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Abstract. The solution for the precession and obliquity of the
Earth, issued from the orbital solution La90 (Laskar 1990) is
presented. This solution provides the necessary data for the
computation of insolation at the surface of the Earth from -20
Myr to +10Myr. When taking into account the tidal dissipation,
this solution presents very good agreement with the 3Myr nu-
merical integration of (Quinn et al.1991). The main source of
uncertainty in the computation of precession and obliquity of
the Earth is found to arise from the changes of dynamical el-
lipticity of the Earth which can occur during an ice age. This
change is especially important because of the existence of a
resonant effect with a secular term of frequency s¢ — g¢ + g5
resulting from the perturbations of Jupiter and Saturn. In order
to overcome this difficulty, the nominal solution is provided to-
gether with FORTRAN programs which would allow to fit the
unknown parameters of the solution to geological records.

Key words: celestial mechanics: insolation, precession — Earth
— solar system: numerical methods, resonances

1. Introduction

The insolation parameters of the Earth depend on its orbital pa-
rameters and on its precession and obliquity. Until 1988, the so-
lution usually adopted for paleoclimate computation consisted
of the orbital elements of the Earth from (Bretagnon 1974), com-
plemented by the computation of the precession and obliquity
of the Earth of (Berger 1976). In 1988, Laskar issued a solu-
tion for the orbital elements of the Earth, which was obtained
in a new manner, making use of vast analytical computations
and numerical integration (Laskar 1988). In this solution, de-
noted La88, the precession and obliquity quantities necessary
for paleoclimate computations were integrated at the same time,
which insured good consistency of the solutions. Unfortunately,
for various reasons, this latter solution for the precession and
obliquity was not widely distributed (Berger et al. 1988). On the
other hand, the quasiperiodic approximation of the orbital part
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of the solution La88 for the Earth was used in (Berger & Loutre
1991) to derive another solution for precession and obliquity,
aimed at climate computations.

Later on, Laskar issued a new solution (La90) which in-
cludes some slight improvements over the previous one. As
previously, this solution contains orbital, precessional and oblig-
uity variables, but in the paper of (Laskar 1990), only the orbital
solutions are discussed. The precession solution was also dis-
tributed several times in magnetic form, but it seems important
to present this solution in more detail in order to make it more
widely available. It also now appears that some astronomical
parameters may be improved by taking geological records into
account, and in the present paper, the solution is augmented by
some routines which allows one to test various hypotheses of
long term changes in the tidal forces due to the Moon, or in
the changes of dynamical ellipticity of the Earth. All the files
and related programs can be obtain by requesting them from the
authors at laskar @cosme.polytechnique.fr.

2. The orbital solution La90

The orbital solution La90 is obtained by the numerical inte-
gration of an extended averaged system, which represents the
mean evolution of the orbits of the planets. All the 8 main plan-
ets of the solar system are taken into account, as well as the
main lunar and relativistic perturbations. The use of numerical
integration for computing the solution of the secular system is
one of the reasons for the good quality of this solution, which
was checked by comparing with the available ephemeris over a
short time scale (Laskar 1986, 1988). In (Laskar 1988), the solu-
tion La88 was represented in quasi-periodic form over 10 Myr,
but these representations are slowly convergent, which prevents
good accuracy of the solution.

Later on, the reason for this slow convergence was under-
stood to be due to the presence of multiple resonances in the
secular system of the inner solar system (Laskar 1990). Be-
cause of these resonances, the motion of the solar system is
chaotic, and not quasi-periodic, as was first demonstrated by
the computation of its Lyapunov exponents which reaches 1/(5
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Fig. 1. Comparison of the solutions La90 (solid line) and the solution
QTD (dotted line) (Quinn et al.1991) for the eccentricity of the Earth
over the past 3Myr from J2000. The difference between the two solu-
tions is also in dotted line
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Fig. 2. Fundamental planes for the definition of the precession. E'q; and
FE'c; are the mean equator and ecliptic of the date, while E'qo and Ecy
are the J2000 fixed mean equator and ecliptic. The general precession
inlongitude, p 4 is defined as pa = A4 —Q; w = Q+w is the longitude
of perihelion from the equinox of reference 7o; w® = w + pa4 is the
longitude of perihelion from the equinox of the date v;; € denotes the
obliquity

Myr) (Laskar 1989). This implies that it is not possible to give
any precise solution for the motion of the Earth over more than
about 100 Myr, and most probably, ephemerides can only be
given with good precision for about 10 Myr to 20 Myr.

Since then, a direct numerical integration over 3Myr was
published by (Quinn et al.1991), including also solutions for
precession and obliquity, which will be denoted QTD in the
sequel. The orbital solutions QTD have been compared with
La90. The two solutions present very small discrepancies over
3Myr (Fig. 1), and the existence of the secular resonances in the
inner solar system was confirmed by this new solution (Laskar
et al.1992b). The very close agreement of these two orbital so-
lutions over 3Myr shows that both solutions are of good quality,
and confirms that the Earth parameters are now very well known
over this time span. This also insures that the orbital solution
La90 can be used with confidence over 10 Myr to 20 Myr for
paleoclimate studies.
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3. Precession and obliquity in the La90 solution

