THE ASTROPHYSICAL JOURNAL, 414:1.97-199, 1993 September 10
© 1993. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE EINSTEINIAN GRAVITATIONAL FIELD OF THE RIGIDLY ROTATING DISK OF DUST

G. NEUGEBAUER AND R. MEINEL
Max-Planck-Gesellschaft, Arbeitsgruppe Gravitationstheorie an der Universitit Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
Received 1993 April 30; accepted 1993 June 22

ABSTRACT

This paper presents the gravitational field of a uniformly rotating stationary and axisymmetric disk consist-
ing of dust particles as a rigorous global solution to the Einstein equations. The problem is formulated as a
boundary value problem of the Ernst equation and solved by means of inverse methods. The solution is given
in terms of linear integral equations and depends on two parameters: the angular velocity Q and the relative
redshift z from the center of the disk. The Newtonian limit z < 1 represents the MacLaurin solution of a
rotating fluid in the disk limit. For z —» oo the “exterior” solution is given by the extreme Kerr solution. This

proves a conjecture of Bardeen & Wagoner (1969, 1971).

Subject headings: black hole physics — galaxies: general — gravitation — quasars: general — relativity

1. THE PHYSICAL PROBLEM

We consider incoherent matter (dust) with the energy-
momentum tensor

T* = eu'u* )

and assume axisymmetry as well as stationarity. The motion
shall be a rigid rotation around the symmetry axis. As in New-
tonian theory we expect the only finite mass configuration
compatible with these assumptions to be an infinitesimally thin
disk where the centrifugal forces balance the gravitational
attraction.

There are two arguments in favor of a general-relativistic
treatment of self-gravitating rotating disks of dust:

1. So far no exact global solution of Einstein’s equations
describing a rotating star or any other rotating isolated matter
distribution is known. A uniformly rotating axisymmetric disk
of dust is the simplest model of an isolated rotating perfect
fluid body. Like the classical MacLaurin disk it represents a
“universal” limit for any rigidly rotating fluid ball whose
equation of state has a zero-pressure limit (vanishing ratio of
pressure to energy density).

2. Disk models play an important role in astrophysics
(galaxies, accretion disks). Hence a general-relativistic treat-
ment is desirable. Especially in view of exotic objects as,
e.g., quasars, general-relativistic disk models could become
important.

It is known from Newton’s theory that solutions with a
disklike source can be constructed from any stationary gravita-
tional potential which is singularity-free in a half-space by
joining that potential to its reflection. The mass distribution in
the disk plane and the (nonconstant) angular velocity can be
calculated a posteriori. In the same way one can find general
relativistic “disk solutions” and try to interpret the resulting
energy-momentum tensor. It will differ, in general, from the
dust tensor (eq. [17).

Unlike this we prescribe a simple but astrophysically rele-
vant matter model from the very beginning and consider gravi-
tationally interacting dust particles moving on circular
geodesic orbits of their own field. The classical analogs of these
disk solutions are known to be unstable (Toomre 1964). There-
fore some pressure (or velocity dispersion in the stellar dynami-
cal case) will be necessary to stabilize them. For a discussion of

the stability of the classical MacLaurin disks we refer to
Binney & Tremaine (1987, chap. 5). Nevertheless, as a first step,
we investigate the relativistic generalization of the zero-
pressure MacLaurin disk. Future work has to clarify how the
inclusion of pressure will affect our results. Note that we are
not interested here in “counterrotating” disks, cf. Morgan &
Morgan (1969).

Bardeen & Wagoner (1969, 1971) developed a powerful
series expansion technique for an approximate solution of the
above described problem. In this paper we want to present the
exact solution. It was gained with the aid of the inverse
(scattering) method which was first utilized for the axisym-
metric stationary vacuum Einstein equations by Maison
(1978), Belinski & Zakharov (1978), Harrison (1978), Neuge-
bauer (1979, 1980), Hauser & Ernst (1979, 1980), Hoenselaers,
Kinnersley, & Xanthopoulos (1979), and Aleksejev (1980).
Many of these authors followed the line of Geroch (1972),
Kinnersley (1977), Kinnersley & Chitre (1977, 1978), and Herlt
(1978).

