
layers. Similar behavior is evident in the kinetic flux Fy in
Figure 8a, with that flux dominated by large pulsations which
are carried downward with time. These pulses not only grow in
amplitude within the unstable layer, as one might expect, but
also for a significant distance into the stable layer: they
occasionally coast far into that layer with little dissipation. The
kinetic energy density E possesses comparable peaks which
descend with these pulses in the kinetic flux Fy. Thus the
descending elements in these flows are relatively self-contained.
They appear as isolated eddies or thermals which can sustain
deep excursions into the stable material.

Detailed inspection indicates that the plumes are able to
maintain their coherent structures over their deep transit into
the stable layer, depositing their energy finally over a narrow
interval in depth. The particular depth achieved for any given
pulse is somewhat controlled by the steering of the plume by
the wave field, though on average it is determined by buoyancy
braking over its transit and appears to be influenced by the
fluid that it entrains. These prominent pulses emphasize that
such penetrative convection is highly nonlocal, for the plumes
are able to deposit energy deep within the stable layer.

These excursions into the stable layer result from the ability
of the convection to saturate the restoring force of buoyancy.
As noted by Massaguer et al. (1984), the close relationship
between the rate of buoyancy working, Ep oc wp’, and the con-
vective flux, Fe oc wT’, places a limit on the magnitude of the
restoring force available to decelerate the flows. If the convec-
tion establishes an adiabatic stratification in the region of pen-
etration, then the convective flux there is constrained to be
|Fe| S| Fr— F 4|, where F; is the total flux and F, is the
radiative flux carried by the adiabatic gradient. As S becomes
smaller, F , approaches F, and thus F. becomes smaller and
so does the rate of buoyancy braking in that penetrative
region, noting that F, = (1 + S/5)F;. Thus the S =1 flows
experience moderate braking in layer 3, and the pulses extend
deeply into that region.

The intermediate case with a relative stability of S =3
shown in Figures 7b and 8b has some aspects of the other two
solutions. The peak of the energy density E remains relatively
stationary at the depth z ~ 1.3, and a reasonable fraction of the
total kinetic energy resides within the unstable layer. Yet suc-
cessive descending pulses in both E and Fy are evident as the
plumes strengthen and weaken. At greater depths, E shows
oscillations associated with the gravity wave field, yet such
waves yield almost no signal in Fy.

3.5.3. Changes in the Energy Transport

In studying the range of penetrative convection achieved as
S is varied, we went from the S = 15 solutions representing
modulated cellular convection with modest penetration to the
S =1 solutions that exhibit major pulses associated with
descending thermals or plumes. We now turn to see what
aspects of such a range of behavior survive in the time averages
of E and Fy.

The time-averaged kinetic energy density {E) and kinetic
energy flux (Fy) are displayed in Figures 9 and 10 for five
values of the relative stability S. The transition between the
two forms of penetration is evident. For large S (=7, 15) the
kinetic energy density {E) in Figure 9 possesses a double-
peaked form, with the lesser peak located in the unstable layer
and the greater peak at a short distance into the stable layer.
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Fi1G. 9—Time-averaged kinetic energy density {E) as a function of depth z
for simulations carried out for five values of the relative stability parameter S,
with§ = 1,2,3,7,and 15.

As in HTM, we find that these double peaks correspond to
those of the horizontal velocity. The structure of the horizontal
flows here is very reminiscent of that observed in convection
within a single layer. The kinetic energy flux {(Fy) for large S in
Figure 10 peaks near the base of the unstable layer and then
drops rapidly with depth; the change in the sign of {Fg) sug-
gests that an effective small countercell exists just below the
main cell, possibly arising from the strongly turned plumes
there.

For values of the relative stability S near unity the kinetic
energy density {E) displays monotonic variation across the
unstable layer and attains its maxima well within the stable
layer. The increase in {E) is roughly proportional to that in
mean density in layer 2; hence the flows within the unstable
layer involve horizontal velocities which are almost constant
with depth. The {Fg) curve for small S has its peak located at
a short distance into the stable region, and possesses a gradual
monotonic decrease with depth, with no effective countercells.
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F1G. 10.—Companion to Fig. 9, showing the time-averaged kinetic energy
flux {Fy) as a function of depth z for five values of S.

3.6. Mixing of a Passive Scalar

We conducted a series of numerical simulations with a
passive scalar field added to the flows (see § 2.3) in order to
determine qualitatively how well our measurement of the pen-
etration depth A (based on the location of the first zero of (Fy)
in the stable zone) relates to the depth to which rapid mixing of
a species is achieved. In each simulation we added a scalar field
with a concentration C per unit mass of zero in the stable layer
and unity in the unstable one. This field was introduced into
the evolved solutions at time t,, and then the system including
the evolution equation (2.14) was evolved further to time ¢,.
These times were chosen to correspond to the intervals pre-
sented in Figures 7 and 8 for simulations with S = 1, 3, and 15.
As boundary conditions we imposed a fixed concentration C at
the upper and lower boundaries, setting C =0 at z, and
C = 0.5 at z,; the latter value was chosen to yield little flux of
C through the upper boundary in the § = 3 simulation.