The precession quantities are completely determined by the two
motions of the equatorial and ecliptic pole (Fig 2). In our com-
putations, the motion of the ecliptic is given by the secular the-
ory La90 while the precession quantities are integrated using
the equations of the rigid-Earth theory of Kinoshita (Kinoshita
1977; Laskar 1986). The equations for the general precession
in longitude p 4, and for the obliquity of the date ¢ are then

d
% = R(e) — cote [ A(p,q)sinp4 +B(p,q)cosp]
—2C(p,q) — py D
de .
il — B(p,q)sinpa + A(p,q)cospa
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A @) = (a4 plap — piD)
p,q) = q+p(gp — pq
V1—p?2— ¢
B9 0) = —— 5 aap — p) @
p,q) = p — q(qp — pq
V1—p2— 2
C(p, @) = (qp — pd)
and :
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where p = sin(¢/2) sin(2), q = sin(i/2) cos(f2), (¢ is the incli-
nation of the Earth with respect to a fixed ecliptic, and €2 the
longitude of the node). R(e) is the secular term due to the direct
lunisolar perturbations. The quantities My, M, M, M3, and Sy
depend only on the orbital elements of the Moon and the Sun.
The principal moments of inertia of the Earth are A, A, and C,
and the angular velocity of the Earth is v . The masses of the
Sun, the Earth, and the Moon are denoted by mg, mg, and myy;
the sideral mean motion of the Sun and of the Moon by ng and
n s ; and the mean velocity of the node of the Moon by ng. The
other terms present in Eq. (3) represent the effects of the secular
variation of the ecliptic, caused by the secular planetary pertur-
bations. The numerical values of My, M, My, M3 are given in
(Kinoshita 1977):
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Fig. 4. Mean annual insolation of the Earth, for 1 Myr in the past

My = 496303.3 x 10~°
M; = —20.7 x 107°

4
M, =—-0.1 x 1076 @)
M; =3020.2 x 1076
and from (Laskar 1986),
1
So = 5(1 —e?)™3/2 - 0.522 x 107°, 5)

where e is the eccentricity of the Earth. It should be noted
that the Sy given here is equal to the quantity So — S;/2 in
(Laskar 1986). The following numerical values were also used
(see Laskar 1986, for complete references) :

v =474659981.59757" /yr

Ny =17325593 .4318"/yr

no =—69679.1936222 " /yr

ay = 384747980 .645 m (6)
k =0.017202 09895

me/(mg +mar) = 328900.5

me/mg =332946.0

The quantity p, is the geodesic precession due to the general
relativity,

py = 0.019188" /yr 7

The value of the dynamical ellipticity Fp = (C — A)/C is
obtained by adjustment at the origin J2000 to the values of the
speed of precession and obliquity given by the IAU (Grenoble
1976) :

p =50.290966 " /yr

8
g0 = 23°26/21"7448 . ®
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Fig.3. (a) Equatorial coordinates for a
point at the surface of the Earth. (b)
Equatorial coordinates for the Sun; (c)
(c) Ecliptic coordinates

Fort=0,wehave py =0, =¢g,7 = =0, and thus :

dpa

dt ©

= R(e0) — 2 ;g cOte0 — Py ,
t=0

which gives the numerical value Ep = 0.00328005. This value
may be slightly different from values obtained with other mod-
els, but it should be stressed that the value of the dynamical
ellipticity depends on the model of precession used, and is ad-
justed in order to fit the observed initial conditions for the speed
of precession and obliquity at the origin (8).

4. Computation of the insolation

The computation of the insolation quantities is now classical,
(Sharaf & Boudnikova 1967; Ward 1974; Berger 1978), but we
decided, for completeness and clarity, to briefly present them
here.

4.1. Notations

The energy crossing one unit of terrestrial surface area, normally
to the direction of the Sun, per unit time, at 1 AU (Astronomical
Unit), although not constant on billion-year time scales, can be
considered as fixed over a few millions of years and is called
usually the “solar constant,” S. In the numerical applications
of the present work, we used the value S = 1350 W.m~2. This
quantity is a simple parameter in our programs and can be easily
changed for different possible values of the solar constant. We
also neglected the secular variations of the semi major axis a
which are not present in the secular equations up to second
order with respect to the masses. Under the assumption that the
atmosphere is perfectly transparent, or in an equivalent way, if
the measure is made at the top of the atmosphere, the insolation
at the surface of the Earth will be

(r.r) . SN
W=5—7 if r.rs >0
P (10)
W=0 if 7.1 <0

where 7 is the unit vector defining the position of the surface

element on the Earth, and 7, the unit vector directed towards
the Sun. We will use the following notations:
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The origin O is taken to be at the center of the Earth. The
equatorial reference frame is (O, z, y, z) and the ecliptic refer-
ence frame (O, z,Y, Z). Ox is thus the direction of the vernal
equinox, Oz the normal to the equator, and OZ the normal to
the ecliptic. In the equatorial reference frame, (L, ¢) denotes
the right ascension and the declination of a point on the planet
surface (Fig. 3a), (¢ is thus also the latitude), while («, §) rep-
resent the same quantities for the Sun (Fig. 3b). In the ecliptic
reference frame, ((, B) are the ecliptic longitude and colatitude
of the point on the Earth (Fig. 3c).

The different elliptical elements for the orbit of the Earth
are the semi major axis a, the eccentricity e, the obliquity €, the
true anomaly v, the argument of perihelion w, the longitude of
the ascending node (2, the longitude of perihelion from a fixed
origin w = 2 + w, and the longitude of perihelion from the
moving equinox w® = p4 + w.

