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ABSTRACT 
We present an analytical description of the merging of virialized haloes which is 
applicable to any hierarchical model in which structure grows via gravitational 
instabihty. The formulae are an extension of the Press-Schechter model. The 
dependence of the merger rate on halo mass, epoch, the spectrum of initial density 
fluctuations and the density parameter Q0 is explicitly quantified. We calculate the 
distribution of halo formation times and survival times. We also describe a Monte 
Carlo method for constructing representative histories of merger events leading to 
formation of haloes of a prescribed mass. 

Applying these results to the age distribution of rich clusters of galaxies, we infer 
that a high value of the density parameter (Q0 ^0.5) is required to reproduce the 
substantial fraction of rich clusters that exhibit significant substructure, if such 
substructure only persists for a time 0.2 tQ after a merger, where is the present age of 
the universe. We also investigate the rate of infall of satelhte galaxies into galactic 
discs, by combining our Monte Carlo technique for halo mergers with an estimate of 
the time required for dynamical friction to erode the orbits of the baryonic cores of 
the accreted galaxies. We find that, even for Q0 = 1, the infall rate is low (provided that 
the satelhte orbits are not too eccentric), and that we would expect only a modest 
fraction of stehar discs to be thickened or disrupted by this process. 

Key words: galaxies: clustering - galaxies: evolution - galaxies: formation - galaxies: 
interactions - cosmology: theory - dark matter. 

1 INTRODUCTION 

It is usually assumed that galaxies, and the large-scale 
structure that they trace, grew via gravitational instability 
from small-amplitude Gaussian density fluctuations, 
generated by physical processes in the very early Universe. 
In hierarchical models, including the cold dark matter 
(CDM) model, the amplitude of these fluctuations decreases 
with increasing scale, resulting in the formation of low-mass 
objects, which then merge with one another to build up ever 
more massive structures. This process can be studied by 
means of A-body simulations, but it is important to be able to 
understand the results of such simulations in simpler terms. 
In this paper, we present an analytical description of the 
development of virialized structures which form by dissi- 
pationless hierarchical collapse, which is applicable to the 
dark matter haloes of individual galaxies, and to groups and 
clusters of galaxies. This description is based on the ‘random 
walk’ or ‘excursion set’ formalism developed by Bond et al. 

(1991, hereafter BCEK), which involves smoothing the 
linear density field on various mass scales, and identifying 
collapsed regions as those above some density threshold. 
The model predicts a mass function for bound virialized 
objects which is identical to that derived more heuristically 
by Press & Schechter (1974). More importantly, the model 
allows one to make calculations of the merging history of 
haloes. We compute the halo merger rate, including the 
dependence on the masses of both haloes involved, on the 
initial spectrum of density fluctuations, and on the epoch and 
the value of the cosmological density parameter Q0. We also 
calculate the typical epochs at which haloes of a given 
present mass formed by mergers of smaller haloes, and how 
long they typically survive before being merged into much 
larger structures. This should provide greater insight into the 
results of the A-body simulations, and into the evolution of 
structure in the real Universe. 

The model should also provide a framework for more 
detailed calculations of galaxy formation. In hierarchical 
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628 C Lacey and S. Cole 

models in which the universe is dominated by dark matter, 
the formation of luminous galaxies is thought to occur in 
virialized dark matter haloes, which are the sites where gas is 
able to cool and collapse to dense cores where star formation 
can begin. During this process of dissipative collapse and star 
formation, these haloes are also undergoing mergers with 
other haloes. Much effort is currently being invested in trying 
to simulate this process numerically, using combined hydro- 
dynamical and 7V-body codes incorporating rules for star 
formation and feedback due to energy injection from young 
stars (e.g. Evrard 1988; Cen et al. 1991; Navarro & Benz 
1991). However, limitations of computer time and memory 
severely limit the dynamic range of these simulations, and 
also do not allow exploration of a large parameter space. An 
alternative to these full-scale simulations is to use the 
analytical description of hierarchical merging developed 
here, and to model galaxy formation by adding equations for 
gas cooling, star formation, etc. Such an approach will 
provide insight into the results from the hydrodynamical 
simulations, and also complement them, in that a larger 
dynamic range can be covered (even if only in an approxi- 
mate way), and a much wider and more systematic investi- 
gation of the effects of varying the many uncertain 
parameters associated with star formation and feedback 
effects is possible. 

There is currently a great deal of interest in values of 
merger rates for objects of various types. Observations of 
rich clusters of galaxies show that a significant fraction ( ~ 30 
per cent) of them have substructure, detectable either in their 
X-ray surface brightness profiles (Jones & Forman 1992) or 
in the spatial distribution of their galaxies (Dressier & 
Shectman 1988). This implies that they have only recently 
formed by merging, and suggests a fairly high current merger 
rate, -1 per Hubble time. This is what one expects for a 
high-density universe with Q0 ~ 1, in which fluctuations in 
the linear regime continue to grow, and merging of dark 
haloes proceeds even at the present epoch. Merging of 
clusters provides a fairly direct application of our formalism, 
insofar as the luminous material traces the dark haloes in 
these systems. We consider this question in Section 4.1, 
where we use the observed frequency of substructure to 
estimate a lower bound on the allowed value of Q0. 

In contrast, observations suggest a much lower merger 
rate for luminous galaxies. Toomre (1977) estimated a 
current merger rate ~ 0.1 per Hubble time, based on the 
number of galaxies observed to have large tidal tails, which 
were interpreted as being the relics of recent mergers. Simu- 
lations show that the merging of two galaxies of comparable 
mass will produce an elliptical galaxy, provided that both 
galaxies were mainly stellar beforehand. However, 80-90 
per cent of bright galaxies are disc galaxies which have 
formed their stars over a substantial fraction of the age of the 
Universe, implying that the average rate of merging between 
comparable-mass galaxies cannot have exceeded ~ 0.1 per 
Hubble time. There are strong constraints even on the 
accretion of small galaxies by large galaxies. If a satellite 
galaxy made of stars merged with the disc of a spiral galaxy, it 
would heat the stellar disc, causing it to thicken; yet the discs 
of spiral galaxies are observed to be quite thin, implying that 
the amount of mass accreted in this form must be quite 
small. Toth & Ostriker (1992) argue that this rules out a high- 
density Universe in which structure forms hierarchically. 

However, the rate of merging of luminous galaxies is more 
difficult to calculate than that for haloes, because the 
luminous cores of baryonic matter need not merge when the 
surrounding haloes merge, but may instead end up orbiting 
inside the new large halo. This is thought to be the situation 
in galaxy clusters. Dynamical friction will eventually cause 
the baryonic cores to spiral together and merge. We discuss 
this effect, and its application to accretion of satellite galaxies 
by spiral discs, in Section 4.2. 

Mergers are implicated in various types of unusual activity 
in galaxies. The most infrared-luminous galaxies seen by 
IRAS appear to be starbursts triggered by the merger of two 
galaxies (e.g. Sanders et al. 1988). It has also been suggested 
that there is a link between mergers and the formation of 
active galactic nuclei, quasars and radio galaxies (e.g. 
Heckman et al. 1986). Merging has also been proposed as a 
possible explanation for the surprisingly steep increase in the 
number density of galaxies on the sky seen as one probes to 
fainter magnitudes (Rocca-Volmerange & Guiderdoni 1990; 
Guiderdoni & Rocca-Volmerange 1991; Broadhurst, Ellis & 
Glazebrook 1992). A merger rate large enough to reconcile 
the galaxy counts with a high-density Universe would imply 
that mergers have played a significant role in the formation 
of the present-day population of galaxies. However, this idea 
appears to be hard to reconcile with the evidence listed 
above for a low merger rate for luminous galaxies. 

We note that Carlberg (1990a) calculated halo merger 
rates by manipulating the halo mass function derived 
originally by Press & Schechter (1974). The formula that he 
deduced he then employed to model the evolution of the 
number density of quasars with redshift (Carlberg 1990a), 
and to constrain Q0 and A0 by modelling the evolution of the 
galaxy merger rate (Carlberg 1990b, 1991). We do not agree 
with Carlberg’s formulae, although our results are likewise 
consistent with the Press-Schechter mass function. We 
discuss the differences in Section 5. 

The plan of our paper is as follows. The following section, 
Section 2.1, describes the ideas and reasoning on which the 
analytic description of hierarchical merging is based. In 
Section 2.2 we derive the mass function of non-linear bound 
objects or haloes (equation 2.11), and then in Section 2.3 we 
derive expressions for the merger probabilities and rates and 
for halo accretion rates (equation 2.18). In Sections 2.4 and 
2.5 we compute expressions for halo survival and formation 
times. We then describe in Section 3 a Monte Carlo tech- 
nique that employs these formulae to generate merger 
histories leading to haloes of a given present mass. We use 
this technique to extract the distributions of halo formation 
times and masses, and the distribution of masses of the 
haloes that were merged with. We then apply these formulae 
and techniques to two astrophysical problems of current 
interest. We first, in Section 4.1, estimate a lower bound to 
Q0 by investigating the incidence of recent mergers in rich 
clusters. Then, in Section 4.2, we make Monte Carlo 
estimates of the current infall rate of baryonic cores into 
typical galactic haloes. Combining this with an estimate of 
the time required for dynamical friction to be efficient at 
eroding the original orbits of these infalling cores, we 
estimate the infall rate on to galactic discs present at the 
centres of these dark matter haloes. We compare our results 
with those of Carlberg in Section 5, and present our con- 
clusions in Section 6. 
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2 ANALYTICAL RESULTS FOR HALO 
MERGING 

2.1 Basic principles 

At early times, when the amphtude of density fluctuations is 
small {ô = Ap/p 1), these perturbations grow according to 
linear theory: ô{x, t)= ô{x, t0)D(t)/D(t0), where D(t) is the 
linear growth factor and x is a comoving coordinate. The 
density contrast in a given region obeys this simple relation 
until ô(x, t) approaches unity, at which point non-linear 
effects become important, and the region ceases to expand, 
turns around, and collapses to form a virialized halo. At the 
point at which the virialized halo forms, the density contrast 
estimated by linear theory will have reached a critical value 
<5C which can be estimated from the evolution of an isolated 
spherical overdense region. A useful alternative way of 
viewing this evolution is to consider simply the linear density 
field ô0{x)= ô(x, t0) extrapolated to some fixed time t0 

(perhaps the present day), and a critical threshold ô0c{t) that 
is progressively lowered with increasing time. Thus we can 
now identify the regions which will have collapsed to form 
virialized haloes at time t as those regions in the linear 
density field for which ó0 > ô0c(t). Henceforth, we use ô to 
denote the extrapolated linear density ô0, and omit the ‘0’ 
subscripts on ó and óc. 

The critical density threshold ôc can be estimated for any 
cosmology by considering the growth, turnaround and 
collapse of a uniform spherical overdense region. If the 
parameters of this overdense region are selected so as to 
match the density and expansion rate of a growing-mode 
linear perturbation of the background universe at early 
times, then ôc at a halo formation time /coll can be found from 
the extrapolated linear amphtude for an idealized spherical 
perturbation which cohapses to a point at time tcon. This 
calculation, performed in the Appendix, yields the threshold 

^c(¿coll)~ 2 1 + (Q0<1) 

2(12jt)2/3 IjA213 

20 (¿con/ (Qo=l), 

(2.1) 

where D(t) is an Q0-dependent growth factor given in the 
Appendix, and = jt/Zq -^o)~3/2* The result for 
Q0 = 1 can be obtained by taking the limit tQ/t0 -► °o of that 
for Q0 < 1. The value of the threshold at the present epoch, 
<5c(i0), is only weakly dependent on Q0: for Qq^I, 
óc(¿o)~ 1-686, while, for Q0 = 0.1, <5C(¿0)« 1.615. The be- 
haviour of ôc(t) as a function of time reflects the fact that, in a 
flat (Q0 = l) universe, structure continues to grow at all 
epochs, while, in a low-density (Q0<1) universe, linear 
perturbations grow like those in a flat universe for t<£tQ, but 
stop growing for t<stQ, when D(i)—1. Thus the time tQ 

marks the epoch at which new structures cease forming and 
the existing haloes simply move farther and farther apart 
without any further mergers. The spherical collapse model 
also predicts that haloes which have just collapsed and 
virialized have mean densities ~ (100-200)Q-1 times the 
background density at that time. 

