Improved CCD Standard Fields

S. C. ODEWAHN, C. BRYJA, AND R. M. HUMPHREYS

Department of Astronomy, University of Minnesota, 116 Church Street S. E., Minneapolis, Minnesota 55455 Electronic mail: sco@aps1.spa.umn.edu, claia@aps1.spa.umn.edu, roberta@aps1.spa.umn.edu Received 1991 November 15; accepted 1992 April 9

ABSTRACT. We have combined multiple nights of charge-coupled device (CCD) observations of NGC 7790, NGC 7006, and NGC 4147 in order to establish a deep sequence of photometric standards whose errors have been objectively derived through statistical comparisons. In addition to extending these previously studied fields to a fainter limit, we have increased the range in observed color, making the new mean sequences more suitable for deriving photometric transformation coefficients.

1. INTRODUCTION

Accurate photometry of compact stellar fields is extremely useful for the purpose of calibrating all-sky chargecoupled device (CCD) observations. Because of the time involved in obtaining CCD image frames, as opposed to integrations with a single channel photometer, it is more efficient to obtain multiple standard star observations in a single field. For the purpose of deriving photometric transformation coefficients with these observations the standard fields must have photometric errors which are small and objectively determined, and the range in stellar color must be adequately large to allow for the accurate fit of color transformation equations. Such was the intent of Christian et al. (1985, hereafter referred to as C85), when they published phototoelectric photometry of compact fields in the area of several galactic and globular clusters. As noted by these authors, the problem of accounting for field crowding effects is difficult with a classical single channel photometer, and the time involved in obtaining photometry for a large number of stars with such a device is prohibitive. Hence, many of the C85 fields are composed of a relatively small number of stars in a rather restricted color range.

We have used a number of the C85 fields in the first phase of a large program of all-sky CCD photometry designed to establish photometric sequences near the centers of Palomar Sky Survey fields. These sequences will be used in the calibration of the automated plate scanner (APS) measurements of the Palomar Sky Survey (Humphreys et al. 1991) for the purpose of compiling both stellar and

TABLE 1 Summary of Observations

 field	d/m/y	σ_V	σ_{B-V}	σ_{V-R}	field	d/m/y	σ_V	σ_{B-V}	σ_{V-R}
 N4147	08/01/89	0.142	0.112	0.098	N7790	08/09/89	0.028	0.024	0.019
N4147	02/04/89	0.091	0.122	0.092	N7790	23/09/89	0.026	0.011	0.017
N4147	03/04/89	0.077	0.058	0.030	N7790	27/10/89	0.038	0.025	0.027
N4147	13/04/89	0.061	0.074	0.063	N7790	28/10/89	0.029	0.007	0.024
N4147	25/04/89	0.051	0.050	0.041	N7790	29/10/89	0.042	0.030	0.042
N4147	27/04/89	0.066	0.090	0.050	N7790	30/10/89	0.036	0.034	0.028
N4147	28/04/89	0.057	0.059	0.066	N7790	01/11/89	0.030	0.018	0.047
N4147	30/04/89	0.061	0.063	0.046	N7790	22/11/89	0.032	0.027	0.020
N4147	04/12/88	0.076	0.067	0.048	N7790	25/11/89	0.033	0.013	0.020
	, ,				N7790	26/11/89	0.031	0.020	0.011
					N7790	27/11/89	0.043	0.036	0.024
N7006	27/09/89	0.024	0.042	0.042	N7790	28/11/89	0.030	0.016	0.016
N7006	$\frac{28}{09}$	0.020	0.037	0.025	N7790	03/12/89	0.055	0.048	0.042
N7006	29/09/89	0.026	0.047	0.025	N7790	05/12/89	0.054	0.034	0.059
N7006	$\frac{10}{30}$	0.018	0.033	0.018	N7790	19/12/89	0.050	0.032	0.034
N7006	09/10/89	0.020	0.025	0.025	N7790	20/12/89	0.035	0.014	0.017
N7006	10/10/89	0.071	0.048	0.044	N7790	31/12/89	0.036	0.033	0.032
N7006	$\frac{24}{10}$	0.014	0.051	0.013	N7790	01/01/90	0.039	0.021	0.025
N7006	$\frac{26}{10}$	0.055	0.053	0.038	N7790	24/01/90	0.034	0.051	0.033
N7006	$\frac{22}{11/89}$	0.032	0.027	0.020	N7790	25/01/90	0.040	0.035	0.036
N7006	25/11/89	0.033	0.013	0.020	N7790	27/01/90	0.059	0.052	0.024
1.0000		2.500				, ,			