It should be stressed that the inverse method is restricted to
the vacuum equations. Therefore, infinitesimally thin disks are
extremely favored objects for an application of that method.
Since the interior problem may be reduced to boundary condi-
tions it is possible to solve the global problem in this way.
Generalizations of our result without changing the solution
techniques might be possible in the following directions:

1. Models with pressure (acting only in the plane of the
disk), i.e., generalizations of the classical MacLaurin disks with
pressure.

2. Models with differential rotation.

3. Models including electromagnetic fields.

2. THE BOUNDARY VALUE PROBLEM OF THE
ERNST EQUATION

In Weyl-Lewis-Papapetrou-coordinates,’

ds* = e 2U[e®dp? + d(?) + p*de?] — e*V(dt + ado)?*, (2)

! Throughout the paper (except Fig. 2) we use units where Newton’s gravi-
tational constant G as well as the velocity of light c are equal to 1.
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the vacuum Einstein equations are equivalent to the Ernst
equation

1
(‘Rf)<;fp +f 00 +f.§<> =f,;3 +f§2 ©)
for the complex function
flp, ) =e*" +ib @)
with
e4U e4U
b,p=—7a,<; b,5=7a,p. (5)

(The metric function k may be calculated from the Ernst poten-
tial f by a path integral.) The reflectional symmetry of our
problem with respect to the plane { = 0 allows us to assume

flp, =0 =1(p, 0 (6)

and to formulate a boundary value problem for the Ernst
equation in the upper half space { > 0 (a bar denotes complex
conjugation). The boundary conditions may be taken from
Figure 1.

The quantity Q is the angular velocity of the disk (as mea-
sured by an observer at infinity) and p,, is the coordinate radius
of the disk. The “surface potential ” V, is related to the relative
redshift z from the center of the disk:

z=e Y —1. )

Note that z/(1 + z) is just the expansion parameter used in the
work of Bardeen & Wagoner (1969, 1971).

The surface density o(p) corresponding to the baryonic mass
M,,

M, = Ju“e, /—gd3x =2n Ju“a(p)p dp, ®)

cannot be prescribed beforehand but has to be calculated from
the solution:

©

1 !
a(p) 2n U, o
In the next sections we will present the result of our analysis in
two steps:

1. We calculate the Ernst potential on the symmetry axis,
f(0, (), from a linear integral equation (which we call the
“small ” integral equation).

2. From the solution of the small integral equation we
obtain the kernel of a second linear integral equation, the
“big” integral equation, whose solution provides us with the
Ernst potential f(p, {) everywhere.

¢
axis: infinity:
fw =0 f -1
disk: Po (=0,p> p,: ?
1 2V, F e
fr=¢ f=5+N)=0

FiG. 1.—Boundary conditions, f* is the Ernst potential in the corotating
frame of reference defined by p' = p,{' = {, ¢’ = ¢ — Qt,t' = t{u" = e Vo5%).
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3. SOLUTION OF THE BOUNDARY VALUE PROBLEM
3.1. The Axis Potential
On the symmetry axis p = 0 the Ernst potential is given by

flp=0,{>0)

_ L B(x)dx b a(x)dx
- |:27t - J—l ix — C/Po:l/[zn * J\—l ix — C/Po:l > (19)

where a(x) algebraically depends on f(x) and x:

(1= w)B + iy/4w’e”*"°(b] + 4Q°p}x?) — (e + w?)p?
iby — 2Qp, x

ox) =
(11)

with
w=2Q%31—-x%, bo=blp=0,{=0%, (12

and f = B/(8Q3p3e *"%) (the normalized p) satisfies the
“small ” integral equation

B=x(1 - x*+ u’DB, 13)
with
D] = —(1 = x*)f(x) — (1 — x*)CL(1 — x})Cf(¥)], (14)
and
b L)X

. X' —x

cf9 =+ 1s)

where § denotes Cauchy’s principal value. The parameter y is
defined by
u=2Q%pke 2o (16)

The solution of the small integral equation can be written in
the form of a von Neumann series,

B=(1—-pD) '[x(1 - x*)] = ioﬂz"D"EX(l -x3)]. (17
It converges for
0<p<ug, (18)

where u, is related to the first nontrivial eigenvalue of the
homogeneous equation

Bo = 15 DB, . (19)
This value is given numerically by
Uo = 4.62966184347 ... (20)

In each order (n =0, 1, 2, ...) D"[x(1 — x?)] may be expressed
in terms of elementary functions (polynomials and logarithms).