In a hierarchical model, in which the rms density fluctua- 
tions decrease with increasing scale, the first haloes to form 
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have low masses. These haloes then accrete further material 
and merge together to produce haloes of progressively larger 
and larger masses. A remarkably simple analytic description 
of this history of hierarchical merging has been developed by 
Cole (1989) and Bond et al. (1991; BCEK hereafter), which 
appears to be in surprisingly good quantitative agreement 
with the hierarchical mergers synthesized in cosmological N- 
body simulations. Their approach is to smooth (average) the 
linear density field ô over spheres of successively larger 
masses, and then to assume that the mass of the halo contain- 
ing a given particle at time t equals the mass Mof the largest 
sphere, placed around the initial position of that particle, 
within which the average <3 exceeds the threshold for 
collapse, <5C(¿), calculated as described above. Thus, at each 
point, one considers the trajectory ó(M) =(Àp/p)M of the 
linear density field as a function of the smoothing mass M, 
and finds the largest M for which ô{M) crosses through 
ô = ôc(t). Selection of the largest mass is a way of addressing 
an issue which pundits call the cloud-in-cloud problem (e.g. 
Bardeen et al. 1986; Peacock & Heavens 1990). It ensures 
that the halo so identified will not have been engulfed in a 
still larger structure, since the surrounding region when 
averaged on all larger scales will have a mean density below 
the critical value and so, according to our criterion, will not 
yet have collapsed. 

2.2 The mass function 

To demonstrate how this approach of following trajectories 
ô(M) can lead to a simple expression for the mass function 
and the merger rates, it is useful to consider the Fourier 
decomposition of the linear density field: 

<3(jr) = X <3*exp(iA:-jr). (2.2) 
k 

For a Gaussian random field, the different Fourier ampli- 
tudes ôk are independent random variables with random 
phases. Thus a Gaussian random field is, statistically, 
completely determined by this power spectrum (| ôk\2), which 
measures the mean square amphtude of the various modes. 
The density field is smoothed by convolving it with a 
spherically symmetric window function WM{r) having some 
radial extent R, corresponding to a mass M~ p0R

3. Thus the 
smoothed field <3(M, x) gives the weighted average of ô(x) 
over a spherical region of mass M around each point x. 
Applying the convolution to the Fourier series, the smoothed 
field can be expressed as 

ô(M, x) = ^«(1^-^)%) d3^ (2.3) 

= Z ôkWM(k)exp{ik-x), 

where is the Fourier transform of the spatial window 
function WM(r): 

WM(x) exp( - ik-x) d3x. (2.4) 

At fixed x, equation (2.3) gives the equation of a trajectory 
ô(M). 
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630 C Lacey and S. Cole 

Many choices are possible for the spatial window function, 
besides the obvious one where WM(r) is constant inside a 
sphere, and zero outside (‘top hat filtering’). In general, one 
wants WM(r) to be nearly constant at small r, and then to fall 
off steeply beyond some radius R. The integral of WM(r) over 
all space is normalized to unity, so that WM(|.r-y|) acts as a 
smoothing kernel. Correspondingly, $/M(k) tends to unity at 
small /c, and then falls off beyond some value kc~l/Roc 
M"1/3, thus heavily suppressing the contribution to ô{M) 
from modes of wavelength smaller than the size of the 
smoothing window. In what follows, it will be convenient to 
label the mass scale Mby the variance 

S{M) = o2{M) =(\<3(M, j*:)|2) 

=Z(\ôk\2)ft2M 

(2.5) 

of the linear density field when smoothed with the window 
function containing mass M, and to consider the trajectories 
to be functions of the variable 5. Note that, under fairly 
general conditions, 5 is a monotonically decreasing function 
of M. (A sufficient condition is that W2

M{k) be monotonically 
decreasing with M.) For scale-free initial conditions in which 
the power spectrum is a pure power law (\ôk\2)^kn

9 the 
variance as a function of mass is simply S^M~a, where 
a={n + 3)/3. 

For physically interesting power spectra and window 
functions, if the smoothing mass scale is sufficiently large 
then S will tend to zero, and so ô(S) will also approach zero. 
As one reduces the scale over which the density field is 
smoothed, ô{S) will begin to wander away from zero as pro- 
gressively shorter and shorter wavelength modes begin to 
contribute. (Examples of such trajectories can be seen in fig. 
3 of BCEK.) In fact, from equation (2.5) it can be seen that 
the mean square value of 0(5) is given by (| <5(5)|2) = 5. For a 
given realization of the density field, i.e. a given set of ôk 

values, the trajectories at all spatial locations are determined. 
We do not attempt to relate the trajectories at different 
locations. Instead, we consider the trajectories at a fixed 
location x that are obtained for different realizations of the 
ôk. These trajectories can then be considered as random 
walks. Statistical properties of the trajectories are calculated 
by averaging over realizations, which by the usual ergodic 
theorem corresponds to averaging over spatial locations. The 
detailed properties of these trajectories depend on the form 
of the window function chosen, but their description is 
particularly simple for the case in which lVM(/c) is a step 
function in fc-space (‘sharp k-space filtering’): 

i 
0 

k<ks(M), 
k> ks(M). 

(2.6) 

In this case, these wandering trajectories are true Brownian 
random walks, as each increment to <5(5) when S(ks) is 
increased comes from a new set of Fourier modes in a thin 
spherical shell in k-space, and thus for a Gaussian random 
field is uncorrelated with any of the previous steps. The 
consequence of this is that these trajectories <5 (5) are 
governed by a simple diffusion equation. If we denote the 
number density of trajectories at 5 in the interval <5 to <5 + d<5 
as Q( <5, 5), then 

0Q=1 0^0 
05 2 0<52 ‘ 

(2.7) 

We note that the variable 5 acts like the time variable in this 
diffusion equation. All the trajectories begin at 5 = 0, <5 = 0 
and then diffuse away as 5 increases. The more complex 
behaviours exhibited with other choices of window function 
are explored in BCEK. 

We now wish to calculate the fraction of trajectories that 
are above the threshold ôc(t) at some mass scale M but are 
below this threshold for all larger values of M. This is equiva- 
lent to identifying that fraction of the trajectories that have 
their first upcrossing through the threshold ô = a) = ôc(t) in 
the interval 5 to 5+d5, which corresponds (through 
equation 2.5) to a mass interval M to M+dM. In order to 
evaluate this, consider placing a barrier at o) = ôc(t) which 
absorbs trajectories as they attempt to cross through it. The 
unique solution of the diffusion equation (2.7) with this 
absorbing boundary condition is 

Q(<5,5, to) d<5 = 
yfijtS 

exp 
cf 
25 

exp 
(<5 —2<y)2 

25 
d<5 

(2.8) 

(Chandrasekhar 1943). This follows from the fact that 
trajectories starting at some point on the line ô — a> are 
equally likely to wander above it as below it. The probability 
that a particular trajectory will be absorbed by the barrier in 
the interval 5 to 5+d5 must equal the reduction in the 
number of trajectories surviving below the barrier. Hence 

fs{S, œ) = - 
d_ 
05 

Qd<5 

1 0Q 
2 00 

Ü) 

— oo 

(2.9) 

where the second line follows from equation (2.7). We use the 
notation fs(S, co) for the probability density in 5, which is a 
function of both 5 and a), i.e. fs(S, co) d5 is the probability 
that a trajectory will have its first upcrossing through the 
threshold in the interval (5, 5 + d5). Substituting the expres- 
sion in equation (2.8) for Q, we find 

fs(S, dS (2ji)1/2S3/2 eXP 
co 
25 

d5. (2.10) 

This expression represents the fraction of mass associated 
with haloes in the range of M corresponding, through 
equation (2.5), to the specified range in 5. The comoving 
number density of haloes of mass M present at time t is 
therefore 

d5 
dM 

dM 

2 r Po <5cM 
nj M o(M) 

din a 
dlnM 

exp 
0c(tf 

2ol[M) 

(2.11) 

dM, 
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where p0 is the present mean mass density of the universe. 
This is the well-known expression for the mass function 
originally proposed by Press & Schechter (1974). Using 
equation (2.1) to define cd = ôc(t) as a function of time, it can 
be used to determine the mass spectrum of haloes as a 
function of time in open or flat cosmologies. 

The cumulative mass fraction in haloes above some mass 
M is given by integrating equation (2.10) from S = 0, with the 
result 

P{> M, t)=P(<S, tt>) = erfc = erfc (2.12) 

Thus, if the power spectrum is such that as 
M-^O, then P(>M)-*l as M-+0, so that all matter is in 
haloes of some mass. 

Let us review some of the assumptions inherent in our 
derivation of equations (2.11) and (2.12) by considering a 
cosmological N-body simulation. For each particle in the 
simulation, we can construct a trajectory ó (S') by explicitly 
smoothing the linear density field around its initial location. 
From these trajectories, we can compute trajectories M(t) for 
each particle as we have described above. Thus, for any later 
time, this procedure can be used to tag each particle in the N- 
body simulation with a mass label, which is our prediction 
for the mass of halo in which we expect the particle to be 
incorporated at time t. For equations (2.11) and (2.12) to be 
exact would require that there be an exact correspondence 
between this tagged mass and the true halo mass. This 
correspondence between tagged mass and halo mass is at 
best approximate, and thus equation (2.11) can only be 
viewed as an approximation of the true halo mass function. 
Later, in Section 2.5, we will find that assumption of an exact 
identity between tagged mass and halo mass can have more 
serious consequences, and can lead to some mild 
inconsistencies. 

To use equation (2.11) or (2.12) for a particular 
cosmological model, all one requires is the function 
S{M)-o2{M\ which is the linear theory variance of the 
density fluctuations as a function of mass scale. To determine 
this function, one must select a form of the window function 
WM(r), relate the filter radius R or cut-off wavenumber ks to 
the mass M, and compute S{M) using equation (2.5). BCEK 
elected to use a top hat window function 

WM(/-) = (4*^/3)-1 \l 
r< R, 
r > R, (2.13) 

for which the mass can be unambiguously defined as simply 
the mass enclosed within radius R, M=4/37tp0R

3. The dis- 
advantage of this choice is that for n>l the summation in 
equation (2.5) diverges. An alternative would be to use the 
sharp k-space filter (equation 2.6), which always yields a 
finite S(M), and can be argued to be the consistent choice as 
it is this window function that results in the diffusion 
equation (2.7). The problem that arises here is how to relate 
the cut-off wavenumber ks to the mass M. Perhaps the most 
natural way to achieve this is to rescale the spatial form of the 
window function for this filter, 

x (sin ksr — ksrcos ksr) 
2jtV 

(2.14) 

so that WM{r) = 1 at r = 0, and then to integrate over all space 
to get the volume enclosed. This yields M=6K2p0k~3. For a 
power-law power spectrum with 2.5<«<0.5, this mass is 
2.5-0.7 times larger than that given by the top hat window 
function with the same S, and the ratio becomes zero for 
«> 1. For scale-free initial conditions, the choice of window 
function makes no real difference if one measures masses in 
units of the characteristic mass M* for which a(M*) = <$c; 
then S(M) = ôl(M/M*)~a, where a = (n + 3)/3. For other 
models, such as the CDM model, where n varies slowly with 
mass, the choice of window function will also change the 
shape of the mass function, but only by a small amount. Thus 
the ambiguity in the choice of window function for 
computation of S(M) only really becomes important when 
relating the mass function to other measurements of the fluc- 
tuation amphtude, such as fluctuations in galaxy counts, the 
galaxy correlation function, or microwave background AT/T 
measurements. To determine the optimum choice it is prob- 
ably best to cahbrate the mass function against a large N- 
body simulation or ensemble of simulations in which the 
power spectrum of density fluctuations is known precisely. 
We will address this problem in a later paper, where we will 
also assess the accuracy of this analytical model. Here we will 
follow BCEK, and take the S(M) relation appropriate for top 
hat filtering. For the CDM model, we will use the fit to the 
power spectrum given by Bardeen et al. (1986). 

