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ABSTRACT 
Two-dimensional shear flows in the (R-z) and (^-z) planes in thin accretion discs are 
studied. The vertical shear is set up by the resonant response of a disc with small tilt. It 
is shown that the flow is dynamically unstable, with growth rates in excess of 
~0.1Q_1, corresponding to a growth time-scale of one orbital period at a given 
radius. Standard analytical results for the two-dimensional flow instability are 
extended to take the effect of finite-density free boundaries into account. Ray theory 
is used to trace the path of energy transport. A small-wavelength approximation 
(WKBJ) is used to study the energy transport and leakage which lead to instability. 
The behaviour of longer wavelength modes is studied numerically, and interpreted in 
terms of mode coupling and wave action. 

Key words: accretion, accretion discs - hydrodynamics - instabilities. 

1 INTRODUCTION 

Shear flows are intrinsic ingredients of accretion discs. The 
shear for the planar disc over the radial extent comes from 
the variation of the angular velocity with radius, e.g. 
Q^R~3/2, in cylindrical coordinates {R, (j>, z) for Keplerian 
discs. The vertical structure is usually taken to be static in the 
local corotating frame of reference, since the disturbances in 
the vertical plane reach equilibrium on the dynamical or 
sound-crossing time-scale. If, however, the disc is slightly 
tilted (where the tilt is less than the disc opening angle), 
which may be a generic feature of discs, then shearing 
motions, which are proportional to the vertical velocity, are 
set up in the {R-(f>) and [R-z) planes (Papaloizou & Pringle 
1983). This disc response is inversely proportional to the 
viscosity (i.e. it is resonant). If the shear becomes sufficiently 
large, the flow can become dynamically unstable, and 
provide a step towards the turbulence that must characterize 
the flow in the accretion discs (Kumar 1988). This motivates 
the study of instability in compressible, plane-parallel shear 
flows with free boundaries, which are an important feature of 
accretion discs. 

The perturbation problem is stated in Section 2, and 
standard results that characterize the instability are extended 
to include the free boundaries of accretion discs. These 
results are used in Section 3 to make order-of-magnitude 
estimates for the warped discs. Section 4 contains analytical 
results that serve as starting points for the numerical work, 
and also illuminate the character of the shear instability in 
the limit of small wavelengths. The numerical problem is 

studied in Section 5, and the conclusions are stated in 
Section 6. 

2 TWO-DIMENSIONAL SHEAR FLOWS 

The equations for the disturbances of the flow are derived in 
this section and provide the eigenvalue problem studied 
analytically in Section 4 and numerically in Section 5. There 
exist some analytical results concerning the behaviour of 
linearized disturbances of a stationary shear flow profile, 
established initially for incompressible flows (Drazin & Reid 
1981). We extend some of these results in the following 
subsections. In particular, we wish to consider the effect of 
finite contributions from the free boundaries in the context 
of two-dimensional, plane-parallel, compressible shear flows. 
The fluid is barotropic, p = p{p\ and its flow is given by 

U=[U(z\ 0,0], (1) 

where the flow in Cartesian coordinates (jc, y, z) is in the 
(x, z) plane, as shown in Fig. 1. This two-dimensional flow is 
shown in the following section to be an appropriate idealiza- 
tion for studying the instability of vertical shear flows in 
accretion discs. In particular, the disc section at a fixed 
radius, the <j>-z cylindrical surface, can be opened out as the 
x-z plane. We assume that there is vertical gravity, g= ~z9 
in dimensionless coordinates. Its purpose is to provide the 
equilibrium density and pressure distributions, and it does 
not affect the disturbances (since there are no entropy 
gradients) except through the boundary conditions. The 
choice of this form of gravity comes from the context of 
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z = 1 

z =0 

z=-1 

Compressible planar shear flow in a poly tropic disc 
Figure 1. A schematic picture of the compressible shear flow 
studied. Here the fluid is polytropic, which implies boundaries at 
finite vertical distance. The scaling makes this unity. The rate of 
shear is constant, although cubic profiles could also be considered. 
The flows arise from the effects of tilting of accretion discs. The 
density and pressure at the surface are taken to vanish. 

pattern frequency, where aR is the real part of o. This is the 
local frequency of the disturbance as seen by an observer 
comoving with the flow. Using the variables 

Z=3pèz (7) 
and 

W=ôhl3, (8) 
the perturbation equations (3), (4) and (5) become, writing 
D = d/dz, 

-ö kDU\ 
-Z- D + —H W=0, 
P l 2a' 

D-Í5Í? z+ 

2(7 / i 
W=0. 

(9) 

(10) 

accretion discs, and differs from the laboratory fluid 
problems in that the gravity always points into the flow. With 
the enthalpy h=jdp/p, the equilibrium configuration is 
given by 

V(/*+<D) = 0 (2) 

(Landau & Lifshitz 1982), where O is the gravitational 
potential. Though the numerical work concentrates on linear 
shear flows, the results here are more general, though only in 
the context of accretion discs. While they are given below for 
barotropic flows, they can be extended to plane-parallel 
flows with entropy gradients (Kumar 1992). These results 
also serve as a check on the numerical work. 

It has been shown that a stratified, incompressible shear 
flow is stable if the Richardson number Ri> 1/4 everywhere 
over the flow (Miles 1961). This sufficient condition for 
stability can be used to put a bound on the instability, 
as performed by Howard (1961). This was extended by 
Chimonas (1970) for compressible fluids. However, it was 
assumed that the boundary was rigid and prescribed, or else 
the domain of flow extended to ± °o in the z-direction. We 
show below that a similar calculation may be carried out for 
a free-boundary problem for accretion discs when the 
surface density is finite, but the surface pressure is zero. The 
linearized disturbance is characterized by the Lagrangian 
displacement £ = (¿;x, 0, £z) and the Eulerian perturbations of 
density or enthalpy. The equations of motion, continuity and 
energy are 

D2£ 
57--vm, (3) 

ôp=-V{pè), (4) 

ôh =J#p(p) ôp, (5) 

where D/Dt = d/dt + U-V is the Lagrangian derivative and 
J^{p) is some given function of p (JP is always positive 
definite). Since the equilibrium is stationary and independent 
of the flow direction, we can use the normal-mode analysis in 
the form 

f(x,t)=f(z)exp[i(kx + ot)], (6) 

where/is any of the perturbation variables (£x, ôh), k is 
the horizontal wavenumber, and a is the frequency whose 
imaginary part gives the growth rate of the instability 
(=-0!). Define o= o + kU. Then $R(ô) = aR+£t/ is the 

For a global bound, we need to consider integral quantities in 
the perturbed variables W and Z formed by multiplying (9) 
by Z* and ( 10) by W*, adding and taking the integral /of the 
sum over z. Then, 7=0. Taking the imaginary part to be 
separately equal to zero, and partially integrating, we find 
that the finite surface term - (Z* W ) gives a positive definite 
contribution, and therefore does not affect the known 
stability criterion. The boundary condition used, appropriate 
for free surfaces, is that the Lagrangian pressure perturba- 
tion vanishes, Ap = 0. The form used here is D/D/(A/?) = 0, 
which implies the condition päW±Z = 0 at z= ±1. This 
leads to the necessary condition for instability: 

dz(|Z|2/p)[l-(Dt//2|â|)2]<0, (11) 

that is, I cr| < |Dt//2| somewhere in the flow. This gives the 
required bound, using the inequality 

l^il —lö'l < |Dt//2|max. (12) 

For a linear shear flow U = az, | cr|i < a/2, where a > 0. Note 
that this global bound does not depend on the wavenumber. 
This inequality suggests that boundaries may play a role in 
destabilizing the flow, and may affect growth rates, but only 
up to a point. They can never overwhelm the shear destabih- 
zation; in particular, the surface mode, when it is unstable, 
must be mediated by shear, as is now understood to be the 
case (e.g. Narayan, Goldreich & Goodman 1987). 