Each of the parameters V,, Qp,, and b, is a function of the
parameter  alone,

sinh 2V, = —y{l + Z—z I: —11 @ dx]z} s 1)
Q%p% = spe?’o, (22)

and
b2 =1—2ue?”o — "o, (23)

Note that b, < 0for Q > 0.
The Newtonian limit can be characterized as u < 1 and the
“ultrarelativistic limit ” is given by pu — p,.
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An interesting rigorous result is the relation
2[1 - 2Q%(p3 + {3)Ib(0, {) + (2Q¢ — bo)[e*V>? + b*(0, ()]
=2Q0+b,, (>0, (24

which connects the real part and the imaginary part of the
Ernst potential on the axis algebraically.

3.2. The Ernst Potential Everywhere
For arbitrary p, {, the Ernst potential is given by

S, )=x4=1,p0, 25)

where x(4, p, {) is a function of the complex variable A which is
normalized by y(A = —1, p, {) = 1. For fixed (but arbitrary)
values of p and { the function y(4) is regular everywhere in the
A-plane except the curve I,

oo /I:C'*'Pox_l’,
i+ pox+p
On I" the function y(A) jumps in a well-defined way:

W] - = AX)AD]+ — Bx)y(—4) . @7

The jump coefficients A(x) and B(x) (the “scattering data ”) are
algebraic functions of f(x) and x. Equation (27) belongs to a
matrix Riemann-Hilbert problem and can be reformulated as a
linear integral equation (our “big” integral equation). For
parameter values p > p* = 1.0313067... additional linear
constraints on y must be taken into consideration. This leads
to a system consisting of a linear integral equation and two
linear algebraic equations. The details will be published in a
subsequent paper.

—1<x<1 (Ri>0as (>0).
(26)

4. DISCUSSION

Here we confine ourselves to two subjects: (1) the ultrarelati-
vistic limit of the space-time of the rotating disk and (2) the
interrelationship between physical parameters as, e.g., the
dependence of the angular velocity Q on the total gravitational
mass M and the angular momentum J.

1. For p— p, the solution of the small integral equation
diverges. As a consequence V, > — o0, p, — 0 and by —» —1.
With the aid of the big integral equation it can be shown in a
rigorous way that, for p? = {2 # 0, the solution approaches the
extreme (J = M?) Kerr solution. On the other hand, the metric
in the vicinity of the disk will be obtained if the limit p, — 0 is
performed for finite (p* + (?)/p3. We refer to the interesting
discussion in Bardeen & Wagoner (1971). In our formalism this
“interior” solution can be expressed in terms of the eigen-
function B, in equation (19). The relative binding energy
(Mo — M)/M, approaches the value of 37.328358... percent in
the limit y — pq, cf. the remarkably excellent Padé approxima-
tion value of 37.323% given by Bardeen & Wagoner (1971).
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FiG. 2—Rigidly rotating axisymmetric dust in general relativity (solid line)
compared with the Newtonian case (dashed line). The latter is a good approx-
imation for GM?/cJ < 1 only. For GM?/cJ > 1 the only possible state is the
Kerr black hole where Q denotes the “angular velocity of the horizon.” The
limit GM 2/cJ — oo leads to the Schwarzschild solution (Q = 0).

2. The relations between the source parameters ¥, and Q
and the far field quantities M and J can be treated systemati-
cally in the framework of a “parameter thermodynamics,” cf.
Neugebauer & Herold (1992). The transition to the Kerr solu-
tion may provide new insights into black hole thermodyna-
mics. As an example we consider the equation of state
Q = Q(M, J). It turns out that QM depends on M 2/J alone, see
Figure 2. The rigidly rotating disk solution exists only for
M?/J <1 or, equivalently, MZ/J < 2.5459968... and reaches
its ultrarelativistic limit at M?/J = 1. (Note that the surface
mass density eq. [9] is indeed positive as 0 < p < p,.) On the
other hand, the Kerr solution is characterized by M2/J > 1.
The transition at M2/J =1 could be interpreted as a phase
transition from normal matter to the black hole state. This
transition is continuous in the “exterior ” field and in all global
(far field) parameters but discontinuous in the interior. The
dashed line of Figure 2 shows 2QM of the zero velocity disper-
sion MacLaurin disk which is given by

97[2 MZ 3
20M = s (T) , (28)
(cf. Binney & Tremaine 1987).

The authors would like to thank A. Kleinwichter for the

numerical investigation of the integral equations and the gen-
eration of Figure 2.
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