© 1992. Astronomical Society of the Pacific

galaxy catalogs of the northern sky (Pennington et al. 1991). We have obtained a large number of multiple sets of BVR CCD images for three of the fields in C85. The twodimensional images allow us to detect and exclude stars which are plagued by crowding problems, and multiple observations allow us to compare photometry from many different nights and hence objectively establish the internal errors of the photometry. Because our observations are tied to the zero point of the C85 photometry, we cannot hope to detect or correct for any systematic zero-point errors, but by combining many nights into a mean photometric set, we will greatly reduce the accidental errors present in the C85 data. In addition, we can establish a large number of fainter standards in these fields, providing more stars covering a wider color range for photometric solutions.

In the following sections we describe the methods used to observe and reduce the photometry for three of the C85 standard fields: NGC 7790, NGC 7006, and NGC 4147. We present a statistical analysis of these data designed to detect discrepant observations due to crowding effects or variability, and to determine the observational scatter in the photometry as a function of magnitude. Finally, we present tables of mean photometry for these fields.

2. OBSERVATIONS AND REDUCTION

All of the CCD observations used to produce the mean photometry sets discussed here were obtained with a 320 \times 512 RCA SID501EX CCD attached to the Cassegrain focus of the 0.6-m reflector at the University of New Mexico's Capilla Peak Observatory. A filter set designed to duplicate very closely the Cousins BVR bandpasses (Beckert and Newberry 1989) was used during each night of observations. This filter set and CCD combination resulted in rather small coefficients when transforming the instrumental magnitudes to the standard Cousins system. Table 1 gives the date of observation, the standard field observed, and the root-mean-square (rms) scatter in the photometric transformation solutions. Each set of observations consists of two B, two V, and two R CCD images. For the NGC 4147 and NGC 7006 images, B, V, and R band integration times were 900, 600, and 300 s, respectively. For the brighter stars of NGC 7790, we used integration times of 300, 150, and 60 s, respectively. Extinction star observations of at least two Landolt (1973) standards per night were made at 2-3 airmass values covering the range 1.10 < X < 2.0. Due to the brightness of these standards (typically V=10-12), integration times ran from 10 to 90 s. In order to avoid charge trapping effects associated with the RCA chip in short exposures, all images were preflashed to an approximate level of 780 electrons at the start of each integration. Pairs of images were obtained in each bandpass in order to detect errors associated with cosmic-ray defects, as well as to allow an assessment of the internal instrumental photometric errors for each observed field. It must be noted that the NGC 4147 observations were obtained prior to the adoption of the CCD preflashing technique. The length of these integrations was sufficient to avoid charge trapping problems, but short extinction star

integrations were impossible and hence we have adopted mean atmospheric extinction coefficients for these nights.