We present the horizontally averaged specific concentration
of the passive scalar C in Figure 11 for these three values of
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F1G. 11.—Evolution of the concentration C of the passive scalar as a func-
tion of time t and depth z in simulations with § = 1, 3, and 15.

relative stability S. In each case the tracer material C within the
unstable layer is rapidly advected down to the penetration
depth A on a timescale comparable to the plume transit time.
After this initial stage, the tracer material within the unstable
and penetrative regions begins to slowly equilibrate. For mod-
erate to large S, such as S = 15, a sharp concentration gradient
develops at the penetration depth and little, if any, material is
advected beneath this point. It can, however, diffuse slowly, for
we maintain a small diffusive term for numerical stability.

For small relative stability (S = 1, 3) the details are again
distinctive. In the early stages of mixing, we can clearly see that
it is occurring in a series of pulses, corresponding to the iso-
lated plumes injected into the stable layer. These pulses suc-
cessively carry the tracer downward until the entire region is
fairly uniformly mixed. We thus deduce that our measurement
of the penetration depth A agrees well in all cases with the
depth to which material is rapidly mixed in the initial mixing
phase. That phase may be followed by a slower one in which
other plumes, coupled to the gravity wave field, may carry the
material even further downward. However, the assessment of
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such transport is rather subtle and is likely to be influenced by
whether the wave field is one of standing waves with depth (as
imposed by our lower reflecting lower boundary) or rather of
propagating waves. Further, the occasional plunging events,
even if rare, may contribute substantially to the mixing in the
long term, but assessing their role would require simulations
extending over far longer timescales than we could undertake.

4. EXTENT OF PENETRATION

The extent of penetration into the stable lower layer can be
assessed by various measures, including the penetration depth
A that we have cited as based on the position of the first zero of
the kinetic flux below the interface at z,. Figure 12 summarizes
the variation of A with S realized in our sequence of two-
dimensional simulations. Clearly the extent of penetration A
decreases systematically with increasing relative stability S of
the stable layer, and there is a suggestion that two different
power laws may be involved, with a variation of the form §~!
prevalent at the smaller values of S, to be replaced possibly by
S~ 1/4 at the larger values of S. This variation encourages us to
turn to simpler scaling models for the dynamics to see if they
may help to interpret the pattern of behavior for A with S
revealed in Figure 12.

4.1. Scaling Laws from a Simple Model

We can seek to interpret the variation of the extent of pen-
etration A with S below a convective layer by considering some
simplified models which yield scaling laws for A. Though the
approximations are rather crude, we can obtain reasonable
insight from the models and find good contact with the behav-
ior for A shown in Figure 12. A similar approach has been
described in Zahn (1991) for the case of a smooth conductivity
profile with depth, and it provides excellent agreement with the
results of plume calculations (Schmitt et al. 1984). For such
profiles the penetration depth scales as f1/2W3/2, f being a
filling factor and W, being the velocity of the downward-
directed flows, as they enter the adjacent stable layer.

Here we consider instead an envelope in which the conduc-
tivity is piecewise constant with depth. One assumption is that
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F1G. 12.—Variation of the penetration depth A with relative stability
parameter S for the five simulations. Possible power laws for two intervals are
suggested by the two straight lines.
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the convection is efficient enough to establish an adiabatic
stratification in the unstable layer. This requires that the Peclet
number, P, = wl/(K,/pc,), characterizing the motions within
that layer is substantially larger than unity (Il and w are the
typical size and vertical velocity of those motions, K,/pc, the
thermal diffusivity).

There are generally two distinct layers in the region of pen-
etration below the unstable zone. The upper of these two exists
only if the local Peclet number P, based on K is still greater
than unity. Let us assume that its stratification is nearly adia-
batic, and let us call it the adiabatic penetration (P) region. In
this region the motions decelerate, due to buoyancy braking,
until the Peclet number reaches a value of order unity at depth
zp = z3 + lp. Below, there is a thermal adjustment layer (T) of
thickness I, in which the temperature fluctuations taper off
because of radiative damping. Finally, beyond z1 = z, + I, we
have the radiative interior, where heat is transported only
through radiation.