It is known that unstable modes of a linearized 
disturbance must have a vanishing pattern speed, 
0* = oR +kU=Q, somewhere in the flow (Drazin & Reid 
1981). We extend this by showing that the presence of free 
boundaries does not affect this result. For this purpose, we 
use the perturbed enthalpy ôh as the variable, in which case 
equations (9) and (10) combine to give 

D^DÓ/íJ + I^-^J <5Ä = 0, (13) 

where c is the sound speed. Multiplying (13) by ôh*, 
and integrating over z using the boundary condition 
Dó/í= ±ö2<5/iat z= ± 1, we find 

dz^2\ôh\2+ Z p\ôh\2. 
C boundary 

(14) 

— *2 pa 
dz~r{\Dôh\2 + k2\ôh\2) = 
\o\ 
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Note that the right-hand side of equation (14) is positive 
definite. To use this result, we define oc = o* + kUc, 
where Uc is an arbitrary but constant velocity. Then 
ä* = ac + Ä:( C/- Uc). We then substitute in ( 14), which can be 
written in the form 

Ao? + 5ac + C=0, 

where A, B,Care as follows: 

dzpl\a\4^, 

(15) 

(16) 

B = dz 2kp(U-Uc)/\ö\4&: (17) 

C = dzk2pl\o\\U-Ucf$r- dzp/c2\Ôh\2 (18) 

- Z p\àh\2, 
boundary 

and |D ôh\2 + k2\ôh\2. For the critical layer, <7cR = oR + 
for a certain choice of Uc. Then, from (15), by 

separating real and imaginary parts, and assuming Oj ^ 0, we 
require Æ = 0. From (17), this is possible only if the integrand 
changes sign, or equivalently if U=UC somewhere in the 
flow. This demonstrates the existence of a critical layer (there 
can be more than one if U is non-monotonic) for an 
unstable mode within the flow. Alternatively, if we take the 
imaginary part of (14) we have the result that the critical 
layer lies in the flow. 

We use the above results, in particular equations 
(14)-(18), to put a wavenumber-dependent bound on the 
shear flow instability. Again we find that the presence of free 
boundaries does not affect this bound, further arguing 
against a pivotal role for the boundary as the primary cause 
of instability. Since A, B and C are real, we see from (15) that 
acl = ^ 0 only if Æ2 - 4AC < 0. Since A> 0, we find that 

öS Jdzp(U-Uc)
2lö\4^ 

k JdZyo/|a|4^ 

Taking the maximum value of \U-UC\, we obtain the 
required bound: 

\°i\<k\U-Uc\max. (20) 

This value holds at either boundary for a monotonie flow 
profile. In any case, | U- Uc\max<2 \ t/|max, and we may write 

\o1\<2k\UU. (21) 

We see from this relation that free-boundary effects are not 
destabilizing as 0, i.e. in the limit of large wavelengths, for 
plane-parallel, compressible shear flows. We also see directly 
from (15)-(18) that B=0 and C<0 when k = 0. Now, a2 is 
identical to a2 and, from equation (15), takes a value > 0. 

We note for completeness that finite contributions from 
the free boundaries do not affect the Howard Semicircle 
Theorem, which states that, for a flow with given maximum 
and minimum velocities, the frequency and the growth rate 
of any unstable mode lie in a semicircle, as follows: 

[aR/k-1/2(t/max + t/min)]2 + (ol/k)2<mUmax - i/min)2 (22) 
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(Howard 1961; Drazin & Reid 1981). A sufficient condition 
for stability of planar shear flows is provided by the Rayleigh 
criterion: for an incompressible fluid with rigid boundaries, 
D2t/ should not change sign within the flow (Drazin & Reid 
1981). This has been extended to compressible flows 
(Grinfeld 1984), for which the sufficient condition becomes: 
(i) the flow is always subsonic, and (ii) U and D(D£//p) have 
the same sign everywhere in the flow. If the surface density 
drops to zero, as in the model of interest, then the flow 
necessarily becomes supersonic there, violating the 
sufficiency criterion regardless of the second condition. 

3 APPLICATION TO SHEAR FLOWS IN 
TWISTED DISCS 

It is likely that most accretion discs that occur in nature are 
warped, in the sense that the total angular momentum may 
not be aligned with the perpendicular axis. In other words, in 
Cartesian coordinates (jk, y, z), the angular momentum 
components Jx, Jy 0, though they may be small. However, 
for small values of the viscosity, the flows set up in the disc in 
the azimuthal and radial directions, here locally represented 
by the x- and y-coordinates, exhibit a resonant response 
(Papaloizou & Pringle 1983; Kumar 1988), and become 
large. It is then likely that they will become unstable and 
proceed to turbulence. Since viscosity in discs is likely to be 
turbulent, it is of interest to determine whether or not such 
flows are dynamically (i.e. generally Kelvin-Helmholtz) 
unstable, and what the growth rates are, in their role as 
precursors to shear turbulence. 

In accretion disc theory, the fluid motion is Keplerian, i.e. 
Q °cR-3/2 in cylindrical coordinates (R, (j), z). The internal 
energy is much less than the gravitational energy, so that the 
vertical extent of the disc, //, is much less than the radial 
extent, i.e. HjR <3C 1. Vertically, the fluid is in hydrostatic 
equilibrium. However, viscosity leads to angular momentum 
exchange, and therefore matter infall (see Pringle 1981 and 
Meyer 1986 for reviews of accretion disc theory). The nature 
of viscosity is a major uncertainty of the theory. The viscosity 
is therefore modelled by various prescriptions, of which the 
a-disc model (due to Shakura & Sunyaev 1973) has now 
become the standard. The viscous stress = ap, where 
0<a< 1 is a dimensionless quantity usually taken to be 
constant throughout the disc, though there have been some 
attempts to model it as °c(///R)0, where ô is some number, 
often taken to be 3/2 (Meyer & Meyer-Hofmeister 1984). If 
a is taken to be a constant (this is not essential for the rela- 
tion below), then the flow velocities set up by the twist may 
be written as 