A total of 21 nights of observations has been collected for NGC 7790, 10 nights for NGC 7006, and 9 nights for NGC 4147. The photometry of C85 was used to calibrate the NGC 7790 and NGC 4147 images. Revised CCD photometry of NGC 7006, kindly provided prior to publication by L. Davis (1990, private communication), was used to calibrate the photometry for that field. Instrumental magnitudes were converted to the standard Cousins system via the following transformation equations:

$$V = v - k_v X + C_v (B - V) + z_v, \qquad (1)$$

$$B - V = C_{bv}[(b - v)(1 - k'_{bv}X) - k_{bv}X] + z_{bv}, \quad (2)$$

$$V - R = C_{vr}[(v - r) - k_{vr}X] + z_{vr}.$$
 (3)

Lower case letters indicate instrumental magnitudes. For each night, the color extinction term was assumed to be $k'_{hu} = -0.025$, but values of the first-order extinction terms (k_{u}, k_{bu}, k_{w}) were determined through multiple airmass observations of Landolt standards. It should be noted that on two nights, both NGC 7006 and NGC 7790 were observed, and the resulting photometric zero points (holding the extinction and color transformation terms fixed) derived independently for each field were in good agreement within the derived statistical errors. Transformation and extinction coefficients determined independently for each night were generally found to be in excellent agreement. In a few cases, the derived extinction coefficients were found to be poorly determined, and here we adopted mean coefficients computed with extinction solutions from ten excellent nights.

FIG. 1—A comparison between instrumental magnitudes determined with DAOPHOT and with the aperture integration technique used in this work. Magnitude residuals, m(DAOPHOT)-m(CAPRED), are plotted as a function of m(DAOPHOT). No strong trends are evident to the faintest magnitude values at V=20. The solid line represents a mean residual of zero, the dashed line represents a least-squares regression line fitted to the residuals.

Reduction of the CCD images was performed in an automated fashion using a code known as CAPRED developed for the APS CCD photometry project. Initial processing followed standard procedure and included subtraction of a high signal-to-noise bias frame to remove a constant fixed bias pattern and flat field correction using master flat field frames produced from multiple dawn and/or dusk sky flats. Stellar images were detected automatically using a background thresholding algorithm. Only images having a peak brightness of $\beta \sigma_s$ above the local background and having at least a minimum number of connected pixel columns (N_{nix}) , were selected for measurement. Throughout this work, we have adopted values of $\beta = 3.0$ and $N_{\text{pix}} = 4$. The local sky noise σ_{s} is taken to be the standard deviation of background pixel counts, which is established through an iterative rejection about the mode.

Instrumental magnitudes are derived through integration in simulated apertures. The aperture radius varies with the stellar brightness and is set to match the radius at which the mean sky subtracted pixel values fall to a level of 50% of the local sky noise. In this case, the sky noise level is taken to be the standard deviation of pixels values measured in a sky annulus centered on each star. This technique is required in the case of faint stellar images where the integrated stellar flux can be easily overwhelmed in the sky subtraction stage due to small errors in the sky determination. The use of a variable aperture requires that an aperture correction be applied in order that all instrumental magnitudes be in the same system. In our case, a single gaussian fit is applied to all bright stars in each image in order to model the outer wings of the stellar profile. Based on the width, σ_{r} of this mean profile, we may calculate the integrated flux contained in an image beyond a given radius. Such a correction is negligible for bright stars ($V \leq 18.0$), where the aperture generally extends to the $3\sigma_{\downarrow}$ radius, but this correction becomes significant at fainter levels where the estimated optimum aperture size may be only $2\sigma_{..}$ It should be noted that a minimum aperture radius of 3 pixels (corresponding to 2") has been imposed in the code in order that very faint stars not be measured with unreasonably small aperture.

We were motivated to adopt this rather simple aperture integration scheme because of its relative ease in implementation. Because of the large number of CCD fields which must be processed in the POSS calibration field project, a completely automated reduction package was deemed necessary. The use of a two-dimensional point spread function fitting program such as DAOPHOT or DAOGROW (Stetson

FIG. 2—Magnitude vs Julian Date for a typical set of magnitude and color measurements in the NGC 7790 photometry sample. Circled points indicate data eliminated in the rejection process. Plots such as this were used to confirm that the rejected points were indeed discrepant observations.