4.2. Mean annual insolation

The daily mean insolation at the surface of the Earth is easily
obtained by dividing the intercepted solar flux by the surface
area of the Earth of radius .72, that is

_Sx# _ 8
TP AngRr 4pt

am

an

The mean annual insolation is then obtained by integration
over a full orbit of the Earth

1 [ s

Wam = — —
o 0 4p2

dM 12)

where M denotes the mean anomaly. This is easily com-

dv a? 3
= —V1—e* (v is the true
T

ted using th law —
puted using the area law —

anomaly) and gives

S
Wam = 71 - )12 (13)

The mean annual insolation depends thus only on the ec-
centricity of the Earth, and its variations over 1 Myr are given
in Fig. 4. It should be noted that these variations are very small,
as they depend on the square of the eccentricity. In fact, this is
not the main paleoclimate quantity, and it was recognized by
Milankovitch (see Imbrie 1982) that the summer insolation at
high latitudes had a larger influence on the climate of the past.
If the insolation in summer is not high enough, the ice does not
melt, and the ice caps can extend. This is why it is also important
to compute the daily insolation at a given point on the Earth.
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4.3. Daily insolation as a function of the latitude

The daily insolation at a given latitude on the Earth is the mean
insolation during a full rotation of the Earth, for a location of
given latitude ¢. The orbital distance in units of the semimajor
axis is

T 1—¢é?

p=a_1+ecosv' (4
In the equatorial frame, one obtains easily (Fig. 3) :

T =(cos¢cos L, cos¢sin L, sin ) 15)

75 = (cosé cos a, cosbsin a, siné)

thus

T .75 =sin¢sin 8 + cos ¢ cos § cos(L — @) . (16)

The insolation is null when the Sun is on the opposite side
of the Earth, that is, when the scalar product 7 .7, is negative.
We have

T >0 <= cos(L—a)> —tan¢tané 17)

where the equalities holds for sunrise and sunset. Different cases

can occur:

a) 1 < —tan ¢tan§: in this case, we have always 7.7,
and the Sun never rises.

b) —1 > — tan ¢ tan §: in this case, we have always 7.7,
and the Sun never sets.

¢) -1 < —tangtané < 1 : In this case, there exist sunrises
and sunsets and it is convenient to introduce the horary angle
of sunset and sunrise Hy € [0, 7] defined by cos(Hy) =
— tan ¢ tan §. We thus have '

< 0:

>0

Tl >0 = —Hy+a<L< Hy+a. (18)

To each of the three previous cases corresponds the follow-
ing expression for the daily insolation at a point on the Earth with
a given latitude ¢, obtained by averaging over the longitude:

AR (19)

S
(b) _ . .
W;§ = —p2 sin ¢ sin § (20)

W](;) = iz(Ho sin ¢ sin 6 + cos ¢ cos 6 sin(Hy)) .
TP
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The declination of the Sun ¢ is obtained through the true
longitude of the date w, (measured from the moving equinox)
as sin § = sinwy sin €. In particular, one can compute the daily
insolation for the summer solstice (wq = 7/2 ) and for the winter
solstice (wg = 37/2).

Some other insolation quantities appear in the paleoclimate
literature, as monthly or annual averages, but they can all be
easily deduced in a numerical manner from the previous ones.
A remark should be make at this point, as otherwise some confu-
sion could occur. For a given date ¢, the parameters of the Earth
are all determined, including its longitude. Thus, theoretically,
it should be sufficient to give the date ¢, and the computation of
the insolation could be carried out. But in fact, it is useless to
keep track of the position of the Earth along its orbit. Indeed,
during one year, the elements of the orbit as well as the obliquity
and precession will barely change. It is more important to know
the different values of the insolation for different positions of
the Earth along its orbit with respect to the location of the vernal
equinox, which regulates the seasons. This is why, practically,
we use one time ¢ for defining the slowly changing parameters
like the elements of the orbit and orientation of the Earth, and
introduce a second, local time Ay, which indicates the position
of the Earth along its orbit, that is, the date in this local year,
which will be given as the mean longitude from the equinox at
time ¢, and which will range from O degrees to 360 degrees. The
mean longitude \; can be related to the true longitude of date
wg = w® + v through the Kepler equation

E—esinE=X —w*, (21)

where E is the eccentric anomaly, and its relation to the true
anomaly v is given by:

coskE —e

cosv = 22)

1—ecosE

Monthly insolations are also used. In this case, a month will
correspond to a length of 30 degrees in mean longitude A4 (the
mean longitude is proportional to the time), starting with the
vernal equinox. Sometimes in the literature the vernal equinox
(Ag = 0) is given by the conventional date of March 21, and
referred to as "mid-month”, but our feeling is that these con-
ventions, trying to define some arbitrary calendar dates, should
be avoided as they generate confusion. We will thus stick to dates
given by the mean longitude from the equinox of the date \4. In
Fig. 5, the variations of the insolation at 65 degrees of northern
latitude are given over 1 Myr in the past, for Aq = 120 degrees
(summer). It can be seen that these variations reach about 20%
and are thus much more important than the variations of the
annual mean insolation given in Fig. 4.