U(z) =zf(R)/a\ V(z) =zg(R)/a2, (23) 
where / and g are some functions calculated from accretion 
disc theory, here effectively constants. Although this moti- 
vates the study we may, for purposes of analysis in this 
section, take U(z) and V(z) to have arbitrary profiles. By the 
use of Squire’s transformation, a standard method (see 
Drazin & Reid 1981), we may show that the preceding 
results for two-dimensional plane-parallel flows are 
applicable for this problem. It will be seen below that the 
application of this method is quite straightforward. As 
before, we take p=p(p) and U=[U(z)> V(z), 0], and trans- 
form the coordinates and the variables to their dimensionless 
equivalents. Now Q = l, and the gravity force VO = (0, 0, 
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- z). We consider the perturbation equation that is identical 
to equations (3), (4) and (5), but with £ = (£„ £z). Using 
normal modes, with 

/(*, t) =f(z) exp[i(fcr +ly + at)], (24) 

D/Dr =i(a+ kU + IV) =ia, (25) 
the equations become 

o2%x = '\kôh, (26) 

o2^ilàh, (27) 

Ö^^DdÄ, (28) 

ôh=Jtr(p)[ip{k£x + lty) + T>(pÇl)\. (29) 

Equations (26)-(29) may now be transformed to an equiva- 
lent two-dimensional form, as follows. We choose a new set 
of variables: 

k = h2 + l2, (30) 

i=(kèx+lSy)/Z, (31) 

Ü=(kU + lV)/íc, (32) 

ö=o+ícÜ, (33) 

so that equations (26)-(29) become identical to (9) and (10), 
but with the appropriate tildes. The instability bound then 
becomes 

I oil < |DÜ/2|max<2[7(DÍ7)2 + (DF)2]. (34) 

We use this inequality to put a qualitative bound on the 
turbulent viscosity that may result from the instability. We 
now consider dimensional quantities. From the theory of 
twisted discs, we have 

\DU\ ~ |DF| ~ ßQ/a2, (35) 

where ß is the local disc tilt, and satisfies ß<H/R. If the 
turbulent, kinematic viscosity v ~ H2Q \ o^, then from (35) 
we get v=a//2Q^/JQif2/a2, which implies a3^ß, or 
a^{H/R)1/3. Self-consistency of the twisted disc theory 
requires a>H/R, which is equivalent here to the require- 
ment lojl^H/R. If this is not satisfied, then Ü~v¿, the 
Keplerian velocity = QR, we have dynamical rather than 
viscous motions, and the flow is not that of an accretion disc. 
Typically, H/R varies from 10-3-10_1. Growth rates larger 
than this for the fastest growing mode are sufficient to make 
the connection between instability, a-viscosity and con- 
sistency of the twisted discs theory encouraging. 

For the purposes of numerical computation, we take a 
linear profile, U = az, where a =ß/a2. This vorticity is 
bounded by a<a<a~1. Taking a to be typically between 
3 x 10“2 and 1, from numerical modelling and observational 
estimates, the relevant range of parameters is 
3xl0_2<a<3x 102, but 10"1 <«< 10 may be significant 
for any value of the wavenumber k. From length-scale argu- 
ments, we expect k~l - width of the flow. With coordinates 
normalized by the extent of the boundaries, i.e., zB = ± 1, À:~ 
1. In practice, we expect the range 10 ~1 < k < 10 for the fast- 
growing unstable mode. If instead we write a = (ë)\ o^, then 
with I cTjl ~ 0.2 we find that the three conditions a3 <ß, ß<y 
and a > y are satisfied for 8 x 10~3<^3</?< 10-2-10-1, or 
0.2^ > 10~2-10_1 for ff-l. From this last condition, ^ 
cannot be much less than 1, therefore a ~ Oj is a reasonable 
assumption. If | Oj\ ~ 0.3, then ff~l/3 satisfies the in- 

equalities, but it may be larger, since we may expect a larger 
a-viscosity as //increases. 

The application of the extension of the Rayleigh criterion 
(Grinfeld 1984) to shear flows in twisted discs shows that the 
sufficient condition for stability is satisfied for a constant- 
density (but compressible) fluid flow, when the boundary is 
taken to be rigid. Even for a variable-density but rigid- 
boundary flow, the conclusion is the same, unless the flow 
becomes supersonic somewhere. If p = constant, the 
criterion is U(z)IIl)2 U{z) > 0 over the flow. For an isothermal 
disc, with p°c e _z /2, the shear flow profile is U(z) = c sinh(z), 
where c is some constant, and the criterion p2U{z)/ 
[D2U(z) -DUDp/p]>0 becomes p2/[l + z coth(z)]> 0, 
which is identically satisfied in the flow. From this point of 
view, the case considered by Narayan et al. (1987) is degen- 
erate. 

4 ANALYTICAL PRELIMINARIES 

As a prelude to numerical computation, in Section 4.1 we 
derive useful results for the special cases of perturbed flows. 
The modes and their frequencies for a static compressible 
fluid with density distribution characteristics of an accretion 
disc provide the discrete eigenspectrum for any wave- 
number. They are also the starting point for the picture of 
mode coupling leading to instability, which is discussed in 
Section 6. In Section 4.2, ray theory provides a picture of the 
distribution of the energy in the perturbed flow, again 
specific to the disc density profile. This refractive effect 
argues that global disturbances cannot easily penetrate in the 
radial direction; instead, they may lead to dissipation near 
the disc surface. In Section 4.3 the coupling of surface modes 
leading to instability is studied in the WKBJ approximation. 
This enables a determination of the relation between the 
growth rate, the rate of shear and the wavenumber of the 
disturbance, and facilitates the physical interpretation of the 
instability. 

4.1 The spectra of static configurations 

We first show that a static, two-dimensional fluid, with free 
boundaries, is stable. We then find the frequency spectrum 
for a given wavenumber, and see that the frequencies are 
real. These results are used to start the numerical computa- 
tions. Putting U= 0 in equation (13) for the perturbed 
enthalpy ôh (which we shall from now on call X to simplify 
notation), we obtain 

D(pDX)+(o2/c2-k2)pX=0. (36) 

The regularity condition at the free boundaries, zB = ± 1, in 
the dimensionless variables used here, is DX= ± o2X. Multi- 
plying (36) by X* and integrating over z, we find 

dzp^=a2j Z p|2f|2 + 
(boundary 

dz4l*f c 
(37) 

The left-hand side of equation (37) is real and positive 
definite, as are the terms in the brackets on the right-hand 
side. This implies that a2 is real and ^0, and proves the 
stability of all static configurations. For such stable waves, the 
coefficient (o2/c2-k2) will not vanish in the domain of the 
fluid. Since there is no critical layer, these waves do not 
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Shear instability in accretion discs 327 

extract energy from the fluid even when the fluid is 
isothermal, which can be seen from the exphcit value of the 
spectrum in equation (42). This suggests that, even when the 
equations are formulated with the radial extent taken into 
account (Lin, Papaloizou & Savonije 1990), the vertically 
propagating waves will not dissipate locally at a given point 
(jR, (j), z), apart from loss due to wave-steepening near the 
disc surface. Shear is a necessary ingredient for shock for- 
mation, and its consequent dissipation. 

