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Abstract. A method for numerical integration of the N-
body problem is carried out and described in this paper,
the solution obtained being expanded into Taylor series of
high orders with the aid of recurrent formulae. An easy to
use Fortran program having been written, the accuracy of
this method is then tested integrating some planetary
problems with respect to time, in a direction and its re-
verse, such as:

(a) The nine major planets in translation around the
Sun are integrated over intervals of 40000 d with a near
constant integration step-size of 4 d. The results are com-
pared to the ephemeris DE200 of the JPL (Standish
1982a), to which the relativistic perturbations and those
due to the Moon and minor planets were first subtracted.
Differences of about 10~ 1% AU are obtained on the rectan-
gular coordinates of all the planets.

(b) In the same way, the eight first major planets (Pluto
is excluded) are integrated over intervals of 1000 yr and the
results especially estimated on the mean longitudes. An
accuracy of 070025 is reached on Mercury.

(c) The four outer planets (Jupiter, Saturn, Uranus,
Neptune) are integrated over intervals of 6000 yr with
a near constant integration step-size of 400 d. It is shown
here that the results got by the numerical integrations of
Schubart & Stumpff (1966) are improved by a factor of
about 15.
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1. Introduction

Apart from Gauss Jackson or Runge-Kutta methods, usu-
ally applied in order to solve numerically celestial prob-
lems, we can also seek solutions expanded in terms of
power-series in time. Since Steffensen (1956), several
authors have used such methods before as e.g. Broucke
(1971), Black (1973), Roberts (1975) for the N-body prob-
lem, Roy et al. (1972), Moran (1973), Emslie & Walker

(1979), Schwarz & Walker (1982) for the two-body and
three-body problem and these works have been tested by
Fox (1984).

In this paper we carry out and we test a similar numer-
ical integration using Taylor series expansions as follows:
We begin by presenting the differential equations of the
N-body problem written with the aid of auxiliary vari-
ables; we explain the computation of the successive deriv-
atives of the coordinates, ie. as their direct calculation
becomes quickly very difficult, we carry out recurrent
formulae that allow to obtain easily developments into
Taylor series of high orders, and then we give the final
calculation of the solution.

Then, in order to test the accuracy of this method, we
integrate different planetary problems with respect to time
in a direction and its reverse, and we compare our results,
either to the JPL DE200 ephemeris (Standish 1982a), or to
those got by the numerical integration program of
Schubart & Stumpff (1966). This is the main object of this
paper.

2. The N-body problem

Let us consider, as point masses, N bodies Py, P,,...,
Pv-1) with their respective masses mg,m;,...,my_ 1,
and let P, be the origin of the rectangular coordinates
system, we study the relative motions of the (N — 1) others
bodies P; around Py, i=[1,2,...,(N—1)].

Within this frame, and with classical notations, r; and #;

are the position and velocity vectors of the body P;,
ri=(X, yi» Zi), Fi=(X;, Yi, 23);

R; is the distance between the body P; and the origin body
PO,

RE=(xi +yi+z),

and A;; the distance between the bodies P; and P;,

A i=0G—x) 2 +(y;— i) +(z;—2)?]
j=[L2,...,(N=1], j#i.
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2.1. Differential equations

The differential equations of motion of P; are

. r;
ri= '—1<("}’l()-*‘m,)R—l3

r;) rj
*ZK [Af, Rf]’

J#l

(1

where K is the square of the Gaussian constant.

Let us now define 3 (N — 1)(N —2) auxiliary variables r,
by
(r,—r,)=r, with g>p,
p=I[1,...,
up to and including (N —1), g=[2,...,(
I=(N—=p)+--+(N=1)+(qg—p)

and varies within the range [N,N+1,...,
=L N(N-1).
Therefore the quantities (r;—

l,p.q>0,

(N —2)1, and p being fixed, g varies from (p+1)
N-1)]