Figure 1. A trajectory ô(S), and the corresponding halo merger 
history. The solid line shows the trajectory for the overdensity ô as 
the smoothing scale is varied. The dotted line shows the trajectory 
for the halo mass, represented by a function S(cd). Where ó is 
increasing with S, the dotted line coincides with the solid line. 
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632 C Lacey and S. Cole 

2.3 Halo merger and accretion rates 

The great value of viewing the formation of haloes in terms 
of the trajectories ô^) is that it becomes clear how to deter- 
mine more detailed properties of the merging history of 
haloes. A given trajectory ô{S) describes the merger history 
for a given particle. Fig. 1 shows an example: the solid line is 
the trajectory ô(S), while the dotted line shows the merger 
history Shalo(aj) that is derived from it. The process of follow- 
ing the merging in the normal temporal Sequence of increas- 
ing rand M corresponds to the process of starting at large co 
and S and following the track down and to the left in this 
figure. Recall that, at each value of the barrier height co, the 
halo mass is assumed to correspond to that barrier crossing 
by the trajectory ó (5) with the largest M, and so the smallest 
S, so that co versus S for the hado follows ô(S) when this is 
increasing, but makes horizontal jumps when ó (5) decreases. 
These jumps correspond to sudden jumps in the mass of the 
halo containing a particle, which we can identify as resulting 
from merger events. The small steps in 5halo corresponding to 
upward steps in the trajectory of ô versus S correspond to 
incremental accretion events, adding only a small amount of 
mass to the halo. Of course, these accretion events are really 
just mergers with very small haloes, and the distinction made 
here between ‘accretion’ and ‘merger’ events depends on the 
resolution AS with which one looks at the trajectory ô(S). 

We wish to determine the merger probability per unit 
time for a halo of given mass M at time t. Let us therefore 
consider the subset of trajectories, depicted in Fig. 2, 
which make their first upcrossing of a barrier of height co2 at 
S2 and then continue until they eventually cross a second 
barrier of height cox > co2 at various values S1>S2. These 
trajectories represent haloes which at the time corresponding 
to co1 have masses corresponding to S1? and which by the 
later time corresponding to co2 have merged to form a halo 
of mass corresponding to S2. The conditional probability 
fs1(Sl, |S2, co2) dSj that one of these trajectories will make 
its first upcrossing of col in the interval 5! to Sj +dSl can be 
obtained directly from equation (2.10) by noting that this is 
the same situation as before, but with the source of trajec- 
tories moved from the origin to the point {S2, co2). Thus 

fs^u 

{(Ü! - C02) 
(2jI)

1/2(51-52)
3/2 exp 

(coi - a>2)2 

2(5, —52) 
d5. (2.15) 

(5! > 52, > ü>2)> 

where we have simply made the replacements S-*S1-S2 and 
co-* col — co2m equation (2.10). This expression can be used 
directly to yield the mass distribution of the haloes at time ^ 
that go on to form haloes of mass M2 at time t2. This 
expression is equivalent to equation (5.1) of BCEK and also 
to the formula deduced by Bower (1991) by repeated use of 
the heuristic argument employed by Press & Schechter 
(1974). Alternatively, we can manipulate equations (2.15) 
and (2.10) to give the conditional probability that a trajectory 
with a first upcrossing of coi at S1 will have a first upcrossing 
of <jo2 between S2 and S2 +d52, 

fs2(S2, <o2\S1, ü)i) d52 = 
WilSi, (o2) d51/s?(52, co2)d52 

fs^SuCO^dS, 

1 
(2*)1/2 

5, 
52(5i-52) 

3,2 (Q^co^-coJ 
0)1 

x exp 
(o)2Si (OiS2) 
25152(51 — 52) 

(2.16) 

(Sl > 52, (o1 > a>2). 

This yields the conditional probability that a halo of mass 
Mx present at time tl will have merged to form a halo of mass 
between M2 and M2 + dM2 at time t2> t{. By taking the limit 
as t2 tends to tx (co2 tends to cox = co), we can determine a 
mean transition rate, 

d2p 
d52 dco 

(51-
i'52|û>)d52 dco 

[In) 1/2 
3/2 

exp to (^i ^2) 
25^2 

(2.17) 

d52 dco. 

Whilst in any finite interval Aco the change AS can be due to 
the cumulative effects of more than one merger, in an 
infinitesimal interval dco the entire change A5 must result 
from a single merger event. We therefore interpret equation 
(2.17) as giving the merger rate. It represents the probability 
that, in the time interval corresponding to dco, a halo of mass 
Mx will accrete or merge with another halo of mass 
AM = M2 — Mx, where Mx and M2 are related through 
equation (2.5) to Sl and S2. Thus the rate of merging, sub- 
divided according the mass AM of the halo that is being 
merged with, is 

à2p 
din AMd¿ 

(M^M2\t) 

= 2o(M2) 
da2 

1/2 

dM2 

din óc 

AM 
dco 
~dt 

d2p 
d52dco 

(5] -*■ 52| co) 

(2.18) 

din ¿ 
am\ 
  x M2) 

d In o2 

dlnM, 
<Mi) 1 
02 ( 1 02l 0\ 2/ 2x3/2 

x exp <M*)2/i iV 
2 U2 °ïlï 

where ox = o{Ml) and o2 = a(M2). Note that, for an 
Q0 = 1 universe, d In ôjd In t = - 2/3. 

The merger rates given by this expression are plotted in 
Figs 3 and 4. Fig. 3 shows the merger rate by number, for 
three self-similar models with n= -2, - 1 and 0, and for the 
CDM model at z = 0 and 1. The CDM model assumes 
h = H0/(100 km s_1 Mpc_1) = 0.5 and a normalization 
cr8 = a(8 h~l Mpc) = 0.5, which implies a characteristic mass, 
such that a(M*) = óc, of M* = 5 x 1012 /r1 M0. Fig. 4 shows 
the fractional rate at which the mass is increased by 
mergers with other haloes. We see from these figures 
that mergers with very small haloes dominate numerically 
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Figure 2. Trajectories of ô versus S for a subset of trajectories that 
make their first upcrossing of a barrier of height co2 at S2 and then 
continue until they eventually cross through a second barrier of 
height eo, > ci>2 

at various values Sx. 

[d2p/d In ÁMdí°c(AM)-1/2 for reflecting the 
divergent number of low-mass haloes in the mass function, 
but that the mass accretion rate is dominated by mergers 
with haloes of higher masses. For Mx M*, the total mass 
accretion rate asymptotes to a constant value of 
2/(n + 3){Ml/t), and is dominated by the accretion of smaller 
haloes. For lower masses Mu the fractional accretion rate is 
significantly larger, reflected by the increased area under the 
curves in Fig. 4, but for Ml «C M* most of the increase in 
mass is due to falling into more massive haloes, AM>M1, 
rather than to the accretion of smaller systems. For a given 
value of MJM*, the total mass accretion rate falls as the 
spectral index n increases. Thus the rapid growth of structure 
that occurs in the n=-2 model is reflected in corre- 
spondingly high accretion rates. 

2.4 Halo survival times 

An interesting quantity that can be calculated from equation 
(2.16) is the lifetime of a given DM halo. The knowledge of 
how long a typical halo survives before being incorporated 
into a much more massive system is of particular importance 
when attempting to construct physical models of galaxy 
formation. 

Let us consider the fate of all haloes of mass that exist 
at time tu which we will label, as usual, by and The 
probability that, by a later time t2, such a halo will have been 
incorporated into a new halo of mass greater than M2 is 
given by integrating equation (2.16): 

P(S<S2, fr>i) — 
's2 

ft>i) d^. 
Jo 

(2.19) 

Given, however, that the tracks of S versus co for the halo 
mass are monotonie (see Fig. 1), this is also the probability 
that a halo makes the transition from S<S2to S> S2at some 

Merger rates 633 

o)> o)2. The probability that the halo will become incorpo- 
rated into a system of mass larger than that corresponding to 
S2 during the time interval corresponding to àa)2, which we 
denote (o2\S1, daj2, is therefore given by differen- 
tiating: 

(2.20) 

This yields 

0)2\Su(0l)á(01 

2'1/2 

JT ; S2{S1-S2 

1/2 
exp 

2<o2(co1 -co2) 

X 
iS2(eii 2cy2) ^2) 

exp( - X2) (2.21) 

+ ! 

1/2 S2 
1/2 

1- Ko)i 2(o2) 

Si 

x[l+erf(-A)] d(o2 ((o2< Mi, S2< Si), 

where 

^2(^1 -2ü)2) + Si û)2 

The corresponding cumulative probability is 

P(S<S2, o)21iS*!, a)l) = P{S2, a)> (jd2\Su Wj) 

1 (tt^i 2o)2) 
2 coi 

exp 
2(o2{(o1-œ2) 

S, 
[l-erf(2Q] (2.22) 

+ ^[l-erf(Y)] (S.KS^œ.KœJ, 

where 

_ Si o)2 — S2o)i 
~[2SXS2{S,-S2)}m- 

We define the survival time ts of a halo having mass M at 
time t as the cosmic time by which the mass has doubled due 
to either accretion or merging. We can use equation (2.21 ) to 
determine the distribution of survival times, by setting 
Sl=S(M), S2=S{2M), (J0i = a)(t) and a)2= a)(Q. On the 
other hand, equation (2.22) gives the fraction of haloes 
P{ <ts\M, t) with survival times smaller than some value ts. 
Fig. 5 shows the distribution of survival times in an Q0 = 1 
universe, for self-similar models with n = -2, -1,0 and for 
CDM. These curves show the common feature that for 
M«C M* the distribution of tjt is very broad, with a power- 
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Merger Rote Merger Rate 

Merger Rate Merger Rate 

Figure 3. The merger rates given by equation (2.18) for self-similar models and for the CDM model. The quantity plotted, d2p/d In AM d In t, 
represents the number of haloes of mass AM that are accreted in one Hubble time by a halo of mass Mv The first three panels show the self- 
similar models and are labelled by n, the spectral index. In these panels, the curve which is highest on the left of the plot is for Mj = 16M*, and 
successive curves are for M1/M* = 8, 4, 2, 1 and 1/2. The fourth panel, which displays merger rates for the CDM model, has curves 
corresponding to Mj/1013 /r1 M0 = 9.6,4.8,2.4,1.2,0.6 and 0.3. The solid curves are for z = 0 and the dashed curves correspond to z = 1. 

law tail extending to larger values, while for M^> M* the 
distribution becomes much narrower, centred around an 
intermediate value of tjt. Thus some low-mass haloes 
survive for very many Hubble times, but this is very unlikely 
for high-mass haloes. For the self-similar models with 
n> -3, the limiting behaviour of the median survival time fs 

cam be obtained analytically from equation (2.22): îJt-+2312 

for M-+0 and îjt-+23al2 for M-> °o while, for n = 0, 
îjt=2312, independent of M. Thus, for n<0, the median 
survival time decreases with increasing mass, while for /i > 0 
the reverse is true. The median survival time is seen to 
decrease with decreasing n, for a given M/M*, reflecting the 
more rapid evolution of structure already remarked on in 
connection with the merger rate. 

The survival time can be compared with the internal 
dynamical time of a halo. For the spherical collapse model 
analysed in Appendix A, the internal dynamical time is 

Lyn = ( 1/2) ¿con= ( 1 /2) if the halo is modelled as a uniform 
sphere. Therefore, if tjt < 3/2, the halo survives for less than 
one dynamical time after it forms, and so can hardly be said 
ever to have existed as an equilibrium structure. For 
n< -2.6, more than half of the mass is in haloes with tjt< 
3/2. (This estimate is somewhat sensitive to the adopted 
value for Tdyn/t, however.) For the CDM spectrum, the effec- 
tive value of n approaches — 3 at low masses, suggesting that 
this may be an important effect during the early stages of 
structure formation. A second application of these results is 
to the cooling of gas within dark haloes, where one expects 
the gas to settle to the centre of the halo only if it has time to 
cool undisturbed by further mergers. Rees & Ostriker (1977) 
proposed the approximate criterion 7cool < Tdyn for cooling to 
be effective, but a more accurate criterion would be 
Tcool<(ts-1). We will return to this in a future paper. Cole 
(1991) has already made investigations along these lines 
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Accretion Rote Accretion Rate 

log10 (AM/M.,) iog10 (AM/Mt) 

Accretion Rate Accretion Rate 

tog10 (AM/M^ log10 (AM/Mt) 

Figure 4. The accretion rates given by equation (2.18) for self-similar models and for the CDM model. The quantity plotted is the fractional 
mass accreted per Hubble time, (AM/M! ) d2p/d In AM d In t. The first three panels show the self-similar models and are labelled by n, the 
spectral index. Note the different scales used on the vertical axis. In each panel, the lowest curve at the right is for Mx = 16M*, and successive 
curves are for = 4, 2, 1 and 1/2. The fourth panel, which displays the accretion rates for CDM, has curves corresponding to 
Mx/10u h~l M0 = 9.6, 4.8, 2.4, 1.2, 0.6 and 0.3. The solid curves are for z = 0 and the dashed curves correspond to z = 1. The net accretion 
rate in units of Mx It is proportional to the area under the appropriate curve. 

using the ‘block model’, which is a simple numerical scheme 
for simulating structure formation. 