For an incompressible fluid, c2-+<*>, and if p = constant, 
equation (36) reduces to D2X-k2X=0, with the boundary 
condition DX= ± o2X at z = ± 1. We then find that 

o{k)= ±Jktanh k, iVkcoth k. (38) 

4.2 Ray propagation 

In the short-wavelength limit, when the wavelength A ~ k-1 

<3C H, the local pressure scaleheight, we can find the path of 
energy transport of the linear oscillations, i.e. the rays. The 
sheared medium is anisotropic, therefore the directions of 
the local ray vector, the group velocity and the wave normal, 
i.e. the phase velocity, do not coincide. For the purposes of 
this section, the perturbed enthalpy equation, (13), may be 
written, using subscripts x, z, T to denote the partial deriva- 
tives d/dx, d/dz and the Lagrangian derivative D/D/, as 

~~ï XTTT-{Xxx +Xzz)T-ânz)XzT+ 2DUX» = 0, (44) 

If the static fluid is isothermal then (36) may be written as where .^(z)=DlnA For a static atmosphere, this reduces to 

V2X-zDX+{o2-k2)X=Q. (39) Xt,-c
2[Xxx+M{z)Xz+Xzz] = 0, (45) 

We write v+l/2 = o2 —k2, and substitute X=ez2lAu{z) to 
find the parabolic cylinder equation D2u + (v+l/2- 
z2/4)u = 0. The solution is w(z) =^4Dv(z)+ÆD_(v+1)(-iz), 
on which we impose the regularity condition for | z | “*00. The 
appropriate condition is that p\X\2 be finite, which is equiva- 
lent to \u\2 being finite for |z| -* 00. To impose this condition, 
we use the following asymptotic forms for the D v( z ): 

D~zve -z2/4 (z |arg z| < 3k/4), 

_7V-z2/4_ Dv~z e 
Jin _i; inv — ( v + 1) z2/4 -e z 

r(-v) 

z-^oo; jt/4 <argz<5jt/4). 

(40) 

(41) 

(Bender & Orszag 1978). We therefore require that B = 0 
from (40), when z-" 00. When z~+ — 00, regularity requires 
that r(-v)=oo in (41 ). This in turn implies that v is a non- 
negative integer, and is the required condition for the 
frequency spectrum: 

o2 =k2 +m + l/2 (ra^O is integer). (42) 

We therefore have a countable infinity of frequencies for the 
static, isothermal fluid. This situation resembles the quantum 
harmonic oscillator. 

If the fluid is homogeneous but compressible, we have 
D2X+{o2/c2 - k2)X=0 with the same boundary conditions. 
Writing L= +Jo2/c2 -k2, the eigenvalues are given 
implicitly by 

L + a 
= 1, (43) 

which must, however, be solved numerically. Note that L 
may a priori be imaginary, but stability for such a static con- 
figuration implies that it is always real. 

A useful starting point for the computations is also 
provided by the static, adiabatic disc with a polytropic index 
n=l/2. For finite wavenumbers k, the oscillation modes are 
the solution of a Mathieu equation. In the limit of long wave- 
length, k-+0, there are two infinite classes of modes - the 
odd and the even. The frequencies are a=(2m+ 1) [the odd 
mode, ocsin(az)] and o=2m [the even mode, °c cos(oz)], 
wherera = (0, ±1, ±2,...). 

where subscript / denotes dldt. Now we use the geometrical 
optics form for X (Landau & Lifshitz 1982; Gough 1987): 

X(/, jr) = A(/, jr)exp[i<I>(/, jr)], (46) 

where the amplitude A is a slowly varying function, and <$(/, 
x) is the eikonal. We define the frequency as cd = dt<b, the 
wave vector as k= -VO, and the Hamiltonian as //(/, •**, 
k)=a)(t, x). Then the ray equations are k= -VH and 
x = S7kH, where equation (48) below gives the group velocity 
vg of the wave. There are three wave solutions for the 
hyperbolic equation (45), whose phase speeds are vp = 0, ± c. 
Then the Hamiltonian, H, becomes 

H = vp\k\ + Uk, (47) 

where vp takes the three different values found from the 
eikonal equation 

[œ-k-U){(jD-k-U+c\k\)(o)-k' U- c|£|) = 0. (48) 

Using (46) and (47) in (48), we now find the ray trajectories 
for some special cases. We write n = k/\k\ as the unit wave 
normal. If £/=0, then H= ±c\k\, kx is a constant, and 
vg = cn. The equation for the vertical wavenumber kz, found 
by combining (46) and (47), is 

=_ i^Dlnc. (49) 
kz 

For an isothermal atmosphere c = constant, so kz is also a 
constant. For an adiabatic atmosphere, with /5°c(l —z2)" and 
c2 = (1-z2)/2m, 

(50) 

and the path is represented by x~ x0 = J d.sm, where s is the 
path-length. The amplitude variation is given by 

V-(A2k)=-&(z)A2kz. (51) 

If the disc is homogeneous, the right-hand side of equation 
(51) = 0,and 

A{z)=Aaexp dsV d>/2|&| =A (52) 
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where the curve ^ is the ray path. For an adiabatic disc, 

A(z)=(l-z2y-^2lU2-k2
xl2n{l-z2\ (53) 

Note that A-*<x> as z1, conserving pA2kz (the wave action 
here). For an isothermal disc, the amphtude A(z)=A0 

exp(z2-Zo)/4, and increases with z to preserve the energy 
density of the wave. In a sheared medium, with Df/^O, by 
writing T2 = (k-k)/k2

x and using (46)-(48), r satisfies 

D(cr) + Di/=0, (54) 

from which we obtain r(z) =(t0 +Mq)cqIc(z)-M(z\ where 
Mis the Mach number, M(z) = t/(z)/c(z). The angle between 
the wave normal and the ray, p, is given by 

cos^ = -—=^===(±M/r). (55) 
n+w+iMf* 

These results can be used to solve for the eikonal O which is 
found, by using (54) and (55), to be 

0(i, jr)= - ù)t + kx x± dzJr2(z)-l , (56) 

where kx is a constant, and w is a constant, from (48). The 
acoustic wave action flux F satisfies V •F= 0 away from the 
source, where F= pA2/(a)-k-U)vg (Landau & Lifshitz 
1982). From (46), (47) and (54), we may find the ray-path in 
the (%-z) plane, given by 

the adiabatic case is given, for the same linear profile 
t/(z)=flz,by 

ds/c = dzM/c — a/2 In (59) 

so that °o as lz|-*l, which indicates the deposition of 
energy of the disturbances near the surface. In practice, no 
boundary will have p = 0, since the energy deposited near the 
boundary will heat the surface layers and blow them away or, 
in a steady state, create a corona. 

4.3 Eigenmodes and the global dispersion relation in the 
WKBJ limit 

It is possible to find analytically the frequency and eigen- 
modes of linear perturbations, e.g. from equation (13) with 
the accompanying boundary condition in the limit of large 
wavenumbers. This requires the use of the WKBJ method to 
join appropriate solutions in different parts of the flow, with 
special attention given to the change in phase. For the 
problem with which we are concerned, we require that the 
density or pressure scaleheight be much larger than the mode 
wavelength. The perturbed variables, e.g. the perturbed 
horizontal velocity v, are expanded in the form 

v = exp (60) 

x-x0 = dsm = 
' , 7l + M2±2M/r 
dz m, 

mz 
(57) 

where m = vj\vg\, is now known; vg includes the velocity of 
the flow and the velocity of energy transport in the local rest 
frame. This gives a large horizontal ray propagation distance 
for the initial value of r, t0 = 1, taking «=1.5, a = \ and 
Zo ^ 0. However, if t0 = 2 then this distance is ~ H, the disc 
scaleheight. Thermal stratification has a focusing effect for 
most of the rays, although they are usually reflected from 
their vertical extremes after going through length ~ H only. 
While the traveltime for most of the waves is increased by 
refractive effects, most of them should not propagate long 
distances. This result has also been found numerically for the 
inward propagation of acoustic disturbances from the outer 
edge of an accretion disc (Lin et al. 1990). 