N'] with N’

r;) of Eq. (1) can be

written:
if j>i,
I=(N=i)+--+(N=1+({—i),
(rji—r)=r. (2)
if j<i
(rj—ri)=—(ri—r)),
[=(N—=j)+ -+ (N =1) +(—))
("j—"i)=“"‘t-
Then, Eq. (1) will take the general form
=—Z g N'=&N2_—”, 3)

where y; , are real constants and

R}=R} whenn=i=[1,2,...,(N-1)],
R}=A}; whenn=I=[N,N+1,...,N'].
2.2. Matrix p

In Eq. (3) the constants y; , are a rectangular matrix with
(N —1) rows and N’ columns in which on a same row i we
have:

(a) for n varying into the range [1,...,(N—1)]
ifn#i  w;,=Km,,
ifn=i W, = ;=Klmo+m).
(b) for n varying into the range [N,..., N']
if j>i,
Hin=Hi1=—Km;,

Cl. Le Guyader: Solution of the N-body problem

if j<i,
,ui.nz.ui.l=ij’

All other elements of the row i are equal to zero.

3. Derivatives of the coordinates

Let k>0 be an integer and s* being the kth derivative of
a function s, let us differentiate Eq. (3) up to and including
order k, the (k +2)th derivatives of r; are linear combina-
tions of the kth derivatives of the functions r,/R;,

d“| r
(k+2) _ _ n
rl nzl ”‘"dt"[ }

Let r=r'9=(x, y,z) be a position vector, r=rt=(x, y, 7)
a velocity vector and R a distance,

Q)

R=R®=/x?4+y?422. (5)
Let
1
G=G(O)=7(~3’ (6)
and
F=FO =" =Gr )
r r R?

be auxiliary functions of time, we see that it is sufficient to
know the formal derivatives of Eq. (7) to obtain after
substituting r, for r, those of the r;,

N

rf =% i FIEP ®)
n=1

Consequently,

j>i, (r§k+2’—r§"+2’)=r§k+2’. (9)

Nevertheless, k being fixed and the derivatives of r, being
assumed known up to and including order k, we will use
a recursive method to calculate the expressions of F ‘,’;’,
rather than a direct analytical derivation of Eq. (7) which
becomes quickly very difficult.

For that, we can easily get the following successive
recurrent formulae, carried out with the aid of Leibniz’s
theorem, we have:

(a) for the functions R

ifk=1
(1) ! (1)

R¥ =2 lr-r2], (10)
if k>2

1 k-2
R(k)zﬁli,,,,,(k)_l_ Z C;':_I[I‘(k'l—h)or(“”

h=0
—R“““"’R"’“’]], h>0, (11
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with (c) for the functions F,
cho (k—1)! if k>1
U k=1=h)th! K
1;'5]6)= chgWw (k—h)’ 14
(b) for the functions G E’o <G (14)
if k=1 with
R k!
W= 3G Cl=—-—" .
< 6 (12 =G
if k=2

k=2
Gh— _%[3 GRYW+Y Ci_, 4. Solution

h=0 . e .. .
Given the initial conditions r; and F; at t=t,, we can

) [R*=17M G+ 1) 4 3Gh=1=h g+ 1] | (13) compute r,r;, by Eq. (2) and its first derivative respect-
ively. We obtain thus all the r, and i,, n=[1,2,...,N"].

Table 1. Positions and velocities of the nine major planets at the initial Julian ephemeris date of
integration, JJ=2451600.5, referred to the dynamical ecliptic and equinox J2000. Reciprocal of-
masses from the JPL DE200/LE200 ephemeris, mass of the Sun=1