2.5 Halo formation times: an analytical estimate 

The matter making up a halo of mass M at time t was at 
earlier times distributed in many ‘parent haloes’ or ‘building 
blocks’, which merged hierarchically to produce the current 
halo. We will define the formation time of the halo as the 
time when a parent halo appeared which had half or more of 
the present mass M. Prior to that time, it is not possible to 
define usefully which of the many parents was the ‘main 
parent’. After that time, the choice of the largest mass parent 
as the ‘main parent’ defines a continuous track through the 
merging tree. A ‘merger tree’ of this form is depicted 
schematically in Fig. 6. 

Calculation of the distribution of the formation times of 
haloes defined in this way from the random walks model is 
somewhat more problematic than the calculation of survival 
times. We consider several different approaches in turn: two 
analytical methods in this section, and a Monte Carlo 
method in Section 3.2. 

2.5.1 Mass-halving time for single trajectories 

Consider first an argument based on following single 
trajectories. We can determine a survival time from a single 
trajectory <3 (5), by finding the point corresponding to time t 
and then following it forward in time until the mass has 
doubled. If we apply a corresponding procedure going back 
in time, following a trajectory until the mass associated with it 
has halved, we obtain from equation (2.15) the following 
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iog(tyt) 

log(tyt) 

Figure 5. The distribution of survival times of haloes in an Q0 = 1 universe. The first three panels show results for power-law power spectra 
with n = -2, -1 and 0 respectively, for masses given by v = ôc/o(M) =(M/M*)a/2 = (0.1, 0.3, 1, 3), with decreasing ordinate at large ts 
corresponding to increasing mass. The fourth panel shows the result for a CDM model at z = 0 with a8 = 0.5 and h = 0.5, for masses M/h-1 

M0 = ( 106,109,1012,1015). Again, decreasing ordinate at large ts corresponds to increasing mass. 

cumulative probability distribution for the time th at which 
this occurs: 

P(th < tl IM2, t2) = P(M1 > MJ2, tl\M2, t2) 

fs,(Su ^2) d5j (2.23) 

l/2(Sh-S2)J 

where t1<t2, Ml<M2 and Sh=S(M2/2). However, this is 
not the same as the distribution of halo formation times, for 
the reason that, if the halo mass for a trajectory has fallen to 
some small value at an earlier time, this only means that one 
of the parent haloes had this small mass; it does not mean 
that the largest or main parent had a mass below half the 
current mass. Thus an approach based on single trajectories 
is inadequate. 

Figure 6, A schematic representation of a ‘merger tree’ depicting 
the growth of a halo as the result of a series of mergers. Time 
increases from top to bottom in this figure and the widths of the 
branches of the tree represent the masses of the individual parent 
haloes. A slice through the tree horizontally gives the distribution of 
masses in the parent haloes at a given time. The present time tQ and 
the formation time tf are marked by horizontal lines, where the 
formation time is defined as the time at which a parent halo contain- 
ing in excess of half of the mass of the final halo was first created. 

2.5.2 Halo formation times from a counting argument 

In fact, it appears that there is no completely self-consistent 
way of computing the distribution of formation times from 
the random walks model, because the correspondence 
between the halo mass we assign to a particle by analysing its 
trajectory, 0(5), and its actual halo mass is only an approxi- 
mate one. (This will, of course, affect the results on mass 
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functions, merger rates and survival times, as well as forma- 
tion times, but does not lead to any self-inconsistency in the 
former cases.) However, two alternative approaches - the 
analytical counting argument presented in this section, and a 
Monte Carlo method of generating merging histories 
presented in Section 3.2 - give rather similar results, so we 
are encouraged to believe that they may provide a useful 
approximation to the true answer. 

The halo counting argument is as follows. According to 
the results of Section 2.3, the number density of haloes of 
mass Mx +dM1) at time tx which are incorporated into 
haloes of mass (M2, M2 + dM2) at time i2 > ^ is 

^(A^Ac^dAS 

_ 1 Aa> 

“(V71 (Ä7pexp 

(A«) 
2AS 

dAS (2.29) 

(A<o>0, AS>0), 

and /t(S) is defined to be the function 

So, Sh) — 
mso) 
M(S) 

= [l+(2“-l)5]1/a, (2.30) 

d2«=^(M1,i1)
dMi/i2(52,ft)2|51,<w1)d52. (2.24) 

If we now choose in the range M2/2 <M1< M2, each of 
the haloes of mass Ml at time must evolve into a distinct 
halo of mass M2 at time t2. (However, not all haloes of mass 
M2 have parents of mass Mx in this range at time t1 - then- 
largest parent may have mass <M2/2.) Therefore the 
probability that a halo of mass M2 at t2 has a parent at time tx 

with mass in the range (Ml, Mi+dMl) is given by dividing 
equation (2.24) by (dn/dM2){M2, t2) dM2, with the result 

(M„ tl\M2, t2)dMj = ^7 /,1(51, 0,15,, o2)d5, (2.25) 
dMx W\l 

(M2/2<M1 <M2, Í!<í2), 

where we have used equations (2.11) and (2.16). Integration 
of equation (2.25) over the range M2/2 <M1<M2 gives the 
probability that halo M2 had a parent in this mass range at tl, 
which equals the probability that its formation time was 
earlier than this: 

P(tf < tx |M2, t2) P{Mi > M2/2, |M2, t2) 

'Sh M(S2) 

. s2 Mis,) 
fs^Si, Wi\S2, ii>2)d5'1, (2.26) 

where Sh =S(M2/2) as before. This then gives the distribu- 
tion of formation times. Note that this equation differs from 
equation (2.23) in containing the weighting factor M2lMl > 1 
in the integral, which biases the distribution towards earlier 
formation times. 

It is useful to consider this result in more detail for the 
case of a self-similar model, with SocM-0. For easier com- 
parison with the results of the next section, we set t2 = t0 and 
M2=M0. First, we rewrite equation (2.26) in terms of the 
variables 

$=(S-S0)/(Sh-So), (2.27) 

â> = ((o-(o0)/J(S^SÔ), 

giving 

P(< tf) = P(>(!),)-- So, Sh)K(S, tt>f) d5, (2.28) 
Jo 

where K{AS, Aco) dA5 gives the probability of a change AS 
in a step Act>, from equation (2.15), 

where the second equality only applies for the self-similar 
model. The reason for choosing these variables is that 
P(> éf) then depends on the power spectrum only through 
the function ju(S) in the range 0^S<1, which in turn 
depends only very weakly on a. The distribution of forma- 
tion times, when expressed in terms of these scaled variables, 
is therefore almost identical for different values of the 
spectral index n in the range of physical interest, and, by 
extension, should be almost identical for any slowly varying 
power spectrum (such as CDM). Results for the distribution 
in o)f for « = - 2, -1,0 and 1 are shown in Fig. 7. For com- 
parison, this figure also shows the distribution of mass- 
halving times for single trajectories from equation (2.23). The 
formation time tf is then related to a)f by the equation 

óc(íf)= ¿c(í0)+ ¿>fMM0/2)- az(M0), (2.31) 

which is easily solved by making use of the relations (2.1). 
For the specific case that Q o = 1 an<^ S°^M~a, this gives 

Figure 7. The distribution of halo formation epochs calculated 
from equation (2.28), for power-law power spectra with n = -2, 
-1,0 and 1 (solid curves, from bottom to top at the peak). The 
dashed curve shows the distribution of mass-halving times from 
equation (2.23). cof is related to the formation time tf by equation 
(2.31). For Q0 = 1, °c zf, so this is a scaled version of the distribu- 
tion of formation redshifts. 
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1 + Zf = (?)/=l + "f^ri(ä ; (Qo=1)’ (2‘32) 

so that zf °c a)f at fixed mass. 
For the special case n = 0 (a = l), the distribution of a>f 

can be obtained from equation (2.28) analytically: 

dz? 0 
—dcöf = — T— P{ > <¿f) d¿)f = 2(Pf erfc(¿)f/>/2) dö)f 
d¿)f 0(Pf 

(w = 0). (2.33) 

For other values of n, it is calculated numerically. 
There is a problem with the ¿^-distributions shown in Fig. 

7: for n>0, they go slightly negative close to ¿>f = 0. For 
example, the n=l curve is negative for d)f <0.03, falling to 
dp/da>f=-0.07 at ¿)f = 0. Clearly, this is unacceptable 
behaviour for a probability density. This inconsistency arises 
because our derivation involved counting haloes, which will 
only give consistent probabihties if particles that our 
analysis of trajectories tags as having halo mass M really are 
spatially grouped into objects of mass M. The peculiar 
behaviour found for dp/déf presumably results from the fact 
that this identification is not exact. This problem did not 
arise in calculating the distribution of survival times, because 
that involved only counting trajectories, and did not 
explicitly require the ‘tagged’ mass to be the same as the true 
mass. In Section 3.2 we will present a calculation of 
formation times which avoids the pitfall of negative prob- 
abihties, based on Monte Carlo simulations of halo merger 
histories. Discussion of the results on formation times is 
postponed to that section. 

3 MONTE CARLO GENERATION OF HALO 
MERGER HISTORIES 

3.1 The method 

In Section 2 we considered the trajectory of the over density 
ô(M) at a point as the smoothing mass M was varied. The 
mass of the halo containing the particle at time t was then 
identified as the largest mass at which the trajectory 
upcrossed through the barrier ô = a) = ôc{t). By varying the 
barrier height œ with t, one can then generate the history of 
the way in which the halo mass for a particle varies with 
time, which represents the sequence of halo mergers for this 
particle. However, using the results of Section 2.3, we can 
generate random walks for the mass history M(t) more 
directly, without having to generate random walks for ô{M) 
first. This we now describe. 

Consider the situation where one starts with a particle 
which is in a halo of mass M0 at time t0. As before, it is more 
convenient to take S{M) = o2{M) sls our ‘mass’ variable, and 
a)(t) = ôc{t) as our ‘time’ variable. We now consider trajec- 
tories which run back in time from (M0, t0), i.e. in the 
direction of decreasing M and t, or increasing S and o). For a 
step of size À > 0 in cd, the probability distribution for the 
change AS > 0 in S' is given by the function K(AS, AcD)d(AS) 
in equation (2.29). The new halo mass at time 
t(aj + Aca)<t((o) is then simply M[S + AS)<M(S). The 
change in mass AM = M(S)-M(S+AS) (going forward in 
time) has occurred through mergers with one or more other 
haloes. By taking many steps drawn from this probability 

distribution, we generate a possible mass history for a 
particle in a halo of given present mass M0. The set of all 
such histories represents both a sum over the different 
histories of particles in the same present halo, and a sum over 
all haloes of the same present mass. Some examples of such 
histories are shown in Fig. 8, for an « = - 2 power spectrum 
in an Q0 = 1 universe. 

Some features of these random walks can be seen directly 
from equation (2.29). For AS^(Acd)2 we have K(AS, Aw) 
ocAœ/(ASyi\ so the probability of a given change AS is 
proportional to the interval A cd, implying that we are in the 
regime where the change in S (or in mass) is due essentially to 
a single merger event which has only a small probability of 
occurring in that time interval. In the opposite regime, 
AS <£C (Acd)2, the change in S typically results from summing 
the effects of several mergers occurring in that time interval. 
If the fractional mass change is small, AM/M<£ 1, then 
AS °c AM, so that the merger probability in the single-merger 
regime varies approximately as p{AM, At)d(AM)^ 
At/(AM)3/2d(AM). Thus, in the merger history of an average 
particle, there has been an effectively infinite number of 
mergers with other haloes of infinitesimal mass (AM->()), but 
the net increase in mass has been dominated by mergers with 
more massive haloes, with the amount of mass accreted in 
haloes with mass ~ AM scaling roughly as (AM)112, up to 
AM-M. These results closely reflect those derived for 
accretion rates from equation (2.18). The choice of step-size 
A cd in the random walks determines the mass resolution: if 
we want to resolve single mergers of mass AMC <3C M, then we 
require (Acd)2 ^ | d ln a2/d ln M| (AMC/M)S. 