In the supersonic regime, we may have zero-frequency 
rays (which are the shock characteristics), as follows. From 
(48), (M2 -l)k2

x = k2
v and (47) gives 

x -x0= ± dzWizPÎ. (58) 

Taking z0 to be zs, and the upper limit to be z = 1, for a linear 
velocity profile U(z) =az, the horizontal shock characteristic 
extent is L=x -x0, where L is a function of the shear rate 
a: L~ajn for small a and L~ a>ln/2 for large a. For a 
warped accretion disc, from Section 3 we find the length 
ratio to be L/R~ßy/a2<l, so we do not expect that the 
shocks will either wrap around the disc at a given radius or 
significantly extend in the radial direction. 

Here 1 ^ |z|, |z0| > |zs|, where zs is the sonic layer given by 
t/(z) =c(z). The time for energy transport along the ray for 

where e = k~l, k-+ °o is the expansion parameter. The first 
two terms, v0 and vx, provide the lowest order WKBJ 
approximation used here. 

The method of joining the solutions is as follows. We write 
the WKBJ equations for v, the perturbed horizontal velocity. 
In the two boundary regions, v must satisfy the regularity 
conditions. The standing wave in one of the boundary 
regions is then asymptotically matched to the adjacent 
region, which is the wave-trapping region. If we start at the 
boundary, z/j2n= 1, then A is the first turning point of the 
WKBJ equation. Here the mode acquires an exponentially 
growing part (the exponentially decaying, or subdominant, 
part can be neglected). There is then an additional contribu- 
tion to this value in the critical layer, i.e. around the critical 
point cr~0. The mode then continues its exponential growth 
up to the next turning point, B. Here we have the second 
wave-trapping region, which must asymptotically match with 
the solution in the second boundary (z/j2n = -1 ). A similar 
procedure may be followed for a wave from the second to 
the first boundary. From each such global solution, we find a 
dispersion relation for the real part of a, oR, only. The term 
<7! < 0 is exponentially small, but can be estimated. It should 
be noted that the wave-trapping regions near the boundary 
mean that much of the wave energy exists here, and therefore 
makes the role of the boundary important. This is in contrast 
to the behaviour of the large-wavelength modes. These latter 
modes are substantially affected by the presence of the 
critical layer, as numerical work shows. Since these are the 
fastest growing modes [particularly k~ 0(1)], we also need 
to understand the behaviour of velocity profiles with special 
properties, e.g. no inflection point. 

The WKBJ limit for the surface waves may be contrasted 
with instability fuelled by radiative losses, where waves 
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travelling in one direction, to infinity, establish the direction 
of the WKBJ corrections, e.g. for an infinite torus with an 
inner boundary, the energy and angular momentum losses in 
the WKBJ limit determine the computation direction from 
outside to the inner radius (Papaloizou & Pringle 1987). A 
related treatment is that of compressible, two-dimensional 
planar discs with one reflecting edge (Kato 1987), which 
show instability if the wave reflecting edge is on the same side 
of the corotation radius as the over-reflected wave. The 
problem considered in this section differs from the WKBJ 
treatment of the homogeneous shearing sheet (Narayan et al. 
1987). They consider rigid boundaries at both ends, 
zB= ± 1. The density variation and free boundaries both 
affect the phase conditions (85) and (87) below. Moreover, 
their eigenequation differs in that it considers the effect of 
rotational shear, whereas here it is the vertical effect of 
gravity that is taken into account. 

We now compute the global eigenfunction and find the 
dispersion relation. The variable used is the perturbed 
horizontal velocity v, which is labelled by the subscript r, as 
vr (r=l,...,7), and denotes the function in the respective 
region. The stationary shear flow has the profile U — az, and 
the fluid is adiabatic, with index y = 1 + 1/n. The length- 
scales are based on the factor l/Jln, so that the boundaries 
are zB

= ±1. This enables us to consider the limit n 
which is the isothermal case, and also enables an asymptotic 
determination of the frequencies. 

Some notation is now in order for the brevity of the WKBJ 
approximations. öB1, om denote the pattern frequencies at 
the two boundaries, 

cJbi = o+ kajln, öB2 = o~ ka^2n. (61) 

The eigenfrequency a= crR + ioj, but in the WKBJ limit Oj is 
exponentially small and negative, and may be neglected 
compared to aR, so that o~ aR. We define constant ax, a2, bl 

and b2by 

a1 =n a2 = n\l — (62) 

bi= noh, b2 = nol2. (63) 

Two quantities, Ä and B, are related to the turning points A 
and B, of the WKBJ equation, 

T>2v— Q(z)v, (64) 

with Q(z) = k2-o2lE. The boundary condition is Dv = 
ö2v/(oDU/k+zB). Away from the critical layer, the 
perturbed vertical velocity w and pressure ôp are given by 

w«(-i/k)Di;, (65) 

ôp~(-pü/k)v. (66) 

We write 

Ä = l-A/j2n, ß=l + B/j2n. (67) 

The two phase angles that arise from the asymptotic 
matching of the eigenfunctions near the two boundaries, and 
are crucial to the dispersion relation, are 

^ = jt/4 - flj jt/2 - 2^bxÄ, (68) 

= - Jt/4 + a27t/2 + 2y¡b2B. (69) 

Shear instability in accretion discs 329 

Regularity in the boundary region implies 

vx=(Jb^f-a)Ja(2jb^), (70) 

where Ja is the Bessel function of order a. The asymptotic 
limit for matching gives 

lim Vi =-—(&i£)1/4cos(2>/&i£ + aiJt/2-jt/4), (71) 
É-*00 Æ 

from which we have, in the first wave-trapping region, 

cos dz^Q + A (72) ^7 = ~~ ( 61 gRI /2)1/4 ~ ~ 
Æ $-Q(z) 

Using the appropriate turning-point formula we find that, in 
the evanescent region, 

f 3 = — (¿>i <4/2r sin(0 + jt/4) 
■Jn 

1 
(73) 

xexp 

In the region around the critical layer z=zc, with width 
~ k~2l\ we use the perturbed vertical velocity w as the 
appropriate variable to find the jump across zc. Here o~ 0, 
with a small but non-vanishing contribution from y = 3(a): 
zc ~ - oR/ka. Using 77 = z - zc, the WKBJ equation becomes 

d2v ( 1 2\ 1 dv 
—2= —+ *: t>-- 
d»7 w I V dr) 

(74) 

Note that in this layer the variation of a and p may be 
neglected. Writing x = krj, the solution for v becomes 

v « ^jc + ^2[(ln x/2 + y)x/2 + 1/x]. (75) 