	TABLI	E 2	
/lean	Photometry	for	NGC 4147

N

name	V	m.e.	n	B - V	m.e.	n	V - R	m.e.	n
6	16.730	0.013	8	0.773	0.010	8	0.496	0.011	9
9	18.308	0.025	9	0.625	0.031	8	0.429	0.030	9
11	16.785	0.009	8	0.779	0.017	8	0.472	0.013	9
12	17.722	0.013	8	1.107	0.019	9	0.748	0.010	8
14	17.358	0.007	8	0.054	0.007	8	-0.066	0.015	9
15	16.734	0.005	8	0.132	0.013	9	0.017	0.010	8
102	18.997	0.052	8	0.583	0.103	8	0.366	0.049	8
103	19.038	0.026	7	0.571	0.075	7	0.560	0.053	7
104	18.558	0.022	6	1.296	0.027	6	0.884	0.039	6
106	19.191	0.061	8	0.529	0.083	8	0.392	0.074	8
107	18.895	0.020	8	0.600	0.077	8	0.409	0.034	8
109	17.575	0.013	8	0.733	0.017	8	0.402	0.026	8
110	18.823	0.027	8	0.629	0.071	8	0.488	0.063	9
111	20.138	0.061	8	0.346	0.055	8	0.105	0.070	8
112	19.842	0.064	9	0.377	0.081	8	0.224	0.088	9
114	18.967	0.013	8	0.680	0.036	9	0.330	0.045	9
115	18.283	0.012	8	0.664	0.019	8	0.415	0.014	9
119	17.457	0.007	9	0.687	0.017	9	0.493	0.014	9
120	15.034	0.009	8	1.034	0.018	8	0.618	0.015	9
121	17.996	0.015	8	1.436	0.015	8	0.942	0.024	9
122	16.381	0.008	8	0.632	0.013	9	0.431	0.013	8
123	19.637	0.032	9	0.679	0.069	8	0.262	0.066	8
124	16.984	0.007	6	0.479	0.014	6	0.320	0.007	6
125	18.857	0.039	8	0.672	0.029	7	0.382	0.065	7
126	18.017	0.032	8	0.711	0.035	8	0.441	0.033	8
127	17.903	0.013	9	0.655	0.010	8	0.402	0.019	8
128	18.589	0.027	9	0.649	0.067	8	0.521	0.041	8
129	17.528	0.031	9	0.748	0.020	8 -	0.427	0.024	8
130	17.192	0.013	8	0.014	0.015	8	-0.059	0.015	8
131	18.310	0.023	8	0.663	0.024	8	0.447	0.029	9
132	17.572	0.015	8	0.671	0.016	9	0.464	0.016	8
133	17.466	0.012	8	0.653	0.012	8	0.443	0.015	9
134	17.038	0.070	9	0.247	0.028	8	0.164	0.037	9
135	17.287	0.051	8	-0.093	0.032	8	-0.062	0.052	8
136	16.894	0.016	7	0.683	0.026	7	0.374	0.015	7
138	19.300	0.038	5	0.540	0.095	6	0.385	0.074	5
141	16.863	0.012	8	0.654	0.014	8	0.438	0.012	8
142	18.711	0.025	6	1.416	0.033	5	0.881	0.021	5
143	17.640	0.012	8	0.655	0.032	8	0.448	0.008	8
144	16.535	0.007	8	0.787	0.011	9	0.492	0.014	8
145	17.264	0.077	7	0.312	0.028	7	0.320	0.030	7
146	15.917	0.059	8	0.321	0.030	8	0.347	0.055	8
147	15.945	0.016	6	0.831	0.014	6	0.523	0.013	6