When we trace the history of a halo back in time, it sphts 
into branches of successively smaller mass, representing a 
hierarchy of mergers. The mass histories generated in the 
way just described correspond to choosing randomly among 

Figure 8. Random trajectories for the halo mass of a particle, 
generated using equation (2.29), for an n = - 2 power spectrum in 
an Q0 = 1 universe. All the trajectories are constrained to have the 
same halo mass M0 at time t{). The initial mass was chosen to be 
M0 = M*, and a constant step-size A(o = 0.02 was used. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 93

M
N

RA
S.

2 
62

. 
.6

2 
7L

 

Merger rates 639 

all the possible branches, with the probability of being on a 
particular branch being proportional to its mass. However, if 
we look at all the branches at a time tx < t0, then one of them 
will have a larger mass than any of the others. At times when 
the largest mass branch exceeds M0/2, we can define this 
branch to be the ‘main trunk’ of the merging tree. Moving 
down the merger tree, the main trunk grows continually by 
accreting smaller haloes, until it becomes the current halo at 
time t0. The main trunk is the ‘main parent’ of Section 2.5. As 
in Section 2.5, we define the ‘formation time’ tf of the current 
halo as the time when the main trunk first appeared, and its 
‘formation mass’, Mf > M0/2, as the mass of the main trunk at 
that time. 

We can generate mass histories for the main parent halo in 
the interval t{ < t< ¿0, Mf < M< M0 by modifying the pro- 
cedure described above with an extra assumption. Suppose 
we start on the main trunk. In a single step Aco, the halo mass 
falls from M to M - AM, which represents a splitting of the 
halo into precursors of mass M - AM and AM. If AM> M/2, 
then our trajectory has chosen the smaller precursor, which 
is a side branch off the main trunk. We should therefore 
discard this trajectory and choose another one. This is 
equivalent to choosing A5 from the distribution of equation 
(2.29), but with the constraint AS < (AS)max = S{M/2) - S(M), 
so that at each step we have AM < M/2, and AM is the mass 
of the smaller halo accreted on to the main parent halo. 
K(AS, Aco) is then normalized over the range 0<AS< 
(AS)max by dividing by erfc[Aö>/(2A5max)]. 

This procedure would be exact if there were an exact 
correspondence between the halo mass we estimate for a 
particle by filtering on various scales, and its actual halo 
mass, but, since this correspondence is only approximate, 
alternative procedures for generating main-trunk trajectories 
can give somewhat different results. For instance, instead of 
restricting the range in AS in each step, we could generate 
steps AS without any restriction, and then choose the new 
mass to be the larger of AM and M -AM. This gives results 
which are similar overall, but which differ in detail in their 
numerical values. 

3.2 Halo formation times revisited 

We thus generate ‘main parent’ trajectories S( a>), starting at 
(S0, coq) and ending when the trajectory crosses 
S = Sh = S(M0/2). The process of averaging over many such 
Monte Carlo merger histories provides an alternative 
estimate of the distribution of halo formation times to the 
analytical counting argument in Section 2.5. In carrying out 
the averaging, each trajectory is given a weight proportional 
to 1/Mf, corresponding to the assignment of equal weight to 
each main trunk. 

The distribution of formation epochs given by this method 
for power-law power spectra, P(k)<*kn, with n = —2, -1,0 
and 1, is shown in Fig. 9. This should be compared with Fig. 
7, which shows the corresponding distributions calculated 
using the analytical argument. As in Section 2.5, it is con- 
venient to use the scaled variables S and w defined in 
equation (2.27), in terms of which the random walks start at 
Í=0, <£ = 0 and end when the trajectory crosses S= 1. For a 
power-law power spectrum, A5max = 1 + (2a - 1 ) 5, and 
M/M0 = [l+(2a-l)5]_1/a, so that results are independent of 
the current mass M0 when one works in terms of S, œ and 

Figure 9. The distribution of ‘formation epochs’ wf of haloes with a 
given current mass, for power-law power spectra with n = -2 (solid 
curve), n = -1 (dotted), n = 0 (short-dashed) and n = l (long- 
dashed), based on Monte Carlo simulations of halo merger histories. 
cöf is related to tf by equation (2.31). For Q0 = 1, <yf °c zf. The curves 
are based on 106 random trajectories with mass resolution AM/ 
M0 = 10 4. Also shown (smooth short-dashed-long-dashed curve) 
is the analytical distribution for n = 0, copied from Fig. 7. 

M/M0. In fact, as the figures show, the results in terms of 
these scaled variables are also very similar for different 
values of n, and, by extension, for any power spectrum that 
is slowly varying. The reason for the similarity is that the 
random walks only depend on the form of o{M) in the range 
M0/2<M<M0, and this dependence is in lowest order 
absorbed into these variables. Recall that cof is related to the 
formation time by equation (2.31) or (2.32), so that, for 
Q0 = l, zf = >/2 - 1 (M0/M*)_a/2ct>f, and the ¿)f-distribution 
is just a linearly scaled version of the distribution of forma- 
tion redshifts, with a scaling factor that depends on mass and 
on the shape of the power spectrum. 

Comparing the analytical and Monte Carlo results in Figs 
7 and 9, we see that, in both cases, the ¿)f-distributions rise 
roughly linearly at small d)i and decline exponentially at large 
a>f, and are insensitive to the value of n. However, they differ 
somewhat in detail. For n = 0, the 10th, 50th and 90th 
percentiles of cof for the analytical distribution are 0.35, 0.97 
and 1.89 respectively, while for the numerical distribution 
they are 0.54, 1.34 and 2.38: ~ 40 per cent larger. For other 
values of n, the comparison is similar. This provides some 
indication of the likely errors in our approach. Note that, by 
construction, the probability distributions generated by the 
Monte Carlo method are necessarily positive, unlike those 
generated by the analytical method. 

As a test, we also computed the distribution of mass- 
halving times th that one obtains from Monte Carlo mass 
trajectories without the constraint AM < M/2 at each step, i.e. 
not always following the main parent. These Monte Carlo 
results were identical to the analytical results from equation 
(2.23) (also shown in Fig. 7), as they should be. 
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Whichever method one uses, the physical interpretation of 
these results is that, of the haloes existing at a given time, 
those of lower masses on average formed earlier than those 
of high masses, if « > - 3, with the typical formation redshift 
scaling as zi

cc:o{M) for Q0 = l. This is analogous to the 
assumption, made in many simple studies of galaxy forma- 
tion, that haloes of mass M typically collapse at redshift 
1+zÂ a(M)/ôcr. In the latter case, however, one does not 
apply the constraint that the halo still exists at the present 
day. 

We have also calculated the distribution of halo formation 
times predicted for a CDM power spectrum with Q0 = l, 
H0 = 50 km s"1 Mpc-1 and a8 = 0.5. The results are shown 
in Fig. 10, this time in terms of physical variables. The 
median formation times for M0/{h~l Mo) = (106, 109, 1012, 
1015) are if/i0 = (0.17, 0.22, 0.35, 0.71). Again, we see that 
low-mass haloes form significantly earlier than high-mass 
haloes, an effect which is likely to be important in models of 
galaxy formation. 

3.3 Other results 

Using the same Monte Carlo trajectories as for the formation 
times, with the same weighting, we can also compute the 
distribution of formation masses Mf, and the distribution of 
masses AM of the smaller haloes accreted on to the main 
parent since its mass exceeded Mf. The results for power-law 
power spectra are shown in Figs 11 and 12. Fig. 11 shows 
that most haloes have formation masses Mf only slightly 
above the minimum value M0/2. For n = 0, the 10th, 50th 
and 90th percentiles of the distribution are Mf/M0 = (0.50, 
0.53, 0.67), and the results are very similar for other values 

Figure 10. The distribution of formation times ¿f of haloes in a 
CDM universe with Q0=l, H0=50 km s"1 Mpc-1 and a8 = 0.5. 
The solid, dotted, short-dashed and long-dashed curves are for 
present halo masses M0/(/i_1 Mo) = (106, 109, 1012, 1015) respec- 
tively. The curves are based on 106 random trajectories with mass 
resolution AM/MQ = 10 ~ 4. 

of n. Most of the results are not therefore very sensitive to 
the 1/Mf weighting of the trajectories. The fraction of mass 
accreted in haloes of various masses AM since time tu shown 
in Fig. 12 (where fM(<AM) is the cumulative mass fraction 
accreted in haloes with masses < AM), shows the expected 

Figure 11. The distribution of ‘formation masses’ Mf of haloes with 
a given current mass M0, for power-law power spectra with n = -2 
(solid curve), n = -1 (dotted), n = 0 (short-dashed) and « = 1 (long- 
dashed), based on Monte Carlo simulations of halo merger histories. 
The parameters are the same as in Fig. 9. 

Figure 12. The fraction of mass accreted in haloes of mass AM by 
haloes of given current mass M0, since time if, for power-law power 
spectra with n = -2 (solid curve), n= (dotted), n = 0 (short- 
dashed) and n = \ (long-dashed). Curves are obtained from Monte 
Carlo simulations of halo merger histories, with the parameters the 
same as in Fig. 9. 
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behaviour d/M/d In AM<*(AM)1/2 at low masses, peaking at 
AM/Mo«!/^, and falling to zero at AM/M0 = l/2. The 
(10th, 50th, 90th) percentiles for the mass accretion, for 
n = 0, are AM/M0 = (3.9 x 10"3, 8.1 x 10"2, 3.2 x 10"1). 

One can generalize the procedure described above to 
generate a complete ‘merger tree’, describing the merger 
histories of all of the small haloes which are the building 
blocks for a given current halo. For each step back in time, a 
branch of this tree forks into two smaller branches. To follow 
the history of the main parent when M> M0/2, we chose the 
branch with the larger mass at each fork. We can, however, 
generate a history for the branch with the smaller mass, by 
starting a trajectory at (AM, t), using the same equation 
(2.29) to generate steps, and so on, as this branch in turn 
splits into smaller branches. This procedure is only 
approximate, as it ignores correlations between different 
branches, which are likely to exist at some level. The total 
number of branches is infinite, but if one only follows 
branches down to some minimum halo mass Mmin then the 
number becomes finite. This procedure is similar to that in 
the ‘block model’ described by Cole & Kaiser (1988) and 
Cole (1989, 1991), but has the advantage that, in the block 
model, each step corresponds to a factor of 2 increase in halo 
mass, while for the procedure described here the mass 
resolution can be made as small as one pleases, subject to 
limitations of computer time. These merger trees can be used 
to study the evolution of the baryonic components of 
galaxies through the combined effects of cooling of the gas 
and merging of the haloes; this has already been done by 
Cole (1991) using the block model. We plan to return to this 
avenue of study in a future paper. 

4 APPLICATIONS 

4.1 Merging galaxy clusters 

We can apply our results on halo merging directly to groups 
and clusters of galaxies, insofar as the galaxies or X-ray 
emitting intergalactic gas trace the distribution of dark 
matter in these systems. Here we will attempt to derive a 
constraint on the density parameter Q0 by calculating the 
fraction of massive haloes that have undergone recent 
mergers and comparing this number to the fraction of rich 
clusters that observations suggest have recently formed by 
merging. 

The observational evidence that suggests that a rich 
cluster has recently merged with another system is the 
presence of substructure in the density distribution. Such 
substructure is expected to be erased by violent relaxation on 
a time-scale of order the cluster’s dynamical time and so its 
presence indicates that the merger occurred very recently. In 
studies of rich clusters, a significant fraction of clusters have 
been found to exhibit low-contrast substructure. Geller & 
Beers (1982) found that about 40 per cent of rich clusters 
have more than 1 maximum in their galactic surface density 
distribution. Dressier & Shectman (1988) concluded that 
30-40 per cent of clusters exhibit significant substructure 
when analysed using a combination of position and velocity 
information. More recently, Forman & Jones (1990) and 
Jones & Forman (1992) have classified a sample of 208 
X-ray bright clusters according to the structure of their 
Einstein X-ray surface brightness maps. About 20 per cent of 
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their sample show ‘double’ or ‘complex’ structure, and we 
will adopt this number as a fairly conservative lower bound 
on the fraction of clusters that have recently formed by 
merging. The time interval during which these mergers 
occurred should be roughly the past dynamical time, but is 
hard to estimate accurately. In order to display this un- 
certainty, we have chosen simply to adopt the values of 0.2 ¿0 

and 0.51{), where t{) is the current age of the Universe, as esti- 
mates of the relaxation time required for the substructure to 
be erased. For comparison, for a truncated isothermal sphere 
with a mean density given by equation (A15), the orbital 
period of a particle on a circular orbit at the half-mass radius 
is 0.5 ¿o, while the time for 1 cycle in radius for a radial orbit 
with apocentre at the half-mass radius is about 0.2 ¿0. 