Planets Positions Velocities
and reciprocal of masses (AU) (AUd™Y)
Mercury —0.2503322266997050 —0.0243880740618594
6 023 600.0000 0.2219933134940310 —0.0199006661918177
0.0411116039958294 0.0006127790621238
Venus 0.0174780967869107 0.0200854700002338
408 523.5000 —0.7267426358190740 0.0004115973599546
—0.0109417141664655 —0.0011537145705727
Earth + Moon (EMB) —0.9091915624774220 —0.0070858429584318
328900.5500 0.3916073804088610 —0.0158655216295262
0.0000006337357788 0.0000000304051933
Mars 1.2030185340340200 —0.0071244586662406
3098 710.0000 0.7867887615327550 0.0129051790708794
—0.0130904757456262 0.0004454747030769
Jupiter 3.7330739975155200 —0.0050865465611740
1047.3500 3.2848131838485899 0.0060262786120076
—0.0972162197545890 0.0000889035628590
Saturn 6.1644217605744700 —0.0044268306574236
3498.0000 6.7819637930593399 0.0037473494696568
—0.3631445050232320 0.0001107931782759
Uranus 14.5796795804070001 0.0026475039005944
22960.0000 —13.5852040761606001 0.0027006548067743
—0.2395026654553700 —0.0000242628753771
Neptune 16.9549722100605003 0.0025686464544125
19 314.0000 —24.8926233810363016 0.0017915021721705
0.1218939840518710 —0.0000959701485907
Pluto —9.7077482397720101 0.0030340544888208
130000 000.0000 —28.0439936763418984 —0.0015216209707127
5.8109566466828999 —0.0007156387594053

Energy integral
[Mass x (AUd™')?]

—0.6654158715721031 1077
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(a) k=0, substituting r, for r into Egs. (5)~7) we com-
pute successively R,, G, and F, , whence r{* by Eq. (8),
and r{? by Eq. (9).

(b) k=1, substituting r,,#,, R,,G, for r,/,R, G, into
Egs. (10),(12),(14), we compute R™,GY, F{" whence
r{¥ by Eq. (8), and r® by Eq. (9).

(c) k=2, we can now obtain r{* by Egs. (11),(13),(14)
and (8), ri* by Eq. (9), etc. We will continue this process
until all the required values at t=t, of the derivatives of
the coordinates are obtained and then, substituting these
into Taylor series expansions, we get finally the solution
for r; at time t.

k+2 h
HUEDY Vsh)([o)%

h=0 .
A variable step-size Fortran program (264 statements) of
this numerical integration method has then been written
(Le Guyader 1990), in which, according to the studied
problem, we have first to find a near constant integration
step-size as large as possible using a suitable order deriv-
ation of the coordinates. In this way we obtain the smallest
numerical drift in the results and the best speed of compu-
tation. Let us apply now solution (15) to some planetary
problems and estimate its accuracy.

(15)

5. Comparison to the JPL ephemeris DE200

5.1. Initial conditions and ephemeris over 40000 d
of the nine major planets

To begin, we have used the complete integration of the
JPL DE200 ephemeris (Standish 1982a) to which the rela-
tivistic perturbations (Lestrade & Bretagnon 1982) and
those due to the Moon and minor planets (Bretagnon
1984) were first subtracted. For that the coordinates and
velocities r;,#; of the JPL ephemeris are convert, every
20 d, into the osculating elements a (semi major axis),
/ (mean longitude) and into the functions k, h, ¢, p defined
below,

k=e cos(Q+ w), q=sin%cos§2,

h=e sin (Q+ w), p=sin~;—sinQ,

where e,i,Q, w are the eccentricity, inclination, longitude
of node, and argument of perihelion of the planets. The
small perturbations above-mentioned are then subtracted,
and thus we have a Newtonian reference ephemeris (Eg) to
which we will compare our results. Conversely, we can
easily return to the variables r;,r;.

The initial conditions r;(t) and #;(ty) of our first integ-
ration come from this ephemeris (Eg) at the date of 26th of
February 2000 0" TE(JJ =2451600.5), they are given in
Table 1 with the reciprocal of masses from the JPL
DE200/LE200 ephemeris for every planets (Standish

Cl. Le Guyader: Solution of the N-body problem

Table 2. Differences between positions and velocities of the
planets after two integrations (40000 d each one), in a backward
direction in time and its reverse from the initial Julian ephermeris
date, JJ=2451600.5