We shall now use this schematic picture to first estimate the
extent [, of the adiabatic penetration region, using dimensional
variables for convenience at this stage. Within that region the
radiative flux is the constant

dT
F,= K3<E> s
ad

for we have assumed that the stratification is nearly adiabatic.
The convective flux F is obtained by subtracting F, and the
kinetic energy flux F from the total flux, with

Foz)=Fpr — F 4 — F(2) ;

that flux is negative, since F, > F; — Fy.

We shall assume that the fraction f of the area is occupied by
downward-directed motions, which transport most of the
energy flux, as observed in our simulations. We express that
convective (enthalpy) flux to lowest order in terms of the hori-
zontal temperature fluctuations and the vertical velocity of
these motions, which we assume to be highly correlated, as

Fec= —fpe,WoT . 4.3)

The quantities W and 0T represent the rms of the vertical
velocity and of the temperature fluctuation in the fraction f of
the area where these motions occur. In this simple model, we
assume that the vertical velocity and the temperature fluctua-
tion have the same horizontal profile, and we ignore the
increase of f with depth.

4.1)

4.2)

4.2. Nearly Adiabatic Penetration Region

To estimate the extent I, of the nearly adiabatic penetration
region, we first follow the downdrafts from z = z; until they
nearly stop at zp =z; + . We further assume that their
exiting velocity W, at z5 is determined solely by the dynamics
in the unstable layer above, and does not depend upon the
penetration depth; this is nearly so in the actual simulations
discussed above. The deceleration of these flows is described to
first order by

(4.4)

with the assumption of pressure equilibrium. The quantity ¢
which appears here is related to the triple moment of the veloc-
ity as

w(u? + w?)

(W2)3/2 ’

of =
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u and w being the horizontal and vertical velocities; here that
parameter c is also assumed to be constant in depth.

After elimination of 6T with equation (4.3), we obtain the
following differential relation

d (K>3 B 3gFd [ms —m, (E 3
dz\W,) —  ofc,p@T@W3 | m, +1 + ox w,) |’
(4.5)

where ¢y is the ratio between the kinetic flux and the total flux
at z = z,. In integrating this equation from W = Wy to W =0,
while z varies from z; to z3 + I, we shall take also into
account the variation with depth of pT = p, T,(z/2,)*% in such
an adiabatic stratification. The result is

-1.5 _
Bl (14 ke 4, MM
1.5 z3 ¢k m,+ 1
1
x1n|:1+L¢K], (4.6)
my —m,
where
cf ps W1+ z,\'"° (m, + 1)2
Ap=|=
3 Fr z, m, —m,

is independent of my and Ip. In order to determine the value of
Ap, we have to calibrate the expression in the brackets, which
represents the term ¢ /3, by turning to our actual simulations;
indeed, from Figure 10 one can estimate that ¢ is approx-
imately 0.25. To lowest order, i.e., for not too small a value of
my — m, (or S), this equation (4.6) reduces to

lp=A4p87", 4.7)

in terms of our stratification parameter S = (m; — m,)/
(m, — m,) from equation (2.2). We see that the scaling differs
from that obtained when the conductivity varies smoothly at
z,, where I, oc fY2W3/2 (Zahn 1991).

4.3. Thermal Adjustment Layer

We now turn to the thermal adjustment layer (T), which
connects the nearly adiabatic region (P) with the radiative inte-
rior. To estimate its thickness l;, we proceed as follows. At
zp = z3 + Ip the velocity is not strictly zero, as we have pre-
tended above, but the Peclet number characterizing it is of
order unity. Hence cWp Iy = K;3/ppc, (see Zahn 1991 for the
justification of c in this relation); here the subscript P denotes
the value of a variable at zp. In this thermal adjustment layer,
the temperature fluctuations decay from their initial value 5T,
to zero, and therefore, according to equation (4.4),
0Ty I
T
where cp is a constant of order unity (but smaller than 2).
Multiplying by W,, making use of cWply = K3/ppc,, and
expressing the convective flux by

cWixcrgd 4.8)

my; —m,
Fo= —F, ——, 4.9
e=—Frii 49)
since Fy has become negligible at this point, we obtain
K; \? ) Fr my—m
=gclepd* ———(I)*. 4.10
f(chp> gccr KiTp m, + 1 () ( )

Replacing g = (m, + 1)R,, T,/z,d and (m; — m,) in terms of
the stratification parameter S, we find that the extent of the
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thermal layer is

Ip = Ap S™14 @.11)

with

_ L _ Z3 + lp -2 __._rn“__*—_l___
(4v)* = I:CZCT:IQ 2( Z; ) (z2)* (my + 1)(m, —m;)

We have again placed in brackets the term which must be
calibrated by the actual calculations, and have introduced the
Peclet number constructed with the sound velocity, namely
0 = (R, T»)"*d/(K,/p, c,) [from eq. (2.8)]. Note that when S is
small, A depends somewhat on the adiabatic penetration I,
through the ratio (Tp/Ty)(pp/p,) ~ 2 which is present in equation
(4.10).

