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ABSTRACT

We propose a generalization of the cross-correlation technique, to obtain simultaneously the Doppler shift of
the two components of composite spectra. The technique—TODCOR—computes the correlation of an
observed spectrum against combinations of the two template spectra, with all possible shifts. Thus, the corre-
lation is a two-dimensional function whose two independent variables are the two shifts of the two com-
ponents. The location of the maximum of this function corresponds to the actual shifts of the two
components. The technique is made feasible through the use of an FFT algorithm. TODCOR improves the
analysis of binary spectra with small velocity differences, which are difficult to analyze with the original cross
correlation. The new algorithm was tested with numerous simulated spectra. We were able to derive the
correct velocities of the two components in all cases, one of which is presented.

Subject headings: binaries: close — techniques: radial velocities

1. INTRODUCTION

Cross correlation is a frequently used technique to obtain
the Doppler shifts of digitized celestial spectra. This technique,
first introduced by Simkin (1974) and further developed by
Tonry & Davis (1979), cross-correlates the observed spectrum
against an assumed template and obtains the relative radial
velocity shift by locating the correlation maximum (Wyatt
1985). The technique can find the correct radial velocity even
for extremely low signal-to-noise (S/N) spectra (e.g., Latham
1985) and was therefore applied extensively to the study of
spectroscopic binaries (e.g., Latham 1992). A thorough review
of the application of the cross correlation to various kinds of
binaries was recently presented by Hill (1993).

Stellar spectra composed of two components with compara-
ble intensity yield a cross correlation with two peaks, which
correspond to the different velocities of the components.
However, whenever the relative velocity of the two com-
ponents is small, the two peaks cannot be resolved. To over-
come this difficulty, we developed TODCOR—a new
two-dimensional correlation algorithm, which can simulta-
neously obtain the Doppler shifts of the two components. A
short version of this work has been presented in Mazeh &
Zucker (1992).

The new algorithm assumes that the observed spectrum is a
combination of two known spectra with unknown shifts. The
algorithm calculates the correlation of the observed spectrum
against combinations of two templates, with all possible shifts.
The correlation, thus, is a two-dimensional function whose two
independent variables are the radial velocities of the two com-
ponents. The location of the maximum of this function corre-
sponds to the actual Doppler shifts of the two components.
The two radial velocities are independent variables, and, there-
fore, there is no special significance to their difference. Conse-
quently, TODCOR is able, in principle, to resolve even
components of equal velocities.

A straightforward implementation of the algorithm would
require an enormous amount of computation, making the
approach impractical with present computers. We therefore

cdeveloped an efficient method to perform the algorithm,
reducing the computation needed to analyze spectra contain-
ing 1000 points by three orders of magnitude.

This paper presents the new algorithm and points out its
potential. Section 2 demonstrates the difficulties of the one-
dimensional original technique. Section 3 presents the basic
ideas of the new algorithm, while some tedious algebraic
details are deferred to the Appendix. Section 4 demonstrates
the capability of TODCOR with one example, and § 5 dis-
cusses briefly the potential of the new algorithm.

2. LIMITS OF THE ONE-DIMENSIONAL TECHNIQUE

The one-dimensional technique utilizes the correlation of an
observed stellar spectrum against a known template to derive
the stellar velocity shift of the observed spectrum. A double-
line spectroscopic binary manifests itself through the one-
dimensional cross correlation by displaying two local peaks in
the correlation function. Usually, the higher peak represents
the velocity shift of the primary star, while the secondary peak
is considered to indicate the velocity of the secondary.
However, this approach to composite spectrum is possible only
if the cross correlation displays two well separated peaks.
Whenever the velocity difference between the primary and the
secondary is comparable to the intrinsic width of the corre-
lation peak, the two peaks cannot be resolved, and the second-
ary velocity cannot be derived. Moreover, even the primary
velocity cannot be obtained correctly, as the combined peak is
shifted due to the presence of the secondary.