5. Integration of the precession equations

The Egs. (1) give a solution for precession and obliquity in
agreement with the requirements of highly accurate ephemerides
over a few thousand years (Laskar 1986), but their form is not
well suited for numerical integration over an extended time span,

J. Laskar et al.: Insolation of the Earth from -20 Myr to +10 Myr
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Fig. 5. Mean daily insolation of the Earth, at 65N, and Aq = 120 degrees
for 1 Myr in the past

as the precession angle, p 4 will accumulate too much and could
introduce some numerical errors. Another problem is the inde-
terminacy of p 4 when the obliquity goes to zero (hopefully, this
will not happen for the Earth !). This leads us to change the form
of the equations slightly. Let

R'(e) = R(e) —2C(p,q) — pg

) 23)
X =sinee4 ;
then Eq. (1) become
dx .., .
— = iR (e)x + cose(A(p, @) — iB(p, q)) . (24)

dt

With this formulation, which is only useful whene < 7/2, it
appears more clearly that the system is an oscillator with proper
frequency R'(¢), excited by the secular change of orbital plane
given by (A(p, q) — #B(p, q)). We have

2
i +C5(6 cos? e —1)+C4Sy cos e, (25)
€

R(e) = Ci cose+(C) ¢

with the numerical values obtained with the constants (6)

C, = 37.526603 " /yr
C, = —0.001565 " Iyr
Cs = 0.000083 " /yr
C, =34.818618 " /yr .

(26)

A usual way to integrate these precession equations is to use
some quasiperiodic expression for the eccentricity of the Earth
and for the inclination, and then to integrate the equations by per-
turbation methods. As was stated before, this method presents
severe drawbacks. The first one is that in the analytical resolu-
tion, one has to truncate the solutions, but the most important
problem is the fact that quasiperiodic expressions do not ap-
proximate the orbital solutions for the motion of the Earth very
well, as this motion is chaotic. Even over 5SMyr, the presence
of the strong secular resonances between the Earth and Mars
prevents a good quasiperiodic approximation of the orbital so-
lution of the Earth. This can be easily understood by looking

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993A%26A...270..522L

FTY93ACA © ~Z70: .

J. Laskar et al.: Insolation of the Earth from -20 Myr to +10 Myr

A+iB
T T T T —
S3
S4
-6 \ / -
[ S6 82 S1
I NN
7 - T
b
gL
g '
g
3 s —¢ge + 95 \
3] ok ‘ ]
\ ‘ 1
10 |- \ ' : -
.11 L L “ i H‘| m ! JL \| l\ ! “ ‘
-100 -50 0 50 100

frequency (arsec/year)

Fig. 6. Fourier spectrum of A(p, q) + ¢B(p, q) over 17 Myr obtained
with a Hanning filter (Eq. 31). Only the main secular frequencies of
the solar system can be identified, as well as the small isolated term
S6 — g6 + g5

at the Fourier spectrum of the A(p, q) + iB(p, q) function, ob-
tained from the solution La90 over 17 Myrs (Fig. 6). In this plot,
the logarithm of the spectrum amplitude is given against the fre-
quency, expressed in arcseconds per year. Several peaks are well
identified, as they correspond to the main secular frequencies g;
and s; of the solar system, but very quickly, when one wants to
go further than this crude approximation, one encounters lots of
unidentified spectral lines which arise because of the presence
of the secular resonances and because of the chaotic behavior
of the solution. Indeed, the spectrum looks nearly continuous
in several places. Nevertheless, a quasiperiodic approximation
of A(p, q) + iB(p, q) will still be very useful for the qualitative
understanding of the solutions.

The equations for precession were first integrated numeri-
cally at the same time as the orbital elements La90, but it appears
that the orbital elements were in fact much more reliable than
the precession quantities. In fact, several factors are not very
well known which can induce sensible changes in the preces-
sion and obliquity solutions. We thus decided to make available
to the community of researchers in this field, not only a solu-
tion for orbital and precessional motion, but also a complete
package which enables anyone to change slightly the model
of precession and the related constants in order to test the so-
lution against some possible precise observations arising from
geological records.

The computation of the precession and obliquity is a much
simpler task than the computation of the Earth orbital elements,
and we found that it could be very useful to provide the means
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for anyone to undertake these computations on an average com-
puter.

The method to be used is to provide a file for the orbital
parameters of the Earth, k, h, q, p defined as

k = ecos(w)

h = e sin(w)

q = sin(i/2) cos(£2)
p = sin(¢/2) sin(QY) ,

@7

where e is the eccentricity of the Earth, ¢ denotes its inclination,
w the longitude of perihelion, and (2 the longitude of the node
with respect to the fixed ecliptic and equinox J2000. These pa-
rameters are given every 1000 years, counting from J2000. We
decided to provide the solution for 20 Myr in the past, and 10
Myr in the future. The precision should decrease after 10 Myr,
but it seems that it could be used in the —10 Myr to —20 Myr
range for qualitative studies.

The equations to be integrated numerically are the preces-
sion Egs. (24). As the main frequency of the precession is about
50 "/yr, which corresponds to a period of about 20000 years,
the stepsize to be taken in the Adams multistep method which
we used is on the order of 200 yr. Using a multistep method,
one also needs a starting table which will be constructed using
a Runge Kutta scheme of order 8 (RK8(7)), as given by (Hairer
et al.1987). This implies computing the orbital elements for all
values of time, and they were obtained from the files of the
positions every 1000 years by using interpolation polynomials
of order 7. We also need the computation of the derivatives of
p and q, which are obtained in a very accurate way using the
central difference method of (Mineur 1952).