Planets Positions Vitesses

(AU 10719 (AUd" 110719

Mercury 2.80 -0.22

2.29 0.20

-0.07 0.04

Venus —8.66 0.01

—-0.19 —-0.24

0.50 0.00

Earth + Moon (EMB) 3.97 —0.16

8.93 0.07

0.00 0.00

Mars 8.81 0.15

—15.83 0.10

—0.55 0.00

Jupiter 5.26 0.01

—598 0.01

—0.09 0.00

Saturn 447 0.00

—3.38 0.00

—-0.12 0.00

Uranus —1.88 0.00

—2.87 0.00

0.01 0.00

Neptune —1.32 0.00

—2.06 0.00

0.07 0.00

Pluto —1.50 0.00

—0.08 0.00

0.44 0.00

Difference on the energy integral 0.02 10~ 17
[Mass x (AU d~')?]

1982b), the mass of the Sun being unity. This table gives
also the value of the energy integral. Then, we have integ-
rated over 40000 d, the Newtonian system composed by
the nine major planets in translation around the Sun, from
the Julian Day JJ=2451600.5 to the Julian Day
JJ=2411600.5. For that, we have used negative integra-
tion step-size of 4 d and developments into Taylor series
up to derivative 25, this number being chosen in order to
keep the integration step-size nearly constant all over the
range of integration. Nevertheless, k being fixed and given
a small number ¢, the program divides this step-size (t —t,)
by 2 as long as the quantity

N-1 t(t_tO)k+2|
W+ 2
[Z L I )("’)'] (k+2)!

i=1 XiyioZi

is greater than e.
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Table 3. Positions and velocities of the nine major planets after corrections by a least-square method
at the initial Julian ephemeris date of integration, JJ=2451600.5, referred to the dynamical ecliptic

and equinox J2000

Energy integral
[Mass x (AUd ™ 1)?]

—0.6654158716182916 1077

Planets Positions Velocities

(AU) (AUd™Y)
Mercury —0.2503322272474241 —0.0243880740187149
0.2219933130543761 —0.0199006662291828
0.0411116040134522 0.0006127790550368
Venus 0.0174780969832841 0.0200854700008875
—0.7267426357972082 0.0004115973655980
—0.0109417141864230 —0.0011537145704358
Earth + Moon (EMB) —0.9091915626221172 —0.0070858429546628
0.3916073801866026 —0.0158655216304405
0.0000006337269945 0.0000000304053757
Mars 1.2030185338987920 —0.0071244586683808
0.7867887618949421 0.0129051790684479
—0.0130904754207521 0.0004454747041100
Jupiter 3.7330739970653830 —0.0050865465617725
3.2848131843439790 0.0060262786111905
—0.0972162197513344 0.0000889035628536
Saturn 6.1644217608860861 —0.0044268306570807
6.7819637928089400 0.0037473494696738
—0.3631445050315127 0.0001107931782389
Uranus 14.5796795810394000 0.0026475039006449
—13.5852040756255601 0.0027006548067234
—0.2395026654509072 —0.0000242628754072
Neptune 16.9549722088488011 0.0025686464546824
: —24.8926233783199109 0.0017915021721450
0.1218939840126886 —0.0000959701486240
Pluto —9.7077482547662419 0.0030340544879385
—28.0439936839154491 —0.0015216209715392
5.8109566518888340 —0.0007156387590526

5.2. Reverse integration

In order to test the accuracy of the results, we have con-
versely integrated our system from the Julian date
2411 600.5 up to the initial Julian date 2 451 600.5; the final
results obtained by this next integration are then subtrac-
ted to the initial coordinates and velocities of Table 1 and
all the differences for the nine planets are collected in
Table 2.

We can see first that the global drift of the results after
80000 d remain small (relative accuracy on the energy
integral=310712), and then that the relative accuracies
(coordinates/semi major axis) are less than 1.2107'9 (x-
coordinate of Venus) for the inner planets, and 1.2 107 1°
(y-coordinate of Jupiter) for the outer planets.

5.3. Comparison to DE200

Therefore, in order to compare the results of our integra-
tion to the reference ephemeris (Ey) previously defined, we
begin to compute every 20d the osculating elements
a,e, i, Q,w, A of the planets and the functions k, h, g, p.