To demonstrate the limits of the one-dimensional technique,
we simulated a double-line spectrum composed of calculated A
and G star spectra (Kurucz 1991). We used a 45 A spectral
band centered around 5190 A, which is observed in the Center
for Astrophysics for routine stellar work (Latham 1985). The
rotational velocities of the two stars were chosen to be 40 km
s~1, with intensity ratio of 0.25. To mimic real observed
spectra we added normally distributed noise with S/N ratio of
20, for each of the 2048 pixels of the spectra. We chose three
different values for the velocity difference between the two
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FiG. 1—One-dimensional cross correlation functions of the composite
spectra against the A star spectrum. The arrows indicate the velocities used in
the simulation.

components: 80, 50, and 20 km s~ !, respectively. The radial
velocity of the primary was chosen in all three cases to be 0.

We have applied the one-dimensional cross correlation tech-
nique to the simulated spectra using the A star template, the
results of which are displayed in Figure 1. The two correlation
peaks are well separated in the first case, where the velocity
difference is 80 km s~ !. In the second case, where the velocity
difference is only 50 km s~*, the second peak can barely be
noticed, and it is very difficult to derive the secondary velocity.
Actually, the primary peak does not yield the correct velocity
of the primary, because of the presence of the secondary. In the
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F1G. 2—One-dimensional cross correlation functions of the composite
spectra against the G star spectrum. The arrows indicate the velocities used in
the simulation.

last case, where the velocity difference is only 20 km s~ %, the
two peaks are not even distinguishable. Figure 2 presents the
correlation of the same three simulated spectra with the sec-
ondary template, that of the G star. The ability to resolve the
two stars is similar. Section 4 will show that even the most
difficult case is easily resolved by TODCOR.

3. THE TWO-DIMENSIONAL CORRELATION

To overcome the difficulties presented by the above last two
examples, we suggest here a new algorithm—TODCOR—to
analyze the spectra of double-line spectroscopic binaries. In
Tonry & Davis’s (1979) approach, f(n) is the observed spec-
trum whose Doppler shift is to be found by correlating it
against g(ny—the “template” of zero shift. Both the stellar
spectrum and the template are assumed to be given as a func-
tion of n, where

n=Alnl+ B.

Thus, the Doppler shift results in a uniform linear shift of the
spectrum.

By shifting the template by s, and calculating the correlation
between the spectrum and the shifted template, g(n — s), we get
the correlation as a function of s:

Cry=Cs,0).

The actual Doppler shift is estimated by the location § of the
maximum of C ,.

We suggest to correlate the observed spectrum f(n) against a
template composed of two, possibly different, templates g,(n)
and g,(n), shifted by s, and s,, respectively:

gi(n —s;) + go(n —s5) .
The correlation function is now a function of the two shifts:
Ryg 0= Ry, gl,gz(sh s3) .

The actual Doppler shifts are now estimated by the location
(8;, 8,) of the maximum of R, , ...

To find the global maximum of the correlation, TODCOR
performs a search over a grid of points in the two-dimensional
space of the two variables (s;, s,). This is done, as explained in
the Appendix, by using the Fourier transform of f(n), g,(n) and
g,(n). The use of the transforms speeds up the computation by
a large factor and makes TODCOR applicable on present
workstations for any presently observed stellar spectra.

The insertion of the second template into the analysis intro-
duces an additional complication to the problem. The one-
dimensional technique is insensitive to any scale factor of the
template. That means that the absolute calibration of the tem-
plate is irrelevant to the correlation and therefore for finding its
maximum. However, when we use two templates, their relative
intensity becomes very important. It seems as if the user of
TODCOR has to supply the algorithm with this information,
in addition to the two templates.

Whenever the intensity ratio of the two spectra is not
known, we can put its unknown value as an additional variable
of the correlation function and find its best estimate. In such a
case, the correlation is between the observed spectrum and

gi(n — s;) + ag,(n —s,) ,

and, therefore, the correlation R, , . is actually a function of
S1,8,,and a:

Rygi9, = Rf.yl,gz(sls 53, &) .
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To find the maximum correlation in the three-dimensional
parameter space, TODCOR utilizes the fact that the corre-
lation is an elementary function of a. Therefore, it is possible to
derive analytically the value of @ which maximizes the corre-
lation for any given value of s; and s,. The algorithm then
searches over a grid of values of the two shifts to find the
position of maximum correlation, as is explained in detail in
the Appendix.

4. TESTING THE ALGORITHM

We have performed numerous tests in which TODCOR was
applied to simulated spectra, prepared with the same method
as those presented in § 2. All tests show a very good agreement
between the true values and the estimates obtained by
TODCOR.