TABLE 3Mean Photometry for NGC 7006

name	V	m.e.	n	B - V	m.e.	n	V - R	m.e.	n	name	V	m.e.	n	B - V	m.e.	n	V - R	m.e.	n
									_										
,	17 999	0.013	7	1 109	0.031	5	0 608	0.095	7	111	17.019	0.010	7	1 175	0.012	7	0 697	0.005	0
5	15 756	0.015	7	1.102	0.031	7	0.557	0.025	8	111	13 079	0.010	0	1.175	0.013	10	0.027	0.003	0
6	17 080	0.000	0	0.736	0.011	ò	0.001	0.007	0	112	19.972	0.010	10	1 219	0.000	10	0.363	0.004	10
7	19.810	0.014	9	0.730	0.010	9	0.401	0.015	8	113	18 609	0.025	0	1.012	0.042	10	0.701	0.030	10
0	10 492	0.003	7	0.474	0.012	5	0.235	0.003	6	110	18 8/4	0.015	6	0.020	0.029	6	0.069	0.020	6
0	19.403	0.041	4	0.189	0.043	4	0.404	0.014	4	119	19.094	0.013	2	0.254	0.040	2	0.008	0.022	2
9 19	18.024	0.040	10	1.049	0.032	. 4	0.241	0.033	10	122	18 111	0.034	0	0.003	0.093	0	0.349	0.073	3
12	18.090	0.007	8	0 500	0.013	9	0.308	0.011	10	124	17 653	0.033	9	1.005	0.034	5	0.407	0.034	9
15	18 201	0.021	10	0.333	0.040	10	0.427	0.040	å	127	16 010	0.011	0	1.003	0.027	0	0.569	0.013	10
16	13 598	0.005	6	0.591	0.013	7	0.346	0.004	7	134	15 917	0.010	4	0.055	0.002	4	0.574	0.008	10
17	16 485	0.005	ğ	0.822	0.010	10	0.438	0.004	10	1/8	18 800	0.003	4 8	0.900	0.000	4	0.030	0.003	4
10	15 514	0.000	å	0.659	0.000	10	0.360	0.006	â	140	10.003	0.011	5	0.003	0.050	3	0.400	0.029	0 E
24	19 020	0.023	8	0.005	0.005	8	0.315	0.000	ģ	150	18 753	0.033	10	0.120	0.004	4	-0.034	0.098	3 10
25	16 472	0.005	ă	1 305	0.005	ŏ	0.775	0.021	å	157	19 204	0.015	5	0.301	0.017	3	0.002	0.010	10
20	1 18 333	0.006	8	0.766	0.000	8	0.110	0.000	å	160	10.024	0.033	7	0.703	0.010	7	0.420	0.000	4 7
20	19.074	0.000	6	0.700	0.017	6	0.428	0.012	6	102	18 719	0.022	0	0.707	0.031	7	0.417	0.019	2
30	18 838	0.013	4	0.690	0.020	4	0.445	0.010	4	164	18 017	0.015	0	1 090	0.028	6	0.168	0.017	6
31	16 777	0.005	9	0.050	0.022	10	0.541	0.025	10	165	18 600	0.030	7	0.990	0.030	5	0.307	0.040	9
33	19.813	0.025	3	0.897	0.164	3	0.314	0.000	3	166	17 464	0.021	, 0	1 010	0.030	10	0.131	0.021	in
34	17 924	0.000	ğ	0.964	0.015	ğ	0.545	0.000	ä	167	10.026	0.010	3	0 790	0.010	2	0.300	0.003	2
35	18 861	0.014	8	0.616	0.053	8	0.350	0.012	8	168	18 820	0.040	0	0.720	0.010	0	0.544	0.040	0
36	18 808	0.014	7	0.618	0.000	ĕ	0.380	0.010	6	160	18 138	0.014	7	0.032	0.001	7	0.510	0.010	7
37	18 866	0.022	9	0.620	0.039	ğ	0.365	0.010	ä	103	16 257	0.003	ò	1 300	0.021	10	0.344	0.003	á
39	16 139	0.010	8	0.818	0.010	8	0.000	0.007	8	173	10.201	0.004	4	0 797	0.061	4	0.100	0.000	5
40	18,883	0.010	7	0.517	0.053	8	0.327	0.035	8	175	18 800	0.044	10	0.519	0.001	0	0.361	0.030	10
41	18 950	0.022	8	0.617	0.031	ğ	0 423	0.017	8	176	18 985	0.010	8	0.610	0.033	8	0.302	0.000	0
42	18 617	0.015	ğ	1 007	0.036	å	0.631	0.022	ă	177	18 444	0.011	10	0.010	0.000	å	0.472	0.020	o o