We get a first ephemeris (E,) that is subtracted from
(Er). The differences are then treated by a least-square
method in order to bring small corrections to the initial
positions and velocities of each planet, and thus, after
a new integration, we obtain an ephemeris (E,) nearer (Eg)
than (E,), etc. We stop this process when the corrections
become negligible for the required precision.

Table 3 gives the coordinates and velocities used for
our last integration of 40 000 d and Table 4 its final results.
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Table 4. Positions and velocities of the nine major planets after 40 000 d at the final Julian ephemeris
date of integration, JJ=2411600.5, referred to the dynamical ecliptic and equinox J2000

Planets Positions Velocities
(AU) (AUd™ 1)
Mercury —0.2576687518872368 0.0175868799212131
—0.3791513241443215 —0.0144665374801825
—0.0071950703512374 —0.0027988495000633
Venus —0.0478396027134483 0.0200455386154473
—0.7251830666565513 —0.0014100355266644
—0.0069246827363900 —0.0011776646939453
Earth + Moon (EMB) 0.8703804807184863 0.0084796600188988
—0.5149679396699509 0.0147442829692835
—0.0001096032600599 0.0000038603797076
Mars 0.6362707422639920 0.0130220279289513
—1.2551195580973074 0.0075226527499204
—0.0420319593297117 —0.0001658371106017
Jupiter 3.3079184999203806 0.0056401087405234
—3.8541443085480818 ~0.0052787064953480
—0.0585602232678248 —0.0001480045741013
Saturn —8.6498328693881499 —0.0023396860855807
3.4092364104726043 —0.0052006445435954
0.2828278405758518 0.0001845459284167
Uranus —16.3165791780625433 0.0018104636390494
—8.6194029169052933 —0.0036590291030088
0.1801147430157560 —0.0000372832508783
Neptune 11.9722583886743688 —0.0028885982212621
27.3074939138436470 0.0012836838050364
—0.8380811427838262 0.0000401984022563
Pluto 17.5090297675820956 —0.0020324972718968
43.6921163840676954 0.0006366390838723
—9.7426428668190121 0.0005213576991192

Energy integral
[Mass x (AUd ™ ')?]

—0.6654158716193928 1077

Their comparisons with (Eg) have given differences of
about 107'° AU on the position coordinates on the whole
range of integration.

6. Comparisons to Schubart and
Stumpff’s numerical integration

6.1. Ephemeris over 1000 yr of the eight first major planets

After the good accuracy obtained in our first problem and
in order to know better the behaviour of our program, we
wanted to increase greatly the range of integration and to
compare our results to those got by Schubart & Stumpff
integration program (1966, here referred to also as 71966-
program), which is based on a Stormer-Cowell method,
including differences up to order 11 in the numerical integ-

ration algorithm. Thus we have integrated the planetary
problem of the eight first major planets (Pluto is excluded)
in translation around the Sun over intervals of 1000 yr, in
a backward direction in time and its reverse, the initial
conditions r; & F; of this problem coming from the ephem-
eris VSOP87 (Bretagnon & Francou 1988) and being
taken at the epoch J2000 (JJ=2451 545.0). As before, we
have used negative or positive integration step-size of 4 d
and 25 derivatives into the Taylor series expansions of Eq.
(15), in comparison with the 1966-program which uses for
this problem a fixed step-size of 0.5 d.

Then, after returning to the initial point of integration,
we have computed the differences on the mean longitude
of each planet. Table 5 compares the results obtained by
our program and Schubart & Stumpff's and shows import-
ant improvement by factors going from about 300 for
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Table 5. Comparisons of results got by Le Guyader’s numerical
integration program and Schubart & Stumpff’s. The differences
on the mean longitudes are computed at the initial Julian ephe-
meris date of integration JJ=2451545.0 after two integrations
over 1000 yr each one, in a backward direction in time and its
reverse

differences on the mean longitudes in arc second

Planets Le Guyader Schubart and Stumpff
Mercury 0”005 3700

Venus 0"0008 0724

Earth+Moon (EMB) 070003 0718

Mars 0700008 0”16

Jupiter 07000002 0006

Saturn 070000003 07002

Uranus 000000006 07002

Neptune 0"00000006 07001

Venus up to 16000 for Neptune. We see that these results
are particularly interesting for the inner planets and espe-
cially for Mercury whose presence is better controlled by
our program.