For example, we applied TODCOR to the three simulated
spectra discussed in § 2. Figure 3 displays the two dimensional
correlation as a function of s, and s, for the most difficult case,
where the velocity difference between the components is only
20 km s~ 1. We used as our templates the same A and G type
stellar spectra, with which the composite spectra were simu-
lated. To mimic a real case, we have applied TODCOR
without any specification of the value of the intensity ratio. The
maximum was found at 0.0+0.7 and 20.5+0.7 km s ! velocity
shift of the primary and the secondary, respectively, with an
intensity ratio of 0.27 +0.04. This is in a very good agreement
with the true parameters used in the simulation.

To show the significance of the detection we plot in Figure 4
two cuts of the two-dimensional correlation. The cuts run
parallel to the parameter axes of Figure 3 and go through the
maximum. In fact, the two plots of Figure 4 present the corre-
lation as a function of the shift of one of the templates when the
other shift is frozen out.

We also applied TODCOR to the two other, easier, simu-
lated spectra of § 2. Here, again, the parameters found were
very similar to the true ones.

The three examples considered here, together with numer-
ous other simulations, demonstrate the potential of TODCOR,
and show that the new algorithm can resolve spectra of many
double-line spectroscopic binaries.
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F1G. 3.—Contour plot of the two-dimensional correlation function around
the maximum. The dashed lines are parallel to the axes and go through the
maximum.
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F1G. 4—Cross sections of the two-dimensional correlation function, taken
along the dashed lines of Fig. 3. The arrows indicate the velocities used in the
simulation.

5. DISCUSSION

We have demonstrated that the algorithm presented here is
capable of extracting the radial velocities of the two com-
ponents of spectroscopic binaries. However, the examples con-
sidered here are free of any characteristics which might
introduce some difficulties in the analysis. Such features can be
high stellar rotation, which can cause smearing of the cross
correlation function, or a mismatch between the templates and
the true spectra, which results in a low correlation peak (Hill
1993). These problems restrict the capability of any correlation
technique, including TODCOR. However, TODCOR does
improve the ability to measure stellar velocities in binary
systems by eliminating the error caused by the blending of the
two peaks.

Using TODCOR, it may also be possible to estimate the
secondary velocity for binaries with small mass ratio. In such
systems, the secondary spectrum can be substantially different
from the primary one. Therefore, the correlation of the
observed spectra with a combination of two different templates
is highly advantageous, to measure the radial velocity of the
secondary in particular. Measuring the radial velocity of the
secondaries is important for studying the mass-ratio distribu-
tion of short-period binaries and the mass distribution of the
secondaries (Mazeh & Goldberg 1992 a, b, ¢c; Mazeh et al.
1992). It may also prove to be productive to use TODCOR
iteratively with tomographic separation of spectra (Bagnuolo
& Gies 1991), in order to obtain both more precise radial
velocities and precise spectral classification of the components.
Another possible application of the algorithm is to detect very
faint secondaries and to measure their velocity, using very high
S/N spectra (Mazeh & Zucker 1993). This application will be
discussed in a separate further work.

We thank D. Latham for many enlightening discussions, and
the referee, G. Hill, for his very useful comments. This work
was supported by the US-Israel Binational Science Founda-
tion grant 90-00357.
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APPENDIX

The one-dimensional cross correlation function of Tonry & Davis (1979) is

Y —
T (A1

where N is the number of bins in the spectra, and o, and g, are the rms of the spectra:

1
2 _ 2
0'f = N ?(") .
Actually, since the sums do not include exactly N summands but, rather, the number of overlapping bins, N in the denominators
should be changed to the overlap length. The calculations do not differ much, so we chose to keep N for simplicity.
As Tonry & Davis (1979) point out, one can compute the numerator in equation (A1) efficiently with the FFT algorithm. We
denote the discrete Fourier transforms (DFT) of f(n) and g(n) by F(k) and G(k), respectively. The DFT of £, f(n)g(n — s) is

F(lG(k)*,

where G(k)* denotes the complex conjugate of G(k). Using FFT, we can calculate the whole cross correlation function in an
O(N log N) process, instead of O(N?2).