Once this preliminary work is complete, the numerical inte-
gration is rapid; this led us to carry out several experiments on
the possible changes in the model of precession, in order to test
its reliability (Sect. 7).

6. Frequency analysis

The frequency analysis is a numerical method developed by
J. Laskar for the analysis of the stability of the solutions of a
conservative dynamical system, based on a refined numerical
search for a quasiperiodic approximation of its solutions over a
finite time span (Laskar 1990, 1992; Laskar et al.1992a). If f(t)
is a function with values in the complex domain, obtained nu-
merically over a finite time span [—7", T'] the frequency analysis
algorithm will consist in the search for a quasiperiodic approx-
imation for f(¢) with a finite number of periodic terms of the
form

N
ft) = Z anetrt

k=1

(28)

The frequencies oy and complex amplitudes a;, are found
with an iterative scheme. The quoted papers fully describe this
method, which we will only outline here. To determine the first
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frequency o1, one searches for the maximum of the amplitude
of

P(0) = (f(1), ") 29)
where the scalar product {f(t), g(t)) is defined by
1 T
(f@), 9®) = — / fHatxadt, (30)
2T J_r

and where (t) is a weight function, that is, a positive function
with 1/27 | TT x(t)dt = 1. In all our computations, we used the
Hanning window filter, that is
x(@) =1 +cos(nt/T), 3D
although some other weight functions could be used. Once the
first periodic term e is found, its complex amplitude a; is
obtained by orthogonal projection, and the process is started
again on the remaining part of the function f;() = f(t)—a;e'®.
As all the different functions e*“** are not orthogonal, it is also
necessary to orthogonalize the set of functions (e**t),, when
projecting f iteratively on these e*7x?,

If f(¢) is a quasiperiodic function, like the regular solution
of a Hamiltonian system, f(t) can be written in the form

fO =) age™t,

k=1

(32)

where the ay, are of decreasing amplitude. The expression for
the approximation f(t) obtained by frequency analysis is then
very close to the original function. This means that the a; and
oy are very close to the oy and vy, which would not be the
case with a simple FFT. For regular solutions, and when the
coefficients a; decrease rapidly, the algorithm allows a very
accurate determination of the frequencies of largest amplitude,
several orders of magnitude better than with a simple FFT. This
refined method is very powerful in the analysis of the dynamics
of conservative dynamical systems of many degrees of freedom
(Laskar et al.1992a; Laskar 1992).

The analysis of the spectrum of the orbital solution of the
Earth is important, as it could reveal the existence of some small
terms which might be in resonance with the main precession
frequency, which is about 50”/yr. Indeed, one can see a well
isolated peak in the FFT spectrum of Fig. 6, which by frequency
analysis has a frequency of —50.3021” /yr, and can be identified
with no doubt as sg — g¢+ g5, Where gs and gg are the secular fre-
quencies usually related to the perihelion of Jupiter and Saturn,
while s¢ is related to the node of Saturne. The full application
of the frequency analysis algorithm gives a quasiperiodic ap-
proximation of A(p, q) +¢B(p, q), and is given in Table 1. In this
table, only the 12 largest terms are given, and the 13th term is
the s¢ — g6 + g5 term which was added because of its dynamical
importance, which will be analyzed in more depth in Sect. 7. In
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Table 1. Quasiperiodic approximation of A +¢B obtained by frequency
analysis over 18 Myr. The 12 Major terms are listed as well as a smaller,
well isolated term, due to the perturbation of Jupiter and Saturn. A +
iB =~ Z;::l Ay e @rtx) (the Ay, are expressed in yr—1).

k ow(lyr) Ak x 108 G
1 53 ~18.8504  1.616070  151.724
2 4 177544  0.691588  199.002
3 183016  0.478868  176.641
4 s6 263302 0.340738 37.294
5 51 —5.6128 0274325  270.479
6 —19.3997  0.286930  305.514
7 $ ~7.0772  0.237068 9.899
8 ~19.1251  0.165838 46.398
9 ~6.9564  0.132989  199.316
10 —7.2037  0.112089  176.470
11 —6.8283  0.108391  233.037
12 —5.4892  0.080168  289.422
13 86— g6 +gs 503021  0.001043  120.161

fact, the algorithm stops automatically, when the periodic terms
are no longer considered relevant.

The approximation made with this quasiperiodic expression
is not very precise, as can be deduced from the bad conver-
gence of the amplitude of its terms, but it gives the most im-
portant terms, and going much further may not be dynamically
very significant. Indeed, among these leading terms, there are
already very complicated dependencies of the periodic terms
which result from the secular resonances in the inner solar sys-
tem (Laskar 1990). The only terms which are simply identified
are the periodic terms corresponding to the linear part of the sec-
ular solution, that is, the terms of frequencies s3, 4, Ss, S1, 2.
The other terms will be denoted by their generic frequency o;.
The extra frequency s¢ — gs + gs, resulting from the Jupiter
and Saturn perturbations will be denoted by f. It should be
stressed that in the La88 solution, which was given uniquely as
a quasiperiodic approximation, this last term was not present
due to its small amplitude. This would be of no importance un-
less, as presently, it appears to be nearly in resonance with the
main frequency of precession.