We now make use of the distribution of lifetimes (equation 
2.26) that we estimated analytically, in order to predict, as a 
function of the density parameter Q0, the fraction of rich 
clusters that have formed recently by merging. By requiring 
this fraction to be at least 20 per cent we will set a lower limit 
on Q0. Before we can employ the formula (2.26) to compare 
models with different Q0, we must decide how to set the 
amplitude of the density fluctuations in each model. We have 
chosen to do this by using the datum that the observed 
number density of rich clusters (richness class R>1) is 
/irich~6.0x 10~6 h3 Mpc-3 (e.g. Batuski et al. 1989), and 
also that their typical velocity dispersion is approximately 
760 km s"1 (Struble & Rood 1987). Taking this one- 
dimensional velocity dispersion to imply a circular velocity 
Vc = {GM/r)1/2 = j2x760 km s-1 and using the halo over- 
density given by the spherical collapse model detailed in 
Appendix A, we deduce a cluster mass of Mrich = 3.1 x 1014 

/*"1 M0 for Q0 = 1, increasing to Mrich = 4.2 x 1014 h~1 M0 

for Q0 = 0.1. We then normalize the power spectrum of 
density fluctuations by requiring that the number density 
predicted by equation (2.11), 

00 dn 
— (M,i0)dM, 
dM 

(4.1) 

be equal to the observed number density. For low values of 
the normalization parameter a8 (the rms fluctuation of the 
mass contained within spheres of radius 8 h~l Mpc), nrich is 
very small, because very few haloes of mass greater than 
Mrich exist. As one increases a8, more haloes with M> Mrich 

form and nTich increases; then as cr8 is increased still further 
these haloes merge together and nrich begins to decrease. 
Here we adopt the lower value of a8 for which núch equals the 
observed abundance. For the CDM power spectrum normal- 
ized in this way we find o8 = 0.5 for Q0 = 1, rising to cr8 = 2.2 
for Q0 = 0.1. It is interesting to note that for sufficiently low 
Q0 the maximum value nñch as one varies a8 will be less than 
the observed cluster abundance. In fact, for both the CDM 
and n = -2 spectra we find that the correct cluster 
abundance cannot be reproduced for Q 0 ^ 0.1. 

We can now use equation (2.26) to estimate the fraction, 
Fs, of these clusters that formed, i.e. assembled at least half of 
their mass, in the past 0.2 ¿0 and 0.5 ¿0 yr. It is this fraction 
which we expect to exhibit measurable substructure. Figs 
13(a) and (b) show this prediction for CDM and for an 
n = -2 spectrum respectively. On the mass scale of rich 
clusters, the CDM spectrum of fluctuations has an effective 
slope of n=-l.l for Q0 = 1, falling to n= -1.8 for 
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Figure 13. In both (a) and (b), the solid and broken curves indicate 
the fraction of rich clusters that have accreted more than 50 per 
cent of their mass in the past 0.5 tQ and 0.2 i0 yr respectively. Here t(] 
is the present age of the Universe. For the purposes of these figures, 
a rich cluster has been defined to be any halo with a one- 
dimensional velocity dispersion greater than 760 km s1. In (a) the 
CDM spectrum of density fluctuations appropriate for //0 = 50 km 
s"1 Mpc-1 and for each choice of Q0 was adopted, while in (b) an 
n = - 2 power spectrum was used. The amplitude of the fluctuations 
is set so that for each value of Q0 the number density of rich clusters 
equals 6 x 10~6 h3 Mpc-3. The horizontal line at Fs = 20 per cent 
indicates an estimate of the fraction of rich clusters that are 
observed to have major substructure (see text). If the presence of 
substructure in this 20 per cent of clusters implies that they are 
younger than 0.2¿0, then one concludes that Q0 is greater than 0.6 
for the CDM spectrum or 0.4 for the « = - 2 spectrum. 

Q0 = 0.1, and thus it is to be expected that the « = - 2 model 
will evolve more rapidly than the CDM model and conse- 
quently have a larger fraction of young clusters. However, 
this dependence is relatively weak, and for the shorter 
estimate of the relaxation time we deduce that the limits on 
the density parameter are Q0 ^ 0.6 and 0.4 for the CDM and 
n — — 2 models respectively. The longer estimate of the 
relaxation time results in the much weaker limit Q0 ^ 0.1 for 
both models. If we had used the Monte Carlo results of 
Section 3 for the distribution of formation times, we would 
have obtained somewhat more stringent (i.e. larger) lower 
bands on Q0. Clearly, the limit that one infers on Q0 depends 

crucially on the time-scale over which substructure persists. 
Thus, before this calculation can be used to determine a 
robust estimate of Q0, 7V-body simulations will have to be 
used to investigate how long merger-induced substructure 
persists. 

These limits are comparable to the limit Q() ~ 0.5 deduced 
from the same data by Richstone, Loeb & Turner (1992). 
However, their analysis ignored the mass distribution of the 
clusters and the influence of the spectral index on the rate at 
which the cluster population evolves. Their analysis also 
differed from ours in adopting a larger mass for a typical rich 
cluster of 1.0 x 1015 h~1 M0, and in assuming that substruc- 
ture would be erased in a relaxation time of only 0.1///0. If 
we adopt these more extreme numbers, then even in a flat 
Q0 = 1 universe only 11 per cent of rich clusters would be 
expected to exhibit substructure. 

4.2 Accretion of baryonic cores in dark haloes, and 
merging of luminous galaxies 

We have so far been considering the merging of dark matter 
haloes. This does not, however, directly tell us about the 
merging of visible galaxies, which consist of cores of baryonic 
material (stars + gas) sitting within these dark haloes. In the 
standard picture (White & Rees 1978), these cores form 
when gas is able to cool within a dark halo and condense to 
the centre. However, when haloes merge, the baryonic cores 
they contain, being more compact, may avoid merging with 
each other, and end up orbiting within the new combined 
halo, so that a halo formed by many mergers may contain 
many distinct baryonic cores. For baryonic cores that are 
composed mainly of stars, the results on 7V-body simulations 
of mergers between spherical galaxies without haloes 
summarized by Aarseth & Fall (1980) indicate that two cores 
will merge at the pericentre of their relative orbit only if their 
separation and relative velocity there satisfy Rperi:£R* and 
F^eri ^ F*, where R* and F* are the characteristic radius and 
internal velocity of the stellar cores. The conditions for the 
merging of baryonic cores that are mainly gaseous have not 
been investigated, but presumably will also require that the 
cores overlap at pericentre. In either case, if the orbits of the 
cores within the combined halo do not initially satisfy these 
conditions, then merging of the cores will only occur after 
dynamical friction or gas-dynamical drag has eroded the 
orbits and brought the cores close together. This process 
may be slow compared to the rate at which haloes are built 
up by hierarchical merging. This appears to be the case in 
clusters of galaxies, where many luminous galaxies orbit 
within a single cluster halo. 

A full calculation of the rate of merging of luminous 
galaxies would require the following of the hierarchy of halo 
merging through several stages, starting with the haloes in 
which the baryons originally condensed into cores. This is 
quite complicated, and is postponed to a future paper. Here 
we present a simpler calculation, of a large halo accreting 
smaller haloes, in which each small halo of mass AM is 
assumed to contain all of its baryons in a single core of mass 
AMb =/b AM. We use the halo mass trajectories described in 
Section 3 to follow the merger history of a halo from the time 
¿f when it had half or more of its current mass M0, up to the 
present time ¿0. After the merging of each of the accreted 
haloes with the main halo, the baryonic core which the 
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accreted halo contained is assumed to orbit inside the new 
combined halo, with dynamical friction against the dark 
matter background gradually dragging it into the centre. This 
calculation actually gives an upper limit to the accretion of 
baryonic cores by a halo, since, if the baryons in the accreted 
halo are distributed in several cores rather than one, the 
dynamical friction time for each core will be larger. 

To compute the dynamical friction rate, we assume that 
the halo can be modelled as a singular isothermal sphere with 
radius RH and circular velocity Vc. We assume that the main 
halo of mass M formed by merging with a satellite of mass 
AM at time ¿mg has a mean density 3jt/( G^g), as given by the 
spherical collapse model described in Appendix A, so that 
Rh^K tmgl(2n)- The dynamical friction time is then given 
by equation (B4), derived in Appendix B, with satelhte mass 
Ms=fbAM: 

0.855(2jt)/bln A (eäKT2), (4.2) 

so that the baryonic core sinks to the centre of the halo at 
time ¿df “ ¿mg + ^df • (The effect of subsequent mergers on the 
halo structure is ignored in this estimate.) In the above 
formula, we take In A = ln[M/(/bAM)], rci is the radius of the 
circular orbit with the same energy as the initial satelhte 
orbit, and the quantity 0<e< 1 measures the eccentricity of 
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this orbit, e is defined as the ratio of the angular momentum 
to that for a circular orbit of the same energy, and is equal to 
1 for a circular orbit and 0 for a radial orlpit. Equation (4.2) 
provides a good fit to the eccentricity dependence over the 
range 10“2^ 6^1. We see that eccentric orbits decay much 
faster than circular ones. 

The appropriate values to use for rci and e are somewhat 
uncertain, although they could be estimated from A-body 
simulations. We will assume rjR^ = 1 for the initial radius, 
i.e. assume that the satelhte core starts at the edge of the main 
halo, and consider two cases for the initial eccentricity: 6 = 1, 
corresponding to circular orbits, and e = 0.2, corresponding 
to very elongated orbits with pericentre-to-apocentre 
distance ratio rmin/rmax = 0.05. For a small halo falling into a 
much larger one, the assumption that the satelhte starts near 
the edge seems a reasonable one. For mergers of comparable- 
mass objects, the dynamical friction time becomes com- 
parable to the orbital time, so there may be no clear separa- 
tion between the halo merging and dynamical friction 
processes. 

With the above assumptions, we can compute the current 
average rate at which baryonic lumps of mass AMb are being 
accreted to the centres of haloes of mass M0 by averaging 
over a small time interval around t(). The results, for a CDM 
spectrum with Q() = 1, cr8 = 0.5, /* = 0.5, and a baryon 
fraction /b = 0.1, are shown in Fig. 14 for 6 = (1, 0.2) and 
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Figure 14. The present rate of accrehon of baryonic cores to the centres of haloes by dynamical friction, for an Q0 = 1 CDM universe with 
a8 = 0.5, h = 0.5 and fh = 0.1. The solid lines show the accretion rates of cores of mass AMb obtained from Monte Carlo simulations with 105 

trajectories, based on the assumption that there is only 1 baryonic core in each accreted halo. The dashed curves show the rate of accretion of 
haloes of mass AM=AMb//b derived from equation (2.18). From left to right, the panels show results for M0 = 109, 1012, 1015, with 
6 = 1 (circular orbits) for the top row and 6 = 0.2 (eccentric orbits) in the bottom row. 
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M0/h~l Mo=(109, 1012, 1015). Also shown in the same 
plots, by a dashed line, is the current halo merger rate at the 
corresponding mass, calculated from equation (2.18). There 
are several features to be noted. The first is that the accretion 
rates for baryonic cores all cut off above a mass AMb = 
(1/2)/bM0. This is a simple consequence of the fact that the 
baryonic cores currently being accreted are associated with 
past halo mergers, and by construction these have AM< 
(1/2)M0. The second point is that the accretion rates for the 
cores all fall to zero at low masses, even though the corre- 
sponding halo merger rates continue to rise [as (AM)-1/2]. 
This is because the dynamical friction time scales as 
7^f oc(AM/M)-1, which for low masses AM becomes larger 
than the time for which the halo has existed. Thus dynamical 
friction favours accretion of higher mass cores. The third 
point is that the rate of accretion of baryonic cores is a larger 
fraction of the halo merger rate for low halo mass M0 and 
low values of e. Recalling that lower mass haloes on average 
formed earlier than high-mass haloes (e.g. see Fig. 10), we see 
that this results from the dynamical friction time-scale Tdf 