Within the new two-dimensional algorithm, we have to correlate f(n) against a combination of two templates, with two different
Doppler shifts:

g1(n — s1) + agy(n — s5) ,

where « is the intensity ratio of the two stars, and we assume it is known. Later we relax this assumption.

As a direct extension of equation (A1) we get
Z, f(n)lg.(n — s1) + ag,(n — s,)]

NO'fa'g(Sl, 52)

Rf'gx.gz(sl’ S, 0) = » (A2)

in which
1
Gz(sla 5;) = N Z [g1(n — s1) + ag,(n — 52)]2 .
The numerator in equation (A2) can be written as:
Y fm)gy(n —s,) + ¢ Y fin)ga(n — s5)

that is, two summands which can both be computed efficiently using FFT, like the numerator of equation (Al). However, the
denominator in equation (A2) includes o, which is a function of s; and s,, unlike the one in equation (A1), which was constant. To
compute g, we note that

1 o
‘73(51, 5)) = N [Z giln — 1) + 2a Z g1(n — s1)g,(n — s5) + o? Z g3(n — 32)] = 031 +2 N Z g:1(n — s,)g,(n — s5) + “2032 .

The first and the third summands include the rms of the individual templates. The second summand has exactly the same form as the
numerator of equation (A1), which makes it easy to compute via FFT. Thus, we get:

Z, f(n)g,(n — s,) + aZ, f(n)g,(n — s,) )
No; /02 + 2a/NE, g,(n)galn — (s, — 5,)] + #°a,

Rf.gl,yz(sl’ S35 0) =

For simplicity, let us define

1

Ci(sy) = No.o Zf(n)g1(n -5,
SY%g1 n
1

C,lsy) = No.o Z fg,(n —s,),
SY%g2 n

' 1

Cials; — sy = No Z g1(mg,[n — (s, —sy)] -
g1 7492 n
Now we have
041 Cy(sy) + a0,y Calsa) Ci(s1) + &'Cy(sy)

(A3)

R (54, S5, @) = = —
Joare2ol \/6;1 + 2009, 0,4, C1a(s, — 59) + a?6Z, /1 +20C,(s, —5;) + @ 2

in which «’ = (0,,/0,,)et.
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We see that the final expression includes only three cross correlations: C,(s;), C,(s,), and C,,(s, — s;). These three functions are
the correlations between the observed spectrum and each of the templates and the one between the two templates. This fact
preserves the O(N log N) nature of the calculation. In fact, since we can get a rough estimate of the two shifts using the usual cross
correlation, we can evaluate equation (A3) only for a small domain of the (s, s,) plane.

In order to obtain error estimates for each of the shifts, say s,, we can fix the other shift, s;, to its value at the maximum, §,, and
look at the function:

P(s;) = Ry 5, 4,81, 52, @) .

Close examination of this function of s, shows that it is actually the cross correlation of fagainst g,, after subtractingg, from fat the
appropriate weight. Thus, an error estimate can be obtained using the error analysis of the one-dimensional cross correlation (e.g.,
Kurtz et al. 1992).

So far we have assumed that the relative weight of the two templates, «, is known. We move now to discuss the case where « is not
known. We wish to choose, for each s, and s,, the value of « which maximizes the correlation between f(n) and the linear
combination of g, and g,. That means we choose, for each s, and s,, the value of « for which R, ,, ,.(s;, s, @) reaches its maximum.
After differentiating and equating to zero, we find that the value of « which gives the maximal correlation is

A _ (% Ci(51)Cras2 — 51) — Cylsa)
Hop 32) = <‘7gz>|:C2(sz)C12(sz -5 — C1(51):| ' Ay

and the correlation for this value of & turns out to be

N Ci(sy) — 2C,(5,)Cx(sp)C —5,) + Ci(s
Ry 5102081 $2, 8(sy, 52)] = \/ 1(s,) l(il)_ é(;zzszl_z_(sszl) u ! :

We have got a compact expression for the correlation in which the two templates play a similar role. Once again, we have to
calculate three cross correlations and then apply equation (A4) to a subdomain of the (s,, s,) plane. This formula is a simple case of a
more general formula known in statistics as multiple correlation. Triple or multiple stellar systems may be an application of the
more general formula.
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