43	18 455	0.010	ğ	0.866	0.023	10	0.505	0.022	10	170	17 9/5	0.014	8	0.004	0.020	8	0.412	0.010	0
44	18 873	0.022	8	0.000	0.020	8	0.206	0.021	8	182	17 865	0.012	10	0.870	0.020	10	0.400	0.014	ő
46	19 298	0.022	6	0.716	0.000	6	0.250	0.021	7	183	16 970	0.012	0	1 180	0.020	0	0.009	0.010	o o
48	19.676	0.021	4	0.999	0.036	3	0.520	0.033	5	184	17 664	0.004	8	0 901	0.000	8	0.520	0.000	8
49	19 117	0.021	5	0.052	0.034	5	0.016	0.041	5	185	19 882	0.010	3 3	0.961	0 134	3	0.520	0.012	3
50	19.068	0.020	8	0.419	0.046	9	0.252	0.030	8	186	19 448	0.038	6	0.816	0.059	6	0.554	0.005	6
51	18,945	0.021	8	0.910	0.038	8	0.497	0.034	Ř	187	18 738	0.000	ğ	0.918	0.019	8	0.463	0.010	ŏ
52	18.647	0.010	10	0.900	0.030	9	0.502	0.015	9	188	16.637	0.006	8	0.959	0.018	8	0.523	0.009	Ř
53	19,562	0.007	4	1.016	0.075	4	0.406	0.059	4	189	18 884	0.026	6	0 165	0.033	ő	0.086	0.069	ĕ
55	19,609	0.041	5	1.054	0.088	3	0.800	0.057	5	191	18.746	0.015	8	0.721	0.032	ğ	0.345	0.023	8
56	17.544	0.006	8	0.979	0.010	8	0.546	0.006	8	192	19.548	0.037	6	1.202	0.072	5	0.390	0.055	ě
57	18.943	0.019	10	0.573	0.035	9	0.356	0.035	10	193	19.370	0.020	6	1.092	0.046	5	0.591	0.038	7
60	16.587	0.005	9	1.254	0.015	9	0.681	0.004	9	194	19.328	0.048	5	0.836	0.077	5	0.405	0.085	6
61	18.812	0.016	8	0.750	0.028	8	0.373	0.027	9	196	16.679	0.007	8	0.943	0.006	8	0.526	0.006	8
65	17.585	0.013	9	0.941	0.013	9	0.537	0.010	ő	198	19.420	0.027	6	1.131	0.040	3	1.003	0.018	ő
66	17.225	0.007	7	0.836	0.008	7	0.436	0.008	7	199	16.721	0.005	4	0.655	0.023	4	0.402	0.015	4
68	17.601	0.011	8	1.042	0.014	8	0.578	0.013	8	200	18.848	0.024	9	0.677	0.042	8	0.372	0.038	9
69	18.631	0.014	9	0.673	0.030	10	0.419	0.026	10	202	18.843	0.009	9	0.636	0.030	8	0.377	0.014	9
75	18.631	0.050	9	0.566	0.029	8	0.324	0.029	8	203	19,145	0.024	3	0.925	0.021	3	0.587	0.037	3
79	19.021	0.026	9	0.480	0.054	9	0.281	0.037	10	205	19.420	0.026	4	0.733	0.040	4	0.486	0.038	4
86	16.815	0.005	9	1.211	0.012	10	0.663	0.007	9	206	19.687	0.063	4	0.684	0.068	3	0.493	0.020	4
89	13.854	0.012	9	0.819	0.005	9	0.452	0.007	9	207	17.944	0.013	4	0.893	0.027	4	0.536	0.021	4
93	19.227	0.015	4	0.139	0.062	4	-0.179	0.042	4	208	19.697	0.032	3	0.944	0.084	3	0.382	0.056	3
97	18.405	0.020	8	0.656	0.048	7	0.400	0.020	9	209	14.907	0.008	3	0.992	0.006	3	0.541	0.005	ž
102	18.922	0.016	8	0.429	0.025	8	0.189	0.028	9	212	18.846	0.009	3	0.651	0.021	3	0.274	0.026	š
109	19.122	0.021	7	0.860	0.159	6	0.391	0.047	7	213	18.362	0.046	3	0.874	0.010	3	0.346	0.034	3
110	17.479	0.013	10	1.033	0.017	9	0.617	0.014	10	214	17.970	0.011	3	0.889	0.045	š	0.537	0.016	3
				1.000	5.011		0.011	5.011	10	2.1	1	3.011	0	0.000	51010	0	0.001	5.015	