The singularity prompts us to find a variable for which the 
solution near the critical point is regular, although its 
derivative may jump; conditions satisfied by the vertical 
velocity w, whose variation is governed by 

d2w dw la 
—? + q—+ - drj dr) \r) 

(76) 

where g = D lnp is a constant, q — 0 is a regular singular 
point of this equation, wis regular, but dw/drj has a jump of 
magnitude -ijrc2, where c2 is the coefficient of the rjlnr) 
part of w. The relation between v and w around the critical 
layer, 

v ~i{qœ +Dw)/k, (77) 

gives the required condition on v for the jump as follows: 

[v]z
z}=xc/k, (78) 

where c is a constant related to the coefficient of the expo- 
nential term in (73). This enables us to find the subsequent 
value of v in the evanescent region before it approaches the 
next turning point B: 

v5=-^-{biölj2)il4 sm{0 + n/4) (79) 
Jn 

x(l +ijt/k) 1 exp 
ÏW) 
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330 5. Kumar and C. S. Coleman 

We now use the second turning-point formula to find the 
form of r in the next wave-trapping region: 

v6 = — (b{ön\ß)llA sin(0 +jt/4)(l +ijt/A:) (80) 
y[ñ 

the critical layer towards the boundaries, the same phase 
relationship and dispersion relations obtain. The growth 
rate, - ol9 is of the order of the energy leakage rate of the 
mode, divided by the original trapped energy. We see from 
(61) and (62) that, for the modes that couple, 

í-Q(z) 
exp cos dz/--Q-jt/4 

A similar procedure can start from v7 and go to vl. Thus we 
have two sets of trapped modes, and their respective slow 
leakages, i.e. the coupling between the modes near the 
boundaries. We write these as follows: 

Jñ f-Q{z) 
cos dzJ~-Q+0 

vl 
1_ ¡b2olX¡i 

æI 2 / 

(81) 

(82) 

: exp dz-ÍQ 
f^Qiz) 

COS dz^-Q-Jt/4 , 

for the first wave-trapping region, while for the second wave- 
trapping region we find 

v i 6 
_2_ MnV/4 

æI 2 I 
sin (83) 

xexp COS 

1 
^6 ~ 1 

>/jt 

1 

f^Qiz) 
-cos 

dzJ-Q-71/4], 

dzJ-Q-i¡Á. (84) 

The phases in (81) and in (83) should match, particularly for 
large k. From (61 ), we find the first quantum condition for o: 

^ + jt/4 = 2mjt, (85) 

where m is an integer. Since this eigenvalue equation is 
complicated, we consider the limit n~* and the shear a, 
such that na2-+ °o. We write o= o/(j2nka) ~ oR/(j2nka). 
Then condition (62) gives 

a— [>/ñ H-(4m - 1 )/Æ] -1 (86) 

for all integer values of m. A similar computation gives the 
eigencondition 

Jt/4 = 2/jt, (87) 

where / is any integer. With an approximation similar to that 
used for (86), we find that 

o= ±^[{4l+l)/Jn-y[n]+l (88) 

for all integer / values. Note, however, that | d| < 1 for modes 
that have a critical layer in the flow, and these can therefore 
be unstable. If the standing-wave profile is computed from 

- (Ji ~ exp 
'a 

-2 dzjQ(z) 
Jb 

exp( - k/a). (89) 

This shows that, for high wavenumber, the growth rate is 
exponentially small, and also that as the shear increases the 
growth rate increases. A qualitative extension of (89) 
suggests that, for comparable shear rates and wavenumbers, 
the growth rates can be on truly dynamical time-scales. 
However, the limit a -► °o cannot be reliably estimated for 
finite but large k. 

5 NUMERICAL WORK 

As a first step towards investigating the stability of a warped 
accretion disc, it is necessary to perform a linear analysis of 
an idealized model of the local flow field. In view of the 
results described above, the model chosen is a two- 
dimensioned shear layer with linear velocity profile, and the 
vertical pressure and density structure of an adiabatic thin 
disc. Free surface boundary conditions are imposed at the 
top and bottom of the shear layer (Fig. 1). Note that, 
although this model neglects the effects of orbital curvature 
and shear due to differential rotation, both of which should 
be small in the outer disc region of interest here, the two- 
dimensional disturbances have the fastest growth rates in this 
approximation, as shown in Section 3 (the version here of 
Squire’s result; see Drazin & Reid 1981). The eigenvalue 
problem is described in Section 5.1. The numerical results 
are given in Section 5.2 and Figs 2-12. 

5.1 The eigenvalue problem 

The flow model is expressed in terms of dimensionless 
variables using the disc half-height H, the inverse orbital 
frequency Q-1, the central density p0 and the quantity 
p0H

2Q2 as the units of distance, time, density and pressure, 
respectively. The shear velocity is then given by U = az, 
density p^l-z2)" and pressure p =(1-z2)n+1/2(«+1), 
where n = l/(y-l) is the polytropic index. The model is 
specified by two parameters, the shear parameter a which is 
related to the degree of disc warping, and the polytropic 
index n. In all numerical calculations, a value of n = 3/2 is 
used, corresponding to an adiabatic index y = 5/3, as appro- 
priate for a non-relativistic monatomic gas. 

The fluid equations describing the flow model are linear- 
ized subject to perturbations of the form/(z)exp|i(fct + ot)\, 
where f(z) is the z-dependence of the perturbation of any 
hydrodynamic variable/, kis the (real) wavenumber, and ais 
the (complex) eigenfrequency to be determined. After 
eliminating all variables in favour of the enthalpy X(z), the 
system reduces to a second-order ordinary differential 
equation: 

D2X- 
2ka 2nz 

. a +(1 -z2) 
DX+ 

2 no2 

.(1-z2) 
-k2 X=0, (90) 
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where o= a+ kaz is the Doppler-shifted wave frequency and 
T>X=àXjàz. The free surface boundary conditions require 
that DX=z~öX at z = ± 1, and the system is closed by the 
continuity of both X and DX. 

Numerical solution of equation (90) is facilitated by 
expressing it in terms of a new variable, P= w/X, where 
w^iDX/ois the perturbed z-velocity. This leads to a Ricatti 
equation: 

DP=i 
k2 

ö 
2no 

(i-A 
+ 

2nz ka 
(1 -z2)+ o 

P+'iaP2, (91) 

where the free surface boundary conditions require that 
P= ioz at z = ± 1, and P must be continuous. 

Note from symmetry that it is sufficient to consider only 
positive values of k and a. Further, solutions occur as pairs, 
g — ± aR + ioj, corresponding to identical waves propagating 
in opposite directions. When posed as an initial-value 
problem, the unstable modes contribute to the disturbance as 
before, but the neutral and decaying modes are affected. 
Eigenvalues o are obtained by numerically integrating 
equation (91 ) from each of the boundaries, and then iterating 
o by linear interpolation until the two parts of the solution 
match at an intermediate point. Since equation (91) is 
singular at the boundary points, series solutions about 
z = ± 1 are used to start the integrations. 

Resonance-driven instability may occur if the flow 
contains a critical layer, where the wave phase velocity is 
equal to the shear flow velocity (Drazin & Reid 1981; Craik 
1988). Such a layer exists if \^i{o)\<ka, in which case the 
singularity occurs within the domain of integration. (This is 
referred to as the corotation singularity, by analogy with that 
which occurs in differentially rotating systems.) 