being a smaller fraction of the time t0 - tf for which the halo 
has existed. When this ratio becomes sufficiently small, the 
time lag produced by dynamical friction between merging of 
the haloes and accretion of the baryonic core becomes un- 
important, so the accretion rate of cores at AMb becomes 
equal to the halo merger rate at AM = AMb//b, over some 
range of AM, as can be seen in the plot for M0 = 109 h~l M0, 
e = 0.2. In fact, since in our calculation the largest possible 
halo mass which can be accreted in a single merger is AM/ 
M< 1/2, haloes that form too late do not have time to accrete 
any cores by dynamical friction; using equation (4.2), the 
condition tmg + Tdf < t0 translates to tf < tmg < 0.4510 for e = 1 
and tf<tmg<OJ4t0 for 6 = 0.2. The typical AM/M of 
accreted haloes is well below the maximum value of 1 /2, and 
these mergers can happen at any time between tf and t0, so 
that most of the baryonic cores may not be accreted even if 
the above conditions on tf are met. This explains why the 
accretion rates for cores are so small for M0 = 1015 h~1MQ 

haloes in Fig. 14. 
We cannot reach any firm conclusions about the merging 

of luminous galaxies from the above calculation, because we 
do not know to what degree it is true that the accreted haloes 
and the main halo contain all their baryons in single cores 
when they merge. If we none the less assume this to be the 
case, and identify typical luminous galaxies with haloes of 
mass M0 ~ 1012 h~l M0, then, for circular starting orbits, we 
infer from Fig. 14 a merger rate ~ 0.2 per In AMb per In t 
between comparable-mass galaxies, less by a factor of ~ 3 
than the corresponding halo merger rate. This is similar to 
the merger rate - 0.1 per Hubble time estimated by Toomre 
(1977). On the other hand, for eccentric orbits, the inferred 
merger rate for luminous galaxies would be similar to that for 
the corresponding haloes, and would be rather high com- 
pared to this observational estimate. 

Recently, Navarro & White (in preparation) have 
performed a series of full TV-body/hydrodynamical simula- 
tions of the hierarchical formation of individual galaxies. The 
calculation we have performed here is particularly relevant 
to their simulations, as the dynamic range of their calculation 
means they are unable to resolve substructure in the infalling 
baryonic core and so, like us, are forced to assume that in- 
falling haloes have only one core. We note that our assump- 

Figure 15. The fraction of baryons accreted in cores by dynamical 
friction since halo formation, for haloes of a given current mass M0. 
The distributions are computed for the same model as in Fig. 14. 
The solid, dotted, short-dashed and long-dashed lines are for 
M0//i-1 M0 =(106,109,1012,1015) respectively. The left panel is for 
6 = 1, and the right for 6 = 0.2. Note that the probability distribu- 
tions have a delta-function contribution at Fbacc = 0 which is not 
shown in the figures. 

tions about the range of initial angular momenta and the fates 
of the infalling satellites are in quahtative agreement with 
their results. Navarro & White find that the merging of the 
dark matter haloes precedes the merging of baryonic cores 
by anything from 1 to 10 dynamical times, and that the factor 
that determines how many orbits an infalling satellite makes 
before spiralling in and merging is its initial orbital angular 
momentum. 

Another quantity that we can compute from the dynami- 
cal friction calculation is the fraction Fbacc of all the baryons 
in the final halo of mass M0 that have been accreted to the 
centre in baryonic cores since the halo formation time. The 
results are shown in Fig. 15, for the same parameters as in 
Fig. 14, for current masses M0/h~l Mo=(106, 109, 1012, 
1015). For the cases where the amount of accretion is small, 
the mean value of Fbacc obtained from Fig. 15 is significantly 
less than that which would be obtained from Fig. 14 by 
integrating over mass and multiplying by t, because the 
accretion rate of cores is increasing with time at t0. The 
results for the fraction of baryons accreted are interesting 
because of the problem of the survival of thin galactic discs. 
If a spiral galaxy accretes a satellite galaxy, then as the 
satellite sinks into the disc it will cause heating of the stars, 
causing the disc to thicken. Toth & Ostriker (1992) calcu- 
lated that a typical spiral disc cannot have accreted more 
than 10 per cent of its mass in small satellites since the time 
when most of the stars formed, without making discs thicker 
than is observed. They argued that such a low accretion 
fraction for most galaxies is a problem for Q0 = l cos" 
mologies in which structure forms by hierarchical clustering. 
Our results for haloes of mass M0 ~ 1012 h~l M0 are that, for 
6 = 1, 96 per cent will have accreted no baryonic cores at all 
since their formation times, while for 6 = 0.2 this fraction is 
reduced to 37 per cent. While it is not clear that this result 
can be carried over directly to accretion of satellites by spiral 
galaxy discs (for the same reasons as given above), it does 
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suggest that the thinness of discs may not be a problem, 
provided that the orbits of accreted satellites are not too 
eccentric. 

5 COMPARISON WITH PREVIOUS WORK 

Carlberg (1990a) derived analytical expressions for the 
merger rates both of dark haloes and of the luminous 
galaxies within them. Our results do not agree with his. 
Consider first the halo merger rate, for which our result is 
formula (2.18), giving the rate as a function of the masses, M 
and AM, of both haloes involved. Carlberg considered two 
different ways to estimate a net merger rate for haloes of 
roughly equal mass M, based on the Press-Schechter mass 
function. His equation (3) is simply the rate of change of the 
number density of haloes of mass M. Since the total number 
of haloes of mass M can be both depleted by mergers 
producing more massive haloes and replenished by mergers 
of lower mass haloes, this rate cannot be equated directly 
with the merger rate at a particular mass. In fact, it yields a 
negative rate in the regime where the number of haloes of 
mass Mis increasing with time. This undesirable property led 
Carlberg to adopt the rate of change of his equation (4) as a 
better expression for the merger rate. The assumption he 
made to derive his formula was that any increase in the 
fraction of mass locked up in haloes of mass greater than M 
is the result of mergers involving haloes in the mass range 
M/2 to M. This assumption need not be satisfied. It is quite 
possible for this mass fraction to increase due to objects of 
mass greater than M accreting low-mass haloes with masses 
much less than M. Typically, the mass function of haloes is 
broad, which can result in a large fraction of this mass 
increase being due to the accretion of such low-mass haloes. 
Thus mergers between haloes with masses outside the range 
M/2 to Mean contribute to an increase in the mass fraction 
in haloes of mass greater than M. This process would then 
cause Carlberg’s expression to overestimate the true merger 
rate. 

We will now compare Carlberg’s merger rate directly with 
the merger rate we have calculated. Carlberg calculated a 
rate at which mergers are occurring between haloes in the 
mass range M/2 to M, and then divided by an expression for 
the number density of haloes in this same mass range, to get a 
rate per halo. Carlberg’s result can be rewritten as a rate per 
halo per Hubble time, 

Rmg(M/2<M'<M,t) 

 1 dnmf,(M/2 <M' <M) 
nH(M/2 KM' <M, i) ( dt 

(5.1) 

= d In ôc 

dint 

This is equivalent to equation (6) of Carlberg (1990a), when 
we omit his factor representing the probability for the 
luminous components within a halo to merge, except that we 
have generalized his expression to Q0^l. Thus Carlberg 
predicted a merger rate per halo which depends on mass 
only through the spectral index of the density fluctuations. 

d In a 
d ln M 

Merger rates 645 

We can calculate the quantity Rmg defined in equation (5.1) 
directly using our formula (2.18) for the merger rate and 
equation (2.11) for the number of haloes as a function of 
mass. The expression we require is 

RmgiM/2 <M' <M, t) 

1 
*yw, =m 

JjW, =M/2 

dn 

dMj 
(Mt, t) dMj 

M\ =M 

M, -M/2 

dn 
dMj 

(Mut) 

t- 
d2p 

AM = M/2 d In AMdt 
( Mj - Mj + AM I i) dMj. 

AM 

(5.2) 

The integrals over AM and Ml are both over the range M/2 
to M, so that we count only mergers between pairs of haloes 
in this mass range, and the factor of 1/2 is included so that 
we count the number of pairs of merging haloes, as does 
Carlberg. In Fig. 16, we compare these rates for the cases of 
Q0 = 1 and 0.2 and scale-free initial conditions with n= - 2 
and - 1. Note that our equation (2.18) gives the merger rate 
for all values of AM, while Carlberg assumed that all mergers 
have M/2 < AM< M. We see from Fig. 16 that, for objects of 
a fixed mass M, the merger rate is low at early times, and 
then rises as these objects become more numerous. The rate 
then slowly declines again as the mass of the objects becomes 
small compared to the growing characteristic mass M*(¿). 
Carlberg’s expression for the merger rate is too large by a 
factor of 10 or more, even compared to the peak value given 
by our formula. It overestimates the merger rate by an even 
larger factor at high redshift for fixed M, and for halo masses 
large compared to M*(i). 

Comparison of the merger rates for different values of Q0 

in Fig. 16 shows that the current merger rate is lower for the 
Q0 = 0.2 model than for the Q0 = 1 model, by about a factor 
of 2, when both are normalized to have the same value of M* 
at z = 0. The shape of the redshift dependence is different for 
the two values of Q0, because the past evolution of the 
characteristic mass M*(¿) is different. Carlberg proposed 
using the slope of the dependence of merger rate on redshift 
in the range 0 < z < 0.5 as a means of estimating both Q0 

(Carlberg 1990b) and the cosmological constant A0 

(Carlberg 1991). Carlberg was considering the merging of 
luminous galaxies for this test. We would only remark that, 
for merging of the dark haloes, the slope of the merger rate 
near z = 0 does not appear to be especially sensitive to Q0, 
unless one is considering masses M M* ( ¿0 ). 

Carlberg also computed an expression for the merger rate 
of luminous galaxies, by multiplying the halo merger rate by a 
factor Pmg representing the probability for the luminous cores 
to have a relative velocity small enough to allow merging. He 
implicitly assumed that the cores start out on orbits that lead 
them to collide within 1 orbit (/?peri ^ Æ*), which need not be 
the case. Thus, in Carlberg’s picture, merging of the cores 
occurs either immediately after merging of the haloes, or not 
at all. Carlberg did not allow for the possibility that orbital 
decay by dynamical friction may lead to merging of the cores 
after some time delay. Further, in computing Pmg, Carlberg 
equated the distribution of pericentric relative velocities of 
cores to the relative velocity distribution averaged over all 
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Merger Rote Merger Rote 

Figure 16. The fractional merger rate Rmg as a function of redshift, z. Rmg is defined as the number of mergers between haloes in the mass 
range M/2 to Mper Hubble time at the specified redshift, relative to the number density of haloes in the same mass range. The solid lines show 
results for Q0 = 1, and dotted lines for Q0 = 0.2, for scale-free initial conditions with spectral index n= - 2 in the left panel and « = -1 in the 
right panel. The two sets of three curves at the bottom of each figure are our predictions, for the masses indicated, given by integrating equation 
(2.18) and averaging over haloes in the mass range M/2 to M. The merger rates that peak at the highest redshift correspond to the lowest mass 
haloes. The masses are given in units of M*(i = i0), the characteristic mass at the present epoch. The pairs of curves at the top of each figure 
show the rates given by the formula of Carlberg (1990a), which do not depend on mass for scale-free power spectra. 

particles of a certain separation ( ~ 100 kpc). This neglects 
the fact that pericentric velocities will be different in haloes 
of different masses. The typical relative velocity that 
Garlberg inferred is then quite large compared to the internal 
velocities of galaxies, leading to a small Pmg, and a large 
suppression of the rate of merging of luminous galaxies 
relative to that of their haloes. This tends to compensate for 
his overestimate of the halo merger rate. Carlberg’s calcula- 
tion also takes no account of the fact that two haloes that 
merge may each contain multiple luminous galaxies. 