6.2. Ephemeris over 6000 yr of the four outer planets

Increasing always our range of integrations we have integ-
rated the problem of the four outer planets (Jupiter,
Saturn, Uranus, Neptune) in translation around the Sun
over intervals of 6000 yr, in a backward direction in time
and its reverse, the initial conditions r; and #;
(JJ=2451545.0) coming from an analytical theory of the
four outer planets by Simon et al. (1992). In this problem,
we have used negative or positive near constant integra-
tion step-size of 400 d and 25 derivatives into the Taylor

693

series expansions of Eq. (15), in comparison this time, with
a fixed step-size of 40 d in the /966-program.

After returning to the initial point of integration, we
have computed the differences on the functions a, 4, k, h,
previously defined for the planets. Table 6 compares the
results obtained by our program and Schubart
& Stumpffs and shows that the mean longitude of the
most difficult planet, Jupiter, is here improved by a factor
15. In this example, in spite of a great increase in the
integration range, the differences between the two pro-
grams concerning the mean longitudes are less than those
of Table 5. In this case, without the inner planets, the
1966-program remains therefore sufficiently accurate.

7. Conclusion

The examples given in Sects. 5 and 6 illustrate the pre-
cision of our program and the comparisons with the re-
sults given by Schubart & Stumpff’s program for the major
planets are particularly interesting; the gain in precision is
very important specially when the inner planets are taken
into account. That is due to the analyticity of the formulae
used and to the high orders Taylor series which are able to
keep a large integration step-size even in the neighbour-
hood of the perihelia of the planets. These two facts de-
crease greatly the rounding errors in the integrations.
Our program is fluently used to test analytical theories
or to study numerically different problems, e.g. it has been
used by Simon et al. (1992) to test the accuracy of their
theory of the motion of the four outer planets in terms of
only one angular variable. Currently it is used to check
and estimate secular perturbation theories of the four
outer planets over 500000 yr, and also to study numeri-
cally Neptune’s satellite system, specially Nereid (eccentri-
city ~0.75) and the satellite Proteus recently discovered by
Voyager 2 (mean motion ~320°d '), which needs a 15th

Table 6. Comparisons of results got by Le Guyader’s numerical integration program and
Schubart & Stumpff’s. The differences on the a, 4, k, h, are computed at the initial ephemeris
Julian date of integration JJ=2451545.0 after two integrations over 6000 yr each one, in

a backward direction in time and its reverse

Le Guyader’s numerical integration program

Planets a (AU) (") k(") h(")
Jupiter 0.151071° 80107 0.310°¢ 0.310°¢
Saturn 1210710 3.0107* 3010°° 3.0107°
Uranus 4210710 1.5107# 3010°¢ 3.010°°
Neptune 9.010°1° 0.7107# 30107° 3010°°
Schubart and Stumpff’s numerical integration program

Jupiter 0.3107° 1201073 2010°° 2010°°
Saturn 2410°° 201073 6.010°° 5010°°
Uranus 48107° 1.71073 401073 401073
Neptune 9.6107° 1.01073 401073 401077
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order derivation with an integration step-size of less than
one hour.

Nevertheless, let us note that our program is about
8 times slower than Schubart & Stumpffs, e.g. in Sect. 5,
the integration over 40000 d of the nine major planets,
carried out in “double precision” by the IBM 3090 com-
puter of the Centre Inter Regional de Calcul Electronique
du CNRS, took about 38° by the 1966-program and 5™" 10°
by ours to be computed. But also to get a higher accuracy,
a user of the /966-program can go down to smaller values
of the step-size and change from “double precision” to
“quadruple precision”, that causes a great increase in the
necessary computer time.

Our Fortran program with its main directions for use
can be asked from the Bureau des Longitudes.
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