The integration proceeds from z = -1 to z = 1 along a 
path in the complex z-plane, chosen in accordance with the 
Landau prescription from the requirement that the solution 
be that of a valid initial-value problem (e.g. Drazin & Reid 
1981). The path must pass below the corotation singularity 
in the complex z-plane. The integration is along the real z- 
axis for unstable solutions, as the singularity lies in the upper 
half-plane. It deviates from the real axis to pass below the 
singularity for the damped solutions. The unstable modes are 
of interest in the problem studied here. 

5.2 Numerical results 

In the simple case of an incompressible, static fluid layer with 
no shear, n = û = 0, equation (91 ) can be solved to obtain two 
non-trivial stable modes, o2^k tanh k and a2 =k coth k. 
Numerical solutions can be sought for the generalizations of 
these modes for n = 3/2 and a^O. Since sonic instabilities 
are expected to occur above ¿z ~ 1, we have the mode 
structure for values of the shear parameter a = 0,1,2 and 5. 
In addition, we have investigated the behaviour of the 
solution at wavenumber k=l as a function of the shear 
parameter a in the range 0 < ö < 5. 

The real and imaginary parts of the eigenfrequencies are 
plotted as functions of wavenumber k for values of shear 
parameter a = 0,1, 2 and 5 in Figs 2, 3,4 and 5 respectively. 
In the static case {a = 0), the frequencies are real for all wave- 
numbers. In Fig. 2, the solution for tí ^ 1.5 has been plotted 
alongside the analytic result for « = 0 given above. 

Shear instability in accretion discs 331 

For fl>0, the mode emerging from cr(0)= 1 still exists. 
When this mode crosses the line $R(cr) = ka, corresponding to 
the entry of a critical layer in the flow, it becomes complex. 
The imaginary part may vary either discontinuously (as for. 
a = 1) or continuously (as for a = 5) from zero at this point, 
and is always positive (corresponding to a damped solution) 
when the critical layer enters the flow. The discontinuity in 
the imaginary part of the frequency for a = \ may be a 
numerical artefact, but is of little relevance to the study of the 
instability, since it affects only the damped solutions. 

The value of 91 (a) decreases with kuntil it vanishes. This 
point corresponds to a crossing at the two modes represent- 
ing identical waves propagating in opposite directions. Both 
become standing waves [9I(<7) = 0], but one is strongly 
damped while the other is strongly unstable. At a larger 
wavenumber the modes again decouple, and 91 (cr) increases 
with the wavenumber A: without bound. 

The mode emerging from cr(0) = 0 in the static flow sphts 
into a sequence of modes emerging from the line 9Î ( a) = ka 
when ß^0. In Figs 3, 4 and 5 only the first mode in this 
sequence is represented, to avoid the plots becoming con- 
fused. These modes behave in a mannner identical to that 
emerging from a(0) = 1, in that the solution is damped when 
the critical layer first enters the flow, 91 (cr) decreases with k 
until it vanishes, a pair of damped and unstable standing 
waves occurs and then 91(a) increases without bound. 

This simple situation is complicated by the fact that dif- 
ferent modes undergo crossings at points well away from 
9î(a) = 0. Several such crossings are represented in Figs 3, 4 
and 5. In each case the value of 91(a) varies only slowly with 
wavenumber in the crossing region, and one mode is de- 
stabilized while the other is damped. For a = 1, which may be 

Figure 2. The eigenfrequency for a static layer of fluid for two 
values of the polytropic index n = 0 (dashed) and n = 1.5 (solid). The 
frequency increases with the wavenumber k. There are only four 
modes for « = 0, the homogeneous, incompressible fluid. This can 
also be seen from equation (48) in Section 4.1. From equation (52), 
it can be seen that, when n=<x>, i.e. when the fluid is isothermal, the 
number of modes is infinite for each wavenumber k. Only two 
modes are shown for the polytropic index n = 1.5, although there is 
a countable infinity of them, as indicated in Section 4.1. All positive 
real eigenfrequencies are shown; there are corresponding negative 
values as well. 
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0 1 2 3 4 5 
Wavenumber k 

Figure 3. The real part (a) and imaginary part (b) of the eigen- 
frequencies are plotted for the first two modes for a = 1.0 and 
« = 1.5. Narrow instability bands occur where the eigenvalues cross. 

0 1 2 3 

Wavenumber k 
Figure 4. As Fig. 3, but for a = 2.0. The appearance of further 
bands and more complicated interaction patterns can be seen. 

typical of a weakly warped disc, the instability occurs at a 
wavenumber of A: = 2.33 in the first standing-wave band. The 
corresponding frequency is a=-0.021121 i. Subsequent 
instability peaks decrease rapidly with wavenumber, so this is 
likely to be the global instability peak for a = 1. This corre- 
sponds to an exponential growth time r « 7.5 where 
T= 2jt/Q is the orbital period. For a = 5, a value typical of a 
relatively strongly warped disc, the instability peaks for each 
mode crossing have a similar magnitude. The lowest wave- 
number peak occurs at k^QA6, where a= -0.112782Í, 
corresponding to an exponential growth time lAT. This 
is clearly a highly dynamically unstable situation, and would 
be expected to lead to either a radical modification of the 
disc structure, or possibly local disruption if non-linear 
limiting of the disturbance does not take place. 

The behaviour of the lowest frequency modes as a 
function of the shear parameter is presented in Fig. 6. In Fig. 
6(a), a more complete picture of the mode-crossing 
behaviour is apparent. Referring to the imaginary part of the 
eigenfrequency in Fig. 6(b), it may be noted that those 
branches of a mode for which 91(a) decreases with wave- 

number generally correspond to damped solutions, while 
those for which 91(a) increases with wavenumber corre- 
spond to unstable solutions. 

The nature of the instability is understood in terms of 
mode coupling (Craik 1988). When the fluid is static, all 
modes are neutral. However, as the shear increases, the 
eigenvalues of the different modes are dragged around in the 
(a, aR) plane. When the two modes cross, an unstable mode 
begins. More precisely, the mode-coupling behaviour is 
stated as 

Dl(o)D2{o) = e(o\ (92) 

where T)1(a1) = 0, D2(a2) = 0 are the dispersion relations for 
each of the modes independent of the other, while e is the 
weak coupling that exists between them, here due to the 
finite vertical extent of the shear flow. If the mode-crossing 
(i.e. critical) frequency is ac, then writing ô = o2- ox and 
A = 0-0!, and Taylor-expanding the dispersion relation, 
gives the mode coupling equation 

a / a â\ dZ)2 A(A-ô)— r-*£. 
do do 

(93) 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 93

M
N

RA
S.

2 
60

. 
.3

2 
3K

 

Shear instability in accretion discs 333 

Wavenumber k 

Wavenumber k 
Figures. As Fig. 3, but for a = 5.0. The appearance of further 
bands and more complicated interaction patterns can be seen. 