6 CONCLUSIONS 

We have derived an analytical expression for the merger rate 
of virialized haloes (equation 2.18), which is applicable to 
any hierarchical model in which structure grows via gravi- 
tational instability. This formula is based on the reformulated 
and extended Press-Schechter theory presented by Bond et 
al. (1991), and quantifies how the merger rate depends on 
halo mass, epoch, the initial spectrum of density fluctuations 
and on the density parameter Q0. In all cases, mergers with 
very tiny haloes dominate in number, but the increase in 
mass by merging is dominated by infall into larger haloes 
when the halo mass is small, and by accretion of smaller 
haloes when the halo mass is large. We have also derived 
expressions which give estimates of the formation and 
survival times of haloes, these being defined respectively as 
the time when half of the halo’s mass was assembled, and the 
time when the halo will double in mass by merging. These 
quantities are of great importance when constructing realistic 
models of galaxy formation, as they define the time-span 

over which gas bound to the halo is able to cool, condense 
and perhaps be converted into stars. On average, the low- 
mass haloes existing at a given time are found to have formed 
earlier than the high-mass haloes. High-mass haloes typically 
survive for less than a few times the age of the Universe at 
that time, while low-mass haloes cover a wider range of 
survival times, up to quite high values. These results reflect 
the fact that, at any time, the higher mass haloes are tending 
to be built up by merging, while the low-mass haloes are 
disappearing by merging into these larger systems. 

The validity of these formulae relies on equating of the 
mass of the halo within which a particle is found with the 
mass of the largest spherical region centred on the particle 
whose mean linear overdensity, calculated using the window 
function (2.14), is greater than the threshold value <5C. The 
correspondence between these two masses is far from per- 
fect, as is illustrated in figs 6 and 7 of BCEK. However, at 
least over the limited range of halo masses that has been 
probed in TV-body simulations, the formulae for the mass 
function (2.11) and the conditional distribution (2.15) have 
been found to agree remarkably well with the results of 
simulations. We therefore expect similar agreement with 
simulations for the formulae derived here, at least for masses 
comparable to or greater than M*. In our next paper, we will 
make a more detailed comparison of these results with N- 
body simulations. The particular choice of window function 
we make is motivated by analytical convenience - with sharp 
fc-space filtering, the trajectory of mean overdensity at a 
point as a function of filtering mass is a Brownian random 
walk, resulting in analytically tractable expressions for the 
mass function, merger rates, and other properties. 
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We have also presented a Monte Carlo method, based on 
our expression for the merger rate, that enables representa- 
tive merger histories to be generated for haloes of varying 
mass. Being able to construct a complete description of the 
formation path of a given halo is often the most direct and 
simple way to address complicated problems. For instance, 
given a set of rules for star formation, one could use this 
method to determine where and when the stars form, and 
where they end up. We expect this technique to be of great 
value when attempting to model galaxy formation, and in 
studying the evolution of the galaxy luminosity function. In 
this paper, we have employed this method to obtain an 
alternative estimate of the distribution of halo formation 
times, which is in reasonable agreement with that found 
analytically, and of the distribution of the masses of the 
haloes accreted since halo formation. 

We have applied our formalism to the merging of galaxy 
clusters. The large fraction of clusters observed to have 
substructure indicates recent formation by merging. This 
seems to require a fairly high-density Universe, with 
Q0 ^ 0.5, if this substructure lasts for less than 0.2/0, with t{) 

being the present age of the Universe, but only requires 
Q0 ^ 0.1 if the substructure lasts as long as 0.510. 

Calculation of the merger rate of luminous galaxies is a 
non-trivial extension of the calculation of the merger rate of 
their dark haloes. When the haloes merge, the baryonic cores 
comprising the luminous galaxies are left on orbits in the new 
merged halo, and can merge with each other only if their 
separations and relative velocities are reduced to small 
values by dynamical friction. A completely self-consistent 
calculation would require the generation of the complete 
hierarchy of mergers leading to a given present-day halo, and 
the application of the dynamical friction criterion at each 
stage to see which cores merge. In this paper, we have carried 
out only a more limited, exploratory calculation. We used the 
Monte Carlo method to generate histories of the accretion of 
small haloes, each assumed to contain a single baryonic core, 
by a large halo, and used an estimate of the time-scale for 
dynamical friction to erode the orbits of the baryonic cores 
to estimate the rate of accretion of baryonic lumps on to a 
central galaxy. This calculation indicates that, if following 
halo merging the cores start off on nearly circular orbits near 
the edge of the new combined halo, dynamical friction can 
slow the baryonic accretion rate down to a small fraction of 
the halo merger rate, at least for higher halo masses. The 
accretion of smaller baryonic cores is also effectively 
suppressed. However, if the initial orbits of the baryonic 
cores are very eccentric, then dynamical friction acts faster, 
and the rate of accretion of baryonic cores is closer to the 
halo merger rate. For halo masses around 1012 M0, with a 
CDM power spectrum with Qo = l> and nearly circular 
orbits, this calculation suggests that a central galaxy will in 
most cases accrete very little mass in baryonic cores. This 
may resolve the problem raised by Toth & Ostriker ( 1992) of 
how the discs of spiral galaxies remain thin, despite merging 
of haloes. We will make a more detailed study of the merging 
of luminous galaxies in a future paper. 
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APPENDIX A: CRITICAL OVERDENSITY FOR 
COLLAPSE FOR Q0<1 

In order to calculate the critical linear theory overdensity 
ócUcoii) corresponding to the time at which a region 
collapses, let us consider evolution of a uniformly over- 
dense spherical region embedded in an open 
Friedman-Robertson-Walker universe. 

In an open universe, the radius a of an unperturbed 
spherical region can be shown to evolve with time according 
to the pair of parametric equations 

a =A(cosh ^ - 1), ¿ = 5(sinh rj- yj) (Al) 
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648 C. Lacey and S. Cole 

(see e.g. Peebles 1980, section 19), where the constants A 
and B are related by 

v43 = (4jt/3) Gp0alB2. (A2) 

The values of the constants A and B are determined by the 
present value of the Hubble constant H0 = (ö/a)0, the density 
parameter Q0 = 8jcGp0/(3//§), and by choosing the present 
value of the radius a(). Together these constraints imply 

»7o = cosh-1 (2/£20 ~ 1 )> 1 (A3) 

ß=l/2//0-1Q0(l-Q0)-3/2. 

The expansion and eventual recollapse of a perturbed over- 
dense region containing the same mass M as the region of the 
background universe with which it is being compared are 
described by the parametric equations 

ap=Ap(l-cos 6), t = Bp{6 — sin 0), (A4) 

where the constants A p and Bp are related to A and B by the 
constraint 

A3 A3 

= fa = CM (A5) 

(For a general spherical perturbation, t in equation A4 is 
replaced by t~Tp\ the choice 7¡, = 0 corresponds to the 
selection of a pure growing-mode perturbation.) As time 
progresses, the perturbed region expands less rapidly than 
the background universe, and a density contrast given by 

l + ó=fl3/fl3 (A6) 

develops, where ô = Ap/p = {pp - p)/p. The region collapses 
to a singularity, ap = 0, when 6 = 2k, which by (A4) occurs at 

icoii = 2ji5p. (A7) 

We must now match the solutions for the perturbed region 
and the background by considering their early evolution in 
the limit oft],0-+ 0. In this limit, equations (A1 ) and (A4) can 
be written as the Taylor expansions 

a.A¡ú¿+...l 
2! 4! ' 

t=B\nl+nl+"' 
13! 5! 

(A8) 

and 

. 02 04 . 
it . = Ad h , p p\2! 4! 1 

n e3 e5 . 
i=5pIT7i+-1- 

(A9) 

Eliminating rj and 0, we find 

a =A 
2/3 ¿2/3 

B 20 
1 + 

62/3 [ 
20 \Bi 

2/3 
+ ... (A10) 

and 

, yi 62p 
öp pUP( 20 

62/3 I t^213 

1 20 U, +‘" 
(All) 

Substitution of these two expressions into equation (A6) and 
use of equation (A5) give, to leading order, 

„ 3 X 62/3 

(t-+o) 

3(12^)2/3 

20 

(A12) 

In the second line, we have used equation (A7) to eliminate 
Bp, and defined tQ = 2nB = KHQïQ0(l-Q0)~3/2 to elimi- 
nate B. Equation (A12) shows that, at early times, the density 
perturbation grows as ó °c t213, which is the linear growing- 
mode solution. At later times, t^tQ, the linear perturbation 
behaviour departs from this; the exact linear solution is 
<5 °c D(i), where 

3 sinh 7/(sinh ?;-?;) ^ 
(cosh 77-l)2 (A13) 

(see e.g. Peebles 1980, section 11), which varies as 
D(í)«(12jt)2/3/10(¿/íQ )2/3 for t<£tQ, and D(t)-+1 for í» tQ. 
Comparing equations (A12) and (A13), we find that the 
exact linear behaviour for a spherical perturbation which 
collapses at time ¿coll is 

ó 
3 
2 

D(t) (AU) 

The setting of t = t0 in the above expression then gives the 
extrapolated linear overdensity at time t0 for a perturbation 
which collapses at time ¿coll. 

When the spherical perturbation collapses, we assume that 
it reaches virial equilibrium at the time ¿coll when formally 
ap 0, at a radius which is half of its radius at maximum 
expansion (6 = k). Using equations (A1)-(A6), the ratio of 
the halo density to the background density at the virialization 
time can be shown to be 

/ 2k 
\sinh r¡c<M - t)c<M 

(cosh í7coM -1)3, (A15) 

where r¡con is given by solving equation (Al) with t = tCiM. On 
the other hand, comparison of the halo density to the critical 
density pc = 3//(í)2/(8jcG) at virialization gives 

(A =8n2 (cosh ??CO||-l)
2 2 

\Pc|v,r [sinh í7coii(smh >?coll - rjcoU)_ ' 
(A16) 

The right-hand side of equation (A16) has the limiting values 
18ji2 for >?col| « l(/coll «: iQ ) and Sit2 for ncoll » 1 (icon » ta ). 
Thus the halo density at collapse is always of order 100-200 
times the critical density. 

APPENDIX B: DYNAMICAL FRICTION TIME 
IN AN ISOTHERMAL HALO 

We model each dark matter halo as a singular iso- 
thermal sphere, with circular velocity Vc and density pH = 
F2/(4jtGr2), truncated at a radius RH. Within the truncation 
radius, the ID velocity dispersion is taken to have a constant 
value 0= Vc/y[2. For a satellite of mass Ms orbiting within the 
halo, the force exerted on it due to dynamical friction against 
the background halo particles is 
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Fdf= -4nG2\nApHMlB(v/j2o)—i (Bl) 
V 

(e.g. Binney & Tremaine 1987, section 7.1), where v is the 
satelhte velocity 

B{X) = erl(X) — — e~x2 

Jk 

and In A ~ ln( rv2! GMS) is the usual Coulomb logarithm 
(treating the satellite as a point mass). 

The decay of the satellite orbit due to dynamical friction 
was calculated in the orbit-average approximation. The 
satelhte orbit is described by E and /, the energy and angular 
momentum per unit mass, in terms of which the radial and 
tangential components of the velocity are given by 

t;r = 72(£-<l.(r))-/V, (B2) 

vg=J/r, 

where d> is the gravitational potential. The instantaneous 
rates of change of E and J are È= -v\Fdf\/Ms and /= 
-(rvd/v)\Fdf\/Ms. The orbit-averaged rates of change are 
given by 

<£>= 
i 

r““ dr I 

rm¡n vj 

w .dr 
Q—, 

'min V' 
(B3) 
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where Q is E or 7, and rmin and rmax are the radial turning 
points of the orbit, given by solving equation (B2) for t>, = 0. 
The orbit-averaged equations dE/di=(£> and d//d/ = (/) 
are then integrated to find the time Tif for the satelhte orbit 
to shrink to r=0, in terms of the initial values of E and J. 
This is a reasonable approximation provided that Tif is much 
greater than the time for a single orbit. The value of In A is 
taken to be constant and equal to its initial value. 

For a singular isothermal sphere, the dynamical friction 
time can be written as 

rdf= MKlA 
2GMSB(1) In A 

(B4) 

M ['•cíWkhUmh) 
2Z?(l)lnA \i?„/ \Vj\Mj 

Here, rci{E) is the radius of a circular orbit in the halo with 
the same energy E as the actual orbit, while the ‘circularity’ 
e = JjJc(E) is the angular momentum relative to that for a 
circular orbit with the same energy. Thus 0<e< 1, with 6 = 1 
for a circular orbit and 6 = 0 for a radial orbit. For a circular 
orbit, /(6)=1. For eccentric orbits, the function f(e) was 
found by numerical integration of the orbit-averaged 
equations: for the range 10-2<6< 1, the function was found 
to be fitted to an accuracy of better than 3 per cent by the 
expression/(e) * e°78. We take In A « ln(MH/Ms). 
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