In this work, we preferred to use numerical integration of
the precession equations rather than perturbation methods with
trigonometric series. The essential reason for this was already
stated, and is the fact that the solutions for the orbital elements
of the Earth are not quasiperiodic, and moreover are not con-
veniently approximated by quasiperiodic expressions over the
long span of time of a few million years which we consider in
this work. Moreover, very small periodic terms, like s — g¢+gs,
which have been neglected in quasiperiodic approximations
may have some importance due to the resonance effect. All
this favors numerical integrations, especially when these nu-
merical integrations can be carried out on averaged equations
and are thus very easy to undertake. Nevertheless, the orbital or
precessional solutions are still not very far from quasiperiodic
solutions over a limited time, and it is useful for the dynam-
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Table 2. Quasiperiodic approximation of x = sine e’P4 obtained by
frequency analysis over 18 Myr.

34

X®)~ Y Bre'stn
k=1

where the By, coefficients are dimensionless. In column two, the terms
wich are well identified are given, expressed in terms of the secular
frequencies g; and s; of the solar system, of the fundamental precession
frequency p, and of the resonant frequency f = ss — g¢ + gs. The other
terms can also be expressed in terms of the frequencies oy of A +iB
(Table 1) which might result from more complicated interactions.

v Iyr) By

k Yr(deg)

1 P 50.4712 0.392066 7.718

2 f 50.3017 0.033291 329.456

3 2p— f 50.6408 0.032118 226.240

4 —83 18.8507 0.011062 298.608

5 —S4 17.7533 0.004573 248.612

6 —S6 26.3302 0.003191 52.704

7 —03 18.3011 0.003258 272.424

8 p+gs—ogs 49.9245 0.002234 359.588

9 ptgi—gs 51.0199  0.002173  200.934
10 —06 19.4005 0.002030 146.363
11 50.8342 0.001956 139.149
12 2p + s3 82.0908 0.001388 254.778
13 —81 5.6120 0.001284 176.832
14 50.1600 0.001285 2.051
15 —03 19.1255 0.001120 43.820
16 —82 7.0773 0.001136 82.426
17 p+g2—gs 53.6768 0.000902 173.456
18 p—ga+gs 47.2655 0.000899 21.803
19 p+gs—q 49.1217 0.000679 98.474
20 p+g1—gs 51.8203 0.000674 96.179
21 —09 6.9492 0.000635 231.817
22 —0o10 7.1961 0.000536 258.246
23 2p + sS4 83.1895 0.000551 307.846
24 —on 6.8259 0.000519 208.423
25 2p + s6 74.6121 0.000501 142.458
26 18.9599 0.000445 261.476
27 2p + 03 82.6417 0.000387 284.322
28 —0o12 5.4865 0.000369 153.860
29 49.7240 0.000353 238.712
30 18.5455 0.000319 131.224
31 48.6168 0.000315 116.498
32 52.3235 0.000312 74.288
33 82.2652 0.000266 122.071
34 81.9390 0.000256 252.485

ical understanding of the solutions to also obtain the leading
terms of a quasiperiodic approximation of the solutions of the
precession equations.

The results of the frequency analysis of the precession solu-
tion, or more precisely of x(t) = sin e(¢)e’P4®, are given in Ta-
ble 2. This time, the frequency analysis provides us many more
terms, and most of these can be easily identified as combina-
tions of the periodic terms from Table 1, of the main precession
frequency p = 50.4712 ”/yr, and also of some of the periodic

529

terms coming from the eccentricity solution of the Earth, and
involving the secular frequencies of the planets perihelions g;.

In fact, the quasiperiodic approximation given in Table 2
converges quite well, and its use gives a fair approximation of
the precession and obliquity over a few million years, although
for precise use, we would better recommend the direct use of the
numerical solutions. The differences between this quasiperiodic
approximation and the numerical solutions are plotted in Fig. 7
over 18 Myr in the past, which corresponds to the time interval
on which the frequency analysis is performed. It should be noted
that the precision of this approximation decreases at the edges
of the time interval.

In the solution given in Table 2, it should be stressed that
apart from the first term, which represents the linear part of the
precession solution, the next two terms are the terms related to
the frequencies f and 2p — f which come from the very small
term given as oj3 = f in Table 1. We can see very well here
that the resonance with the main frequency of precession p has
very much increased the effect of this small exciting term due to
the perturbations of Jupiter and Saturn. The next terms are due
mostly to perturbations from Mars, and the 7th term is related
to o3 and depends on the secular resonance between Mars and
the Earth.

7. Testing the model of precession

In this section, the solution of the precession is studied against
several possible changes in the model. In particular, the tidal
terms and passage through resonance are analyzed.

7.1. Effect of the tidal dissipation

In the first computation of the precession quantities, in the La88
or La90 solutions, no tidal terms for the Moon were included
in the equations. When we made the first comparisons with the
numerical integration of Quinn et al.(1991), it appeared that
the orbital elements of all the planets, and in particular of the
Earth, were in very good agreement (Laskar et al.1992b), while
precession and obliquity solutions presented a small shift in
phase (Fig. 8a). These discrepancies are small, but we needed
to understand their origin, and we suspected that they arose from
the introduction of the tidal dissipation term in the solution QTD.
With our new package for computing the precession, such a test
can be easily done, and we can introduce the tidal dissipation
terms which were used by (Quinn et al.1991) in our solution.