The value of A depends on the relative signs of e, dD^fdo 
and dD2ldo. The mode crossing is denoted by A acquiring 
an imaginary part, while avoided crossings [i.e. 3(A) = 0] 
mean that there is no instability. In the simpler cases of 
incompressible flows (Craik 1988), or when the fluid is 
homogeneous (Glatzel 1988), it is possible to compute these 
relations analytically, but for the case studied here this 
approach is too complicated to be useful. 

For completeness, the eigenfunctions for the perturbed 
pressure, density, the x- and the z-velocities, the wave action 
and its vertical flux (defined in the following section) are 
presented in Figs 7-12 for the parameter values a = 1.0, 
k=233, o= -0.021121Í: the instability peak for the 1 
case. The solid line represents the real part of the eigen- 
function, the dashed line represents the imaginary part and 
the critical layer occurs at z = 0. Note that the real part of the 
vertical action flux changes in sign at the critical layer, 
lending weight to the interpretation of this instability in terms 
of the creation of wave action at the critical layer. 

Shear Parameter a 

Figure 6. The eigenvalues are plotted as a function of the shear rate 
afor wavenumber /c = 1 for the polytrope with n = 1.5. (a) Shows the 
real part and (b) the imaginary part of the eigenfrequencies as they 
are dragged by the shear. This leads to the crossings associated with 
the instability. 

6 CONCLUSIONS 

An insight into the physical basis of the instability may be 
gained from earlier work on the closely related problem 
of the stability of a uniform shear layer (treated by, e.g., 
Narayan et al. 1987). In that case also, instability occurred 
only if the flow contained a critical layer on which the pattern 
speed of the disturbance vanished. The source of this 
instability was traced to the existence of a conserved action, 
the sign of which changed across the critical layer. Conserva- 
tion of such an action clearly requires that a wave incident on 
one side of the critical layer be reflected with increased 
amphtude. The critical layer therefore acts as a ‘corotation 
amplifier’ and, with the addition of feedback by reflection 
from the fluid surface, instability is unavoidable. This 
mechanism operates in the regions both above and below the 
critical layer, each of which behaves as a pumped resonant 
cavity. 
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z 
Figure 1. The perturbed pressure eigenfunction is plotted for the 
parameters a = 1.0 and /c = 2.33. These are associated with the 
fastest growing instability for these values of the parameters. The 
solid line denotes the real part while the dashed line denotes the 
imaginary part. 

z 
Figure 8. As Fig. 7, but for the perturbed density. 

Figure 9. As Fig. 7, but for the perturbed velocity 

Figure 10. As Fig. 7, but for the perturbed z-velocity 

z 
Figure 11. As Fig. 7, but for the wave action. The imaginary part of 
the action has been multiplied by 300 to make it visible. 

In the uniform shear layer there are many modes, most of 
which are neutrally stable, with instability occurring only 
when a stringent phase condition is obeyed. In the present 
case, however, the density non-uniformity allows part of the 
(previously conserved) action to be absorbed at the critical 
layer (Drury 1985). For a neutral mode, the action is A = f/ö, 
where e is the wave energy density, 

e - p{dv2 F ôh2lc2)/2, 

and the flux is F given in Section 4.2 and satisfies, in general, 
the conservation law 

dA _ „ m\ 
—+V*F=0. (94) 
at 

The angular brackets denote the phase-averaging over one 
horizontal wavelength of the disturbance (Drazin & Reid 
1981), i.e., for a function a of perturbed variables, 

2tt f^2îl 

(a) = —- ad*. (95) 
^ Jo 
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Figure 12. As Fig. 11, but for the vertical flux of the wave action. 
Note the change of sign at the critical layer z = 0 for this mode. The 
asymmetry with respect to z reflected in the figures may be seen 
from the perturbation equation (90) and the boundary conditions. 
For o = alf the eigenvalue equation is not invariant under the trans- 
formation -z, unless - a. If the shear flow with the 
horizontal velocity profile U(z)= -az were studied, all the plots of 
the perturbed quantities with respect to z would flip accordingly. 

If £ = iP in the Ricatti equation (91 ) then, for neutral modes, 
all coefficients are real, and sgnF= sgn3(£). The integration 
is indented below the singularity at corotation, the only place 
where the sign of F can change. Thus wave action is created 
and destroyed in this layer. For neutral modes, V F=0, i.e. 
the wave action is conserved, a result particularly useful for 
the rays treated in Section 4.2. The instabihty can only take 
place when the flux is directed away from the corotation 
layer. As indicated by Narayan et al., this has the effect of 
splitting neutrally stable modes into pairs of unstable and 
decaying modes such as those described above. Thus the 
non-uniform density profile of an adiabatic shear layer is an 
additional requirement for instabihty of many modes. 
Another interpretation of the instabihty is obtained by 
writing the energy evolution equation for the modes in terms 
of the change in the wave energy density, £, and the 
perturbed velocities and pressure, where the angular 
brackets again denote the phase average: 

de 
— =-lo^e-pT>U{vW)-T>{wôp). (96) 
ot 

The second term on the right-hand side is the coupling of the 
Reynolds stress to the shear of the mean flow, while the last 
term represents the energy transport by the pressure fluctua- 
tions. The tapping of the energy in the mean flow by the 
shear can lead to instability, or decay of the mode. Written in 
terms of the perturbed enthalpy, ôh (i.e. X\ it can be seen 
that terms proportional to — Oj also contribute to the right- 
hand side of this equation. The work from the pressure 
fluctuations can be integrated out in the global effect. We 
define E as the total energy of the disturbance, i.e. as the 
integral of e over the volume of the fluid, or equivalently over 
z, where l>z^-l. Then the global energy equation 
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becomes 

dE 
dt 

z pm 

boundary 

\o\ 
(97) 

where the boundary contribution is always positive apart 
from the sign of ov The factor /takes the growth or decay of 
the waves into account, f— exp( — lorf). The wave energy is 
conserved for the neutral modes, and its time variation is an 
indicator of instability. The last term on the right-hand side 
above vanishes for the neutral mode; otherwise, together 
with the global wave energy E, it provides an indicator of 
instabihty. 

The principal conclusion of this work is that a two- 
dimensional linear shear layer, with the vertical density 
structure of an adiabatic thin accretion disc and free surface 
boundary conditions, is unstable on a dynamical time-scale. 
Note that the total shear velocity across the flow, Af, is 
related to the disc Keplerian velocity, by the expression 

« ay, where y is the disc opening angle. For a thin disc 
with y<Cl, therefore, the models treated here represent 
discs with relatively weak warping. 

The effect of this instabihty on an accretion disc is difficult 
to deduce from the simpler linear analysis described here, 
but it is clear that, in a low-viscosity disc, a <C1, the insta- 
bihty grows rapidly for disc tilt angles ß> a2. In this case, 
therefore, only an exceptionally well-aligned disc is stable. 
The non-linear development may lead to the violent disrup- 
tion of the disc, or it may introduce additional dissipation as 
it saturates, which increases the effective viscosity parameter 
a. In the earlier case, there is no guarantee that the flow 
model used here is a good representation of the local disc 
flow. Since such a disc is certain to have the basic require- 
ments of a shear flow and a non-uniform density profile, 
however, it is reasonable to expect that disruption may not 
occur if the disc is not sufficiently misaligned. 
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