The total extent of convective penetration is the sum A =
Ip + I;. We see that for small S, it is the nearly adiabatic pen-
etration [, which dominates, whereas for large S the thermal
adjustment layer of thickness I; is the broadest of the two. The
crossover from the S™! to the ™14 law is governed by the
parameter 02, which is proportional to the Rayleigh number
[eq. (2.9)]. For large R, the thermal adjustment layer shrinks to
a thin boundary layer, whereas for small R, the nearly adia-
batic penetration is never achieved and Iy is the only contrib-
utor to A. Our simulations possess R such that both I, and I
play arole.

As we increase S, we enhance buoyancy braking, but we also
lessen the local Peclet number (by increasing the conductivity
K), and therefore the penetration depth decreases at a slower
pace (i.e., ocS~1/4) than we would expect in nearly adiabatic
conditions (ocS ™).

5. CONCLUSIONS

Our two-dimensional simulations have revealed that pen-
etrative convection is able to establish a well-mixed region to a
depth A into the lower stable layer, with that extent of pen-
etration varying either as A oc S~ or as A oc S~ * in terms of
the relative stability S of the two layers. As Figure 12 and our
scaling analysis in § 4 show, the S~ !/# variation prevails at
large S (when the lower layer is sufficiently stable in stratifi-
cation to be able to rapidly decelerate the downward penetrat-
ing plumes), with the subsequent thermal boundary layer of
thickness I (in which the local Peclet number is below unity)
yielding the dominant variation of A with S. At smaller S it is
that first region of nearly adiabatic penetration, of thickness I,
which is the primary contributor to A, and this yields the S~ j
variation. In all the cases studied here, the Rayleigh numbers R
characteristic of the unstable layer are sufficiently large that we
have explored strongly nonlinear compressible convection in
which localized downflow plumes are the dominant structures.

Yet we have sampled only a small region in parameter space,
and not only should larger ranges in S be studied, but we also
recognize that penetrative convection under far more inviscid
conditions or thus higher Reynolds numbers deserves to be
explored, for this may admit shear instabilities of the plume
flows that can modify their entrainment characteristics and
thus possibly also their extent of penetration. Indeed, Porter &
Woodward (1993b) have used the piecewise-parabolic method
(PPM) code, which is formally inviscid but for some numerical
vorticity diffusion, to examine a close relative to the S =3
example in HTM. They find a comparable average extent of
penetration A, but their two-dimensional solutions at very high
spatial resolution also exhibit occasional vortex pairs of
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opposite polarity that are able to wander and migrate with
little hindrance from the stable stratification (cf. Porter et al.
1991), for the viscous diffusion of vorticity (serving to spin
them down) is slow compared to their rapid thermal equili-
bration in the stable region possessing a large thermal conduc-
tivity x. In other words, the Peclet number of the typical vortex
pair is much less than unity, whereas its Reynolds number is
large. Though these results are novel, such parameters are
unlikely to be achieved in most stellar conditions such as at the
base of the solar convection zone, where both the Peclet and
Reynolds numbers are expected to be very large. The vortex
pairs are like episodic thermals, and might survive in three
dimensions as discrete vortex rings, and either is quite different
from the long-lived plumes obtained in our simulations. The
existence of such plumes may be aided by parameters which
yield more comparable vorticity and thermal diffusion times,
for the Prandtl number o5 in the stable layer in our cases
ranges from 2/3 (for S = 1) to 1/5 (for S = 15), whereas o, in
the unstable layer has a value of unity.

We have to be somewhat cautious about these penetration
estimates based on two-dimensional flows that are intricate
but not turbulent. We expect that the vortex stretching mecha-
nisms which are admitted in three-dimensional settings could
destabilize our downflowing plumes, with shearing instabilities
modifying entrainment into those downflows. Such turbulent
entrainment is unlikely to destroy the plumes but may modify
their detailed dynamics. Further, the topology of downflows is
likely to change from downflow sheets to discrete plumes with

depth, judging from results of the three-dimensional simula-
ttons discussed earlier, and this may have an impact on the
penetration depth A that is achieved. Considerable exploration
is needed in the parameter space of three-dimensional pen-
etrative convection, and that work should be extended to deal
with thermal conductivities that are explicit functions of tem-
perature and density, thereby modeling stellar settings some-
what more faithfully. The use of direct simulations to study
compressible penetrative convection as may be realized in stars
is still at an early stage, yet it is a subject that is beginning to
receive detailed attention, for as Zahn (1991) has discussed,
issues of such mixing have many implications for our under-
standing of stellar structure and evolution theory.
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