The tidal dissipation resulting from the action of the Sun
and the Moon on the Earth induces slow changes in the speed of
rotation of the Earth (v), and in the mean motion of the Moon
(npr). If the rate of this slow change is assumed to be constant
over the period considered, and denoting by vy and vy the
values of v and v at the origin of date (J2000), we obtain
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obliquity (degrees)

Fig. 7. Solution of the obliquity
of the Earth (in degrees)

from -18 Myr to OMyr and
differences (+21 degrees)
between the solution obtained

time (million years)

vy
v =1y (+—1)
)

(33)

nM='I’LM()(1+n—MQt).
N0

In our comparisons, we used the same values of i and
Tipzo Which were used by (Quinn et al.1991), that is iy/vy =
—4.610~ 8571, as given by Dyckey & Williams (1982), and
the relation g = 5170 issued in Lambeck (1980). The dif-
ferent coefficients C; of Egs. (3) and (25) are thus changed in
the following way: C; and C, are proportional to Ef Dn%\,, /v, Cs
is proportional to (Epn3,/v)?, and the solar term Cy is pro-
portional to Ep/v. But the dynamical ellipticity Fp itself is
proportional to 2, which gives the following dependence of
the coefficients C;:

Cy = Cro(1 + 22 1)1 + 2720 4y
0] nnpo

Cy = Coo(1+ 2 41 +22M0 4
n
140) MO (34)
Cs = Cxo(1+ 22 121 +22M0 4y2
140) nypo

Cy=Chp(1+ ul t).
)

With these modifications, we obtain the solution plotted in
Fig. 8b, where it can be seen that the discrepancies with QTD
over 3Myr have nearly disappeared (the solutions are only plot-
ted on the -2Myr to -3Myr interval where the differences are
most important).

Looking at Fig. 8b, one may be tempted to conclude that the
solution for the obliquity and precession of the Earth is now very
well determined over time span extending to several millions
years. Unfortunately, the very good agreement of Fig. 8breflects
more our ability to integrate properly the same physical model,
using very different methods, over such long time scales. Indeed,
when entering an ice age, the tidal dissipation is supposed to be
much smaller than the present value. We should thus expect

by numerical integration of

-5 0
Eq. 24, and its quasiperiodic
approximation given in Table 2
25 . —— —— .
c (@ ]
. 24F -
o N
3 s
s =
3’ r 4
s, 22 4
g u ]
I ]
21 fr; 2
20 E L L M| I ]

-2600
time (1000 yrs)

obliquity (degree)

-2600 -2400
time (1000 yrs)

Fig. 8. Comparison of the solution of the obliquity of the Earth of the
present paper (solid line), with the solution QTD. The differences of the
two solutions are plotted on the line of ordinate 21 degrees: (a) without
any the tidal dissipation term; (b) including the tidal contribution given
in Eq. 34

the exact solution to be somewhat in between the two solutions
given in Figs. 8a and 8b. Moreover, some other uncertainty can
also result from the passage into an ice age, which result from
change in the dynamical ellipticity.

7.2. Changes in dynamical ellipticity during an ice age

In the frequency decomposition of the A(p, q) + ¢B(p, q) plan-
etary forcing term, we found the periodic term of frequency
f =86 — g +gs = —50.3021 ”/yr, which could enter into res-
onance with the precession frequency which was found to be
p = 50.4712 " Iyr, corresponding to a period of 25678yr. The
amplitude of this term in A(p, q) + ¢B(p, q) is not very large,

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993A%26A...270..522L

FTY93ACA © ~Z70: .

J. Laskar et al.: Insolation of the Earth from -20 Myr to +10 Myr

(0.104 x 10~®) compared with the leading term related to s3 of
amplitude 0.1616 x 107>, but this term is very close to reso-
nance, and it appears in the solution in x as the second periodic
term (Table 2).

We thus wanted to see what could be the effect of an exact
resonance with this small periodic term (some modeling of the
effect of the passage into resonance was already made in Ward
1982). In order to do this, we have sligthly changed the value of
the dynamical ellipticity of the Earth, keeping fixed the angular
momentum. This is what can happen for example during an ice
age, where the redistribution of the ice changes a little the dy-
namical ellipticity of the earth. According to Thomson (1990),
the redistribution of the ice at the surface of the Earth during an
ice age induces a change in the inertial momentum of the Earth
§C/C ~ —15.105 1075, while §(C — A) = 36C/2. On the other
hand, the angular momentum v C' of the Earth remains constant.
Let v = Ep/v; we obtain finally, for the changes during an ice
age

6 36C 1

d=Z (35)
Y 2 C ED

which gives 677 = —6.9 10~3. This change induces a change in

the precession frequency of about —0.35 ”/yr, which is much
more than the necessary change to drive the precession into reso-
nance with the s¢ — gg+gs perturbation term. We have integrated
over 18 Myr the precession equations for various values of the
parameter v = Ep/v around the nominal value 7y, obtained
with the present values of Ep and v, ranging from 0.9940 ~, to
1.0015 yp. For each of these integrations, a frequency analysis
gives the precession frequency with an estimate of the preci-
sion of the determination of this frequency (Fig. 9a). The fre-
quency changes regularly outside of the resonance, which effect
is clearly visible. The minimum, mean, and maximum value of
the obliquity obtained over 18 Myr of integration with these
different values of -y are plotted in Fig. 9b. The passage through
resonance is also clearly visible and lead to an increase of the
maximum obliquity of the Earth of about 0.5 degrees. The small
perturbation term s¢ — g + g5 can thus be of great importance
in the computation of the past insolation of the Earth, as very
small changes can make the solution enter into this resonance.

On Fig. 10 is plotted the behaviour of the obliquity from -3
Myr to +1 Myr for the actual adopted value of 7y, and also for
the possible value v = 0.9977+y which can be reached when
entering an ice age (dotted line). The two solutions appear to
be very different, presenting a shift in phase, but also a sensible
change of amplitude after 2Myr. These differences are much
larger than the effect of the tidal dissipation presented in Fig. 8.

The uncertainty on the possible changes of dynamical ellip-
ticity resulting from entering an ice age thus appears to be the
main obstruction for the computation of a precise solution for
the precession and obliquity of the Earth over several million
years. One possible way to overcome this difficulty would be to
modelize more completely the passage through an ice age, and
to try to fit this complete model to the geological data.
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Fig. 9. Passage into the ss — gs + g5 resonance. Several integrations
are made over 18 Myr with  ranging from 0.9940~, to 1.0015vo.(a)
Frequency of precession p. The vertical bars are the estimates of the
precision of the measure given by the frequency analysis.(b) Maximum,
mean, and minimum value of the obliquity over 18 Myr

7.3. Other possible change

With our tool which allows so easy integrations of the equations
of precession, we also carried out a more dramatic experiment.
Without changing any of the parameters of the Earth, we sud-
denly suppressed the Moon ! As was already forecasted by Ward
(1982), the change in obliquity increases very much, ranging
from 15 degrees to more than 30 degrees (Fig. 11a), with a cor-
responding dramatic change of the insolation in summer at 65
degrees of northern latitude (Fig. 11b). This is due to the fact
that when the Moon is not here, we have C1 = C, = C5 = 0
in (6), and the fundamental frequency of precession decreases
very much to 15.6 “/yr, which is now very close to the leading
frequencies of the inclination periodic exitation. In this crude
experiment, the climate of the Earth will be changed in a large
extend, if one admits that the changes of insolations in the past
(negative time of Fig. 11b) are responsible for the existence of
the ice ages. A more detailed analysis of this problem is under
study.

8. Conclusions

In the present work, we provide a simple way to obtain practi-
cally the solution for precession and obliquity from a numerical
solution of the secular evolution of the orbit of the Earth sam-
pled every 1000 years. The orbital solution La90 used here was
computed over 200 Myr, but due to the chaotic behavior of the
solution, it should give a reliable solution for the Earth only
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Fig. 10. Comparison from -3Myr to +1Myr of the obliquity solution of
the Earth obtained with the current value 4o of v = Ep /v, and with
the value v = 0.9977, which can be reached during an ice age (dotted
line). The difference (+21 degrees) is also plotted in dotted line

over 10 to 20 Myr which should be enough for most paleo-
climate computations. Over much longer time span, reaching
100 Myr, there is no hope to obtain such an ephemeris, due to
the chaotic behaviour of the solar system. This orbital solution
La90 is also in very good agreement with the recent numerical
integrations over 3 Myr of (Quinn et al.1991).

The status of the solution for obliquity and precession is
somewhat different. As the orbital solution is not quasiperiodic,
perturbations series should be avoided for the computation of
precise solutions for the precession and obliquity, and the solu-
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Fig. 11. Changes in obliquity (a) and insolation at 65N (Aq = 120 deg)
(b) resulting from the suppression at ¢t = 0 of the Moon. The Moon is
present from -1Myr to 0, and absent from 0 to +1Myr

tion presented here was obtained with a numerical integration of
the precession equations, using the orbital solution La90 for the
Earth. This allows to take into account very small periodic terms
which may enter into resonance with the main precession fre-
quency. For the understanding of the dynamics of the solution,
a frequency analysis provides a quasiperidic approximation of
the final solution, revealing the effect of the resonant terms.

The comparisons over 3 Myr with the solution QTD from
(Quinn et al.1991) present some small discrepancies which are
removed when taking into account the same tidal dissipative
term which was used by (Quinn et al.1991), but these terms
corresponds to the present value of the tidal dissipation, while
the actual dissipation over 3 Myr is supposed to be smaller dur-
ing the ice ages. Moreover, during the ice ages, there could be
some changes in the dynamical ellipticity of the Earth which
induces much larger changes in the precession and obliquity
(Fig. 9). The recent passage trough ice ages during the previous
few millions years can also induce changes resulting from the
resonance of the main precession frequency with a small peri-
odic term due to the perturbation of Jupiter and Saturn, which
can cause changes in obliquity as large as 0.5 degree.

These reasons limit deeply the possibility for obtaining a
solution for the precession and obliquity of the Earth over a
time span of several million years, contrary to the solution fo
the orbital motion of the Earth which can be considered as reli-
able over 10 to 20 Myr. For this reason, we decided to provide a
nominal solution for the precession and obliquity from -20 Myr
to +10 Myr, with no tidal term, and with the present value of
the determined dynamical ellipticity, but we also provide to the
interested community a complete set of FORTRAN routines,

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993A%26A...270..522L

522

FT993ACA © “Z700 ™!

J. Laskar et al.: Insolation of the Earth from -20 Myr to +10 Myr

which would allow anyone to change some of the main param-
eters for the computation of the obliquity, precession, and inso-
lation quantities. These routines can be obtained by request to
the first author at laskar@cosme.polytechnique. fr.
It may be the opportunity for trying to fit the unknown param-
eters to some precise geological data.
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