1987, 1990) would be desirable, especially for faint images, but automated versions of such codes were not available at the inception of this project. The PSF fitting techniques are typically used in order to decrease the effects of crowding due to nearby stellar images. In our case, the problems associated with crowded field photometry encountered with aperture integration are not important. Only uncrowded stellar images will be suitable for calibrating the photographic images of the POSS survey project. It should be noted that our adopted method of applying an aperture correction using a single gaussian fit to the wings of the stellar PSF is somewhat lacking when compared to a full two-dimensional fit of the PSF. As noted by King (1971), a single gaussian is a poor fit to the entire stellar profile. Systematic errors in our photometry may be present at faint levels ($V \ge 18$), but are probably buried well below the level of observational scatter. In any case, we have made extensive comparisons between instrumental magnitudes derived from our adopted code and those computed with DAOPHOT. In Fig. 1 we show a typical comparison between the two codes. No systematic trends are evident down to the survey limit of V=22. Through comparisons with a third independent source of data, we have established that the PSF fitting approach does produce a marginally reduced scatter at faint magnitudes, but the noise produced by the aperture integration algorithm has been found to be acceptably low.

The remainder of the CAPRED package handles the matching of stellar images from the six CCD images observed for each field, derivation of the extinction and photometric transformation coefficients [Eqs. (1)-(3)], and the production of transformed magnitude tables and finding charts. The image sets for NGC 7006, NGC 7790, and NGC 4147 were always used as standards for transforma-

CCD FIELDS 557

TABLE 4Mean photometry for NGC 7790

name	V	m.e.	n	B - V	m.e.	n	V - R	m.e.	n	name	V	m.e.	n	B - V	m.e.	n	V - R	m.e.	n
									-										
						<u>^</u>	0.001	0.000	0	40	1=	0.001	10		0.001	•0	0.000	0.010	
8	16.308	0.004	8	0.661	0.010	8	0.394	0.022	8	68	17.089	0.021	19	1.114	0.031	18	0.668	0.010	18
9	17.120	0.023	10	0.028	0.022	19	0.592	0.014	19	70	18.407	0.010	11	1.160	0.055	7	0.580	0.021	10
10	16 003	0.017	17	0.320	0.025	16	0.540	0.020	16	71	18.129	0.017	11	1.331	0.005	0	0.654	0.054	11
12	18.070	0.023	16	0.964	0.042	15	0.615	0.028	16	72	11.248	0.005	21	0.541	0.004	21	0.335	0.004	20
14	17.968	0.025	16	1.601	0.033	9	0.918	0.034	16	73	16.161	0.007	20	1.144	0.010	19	0.634	0.007	20
15	18.484	0.028	7	1.349	0.089	4	0.671	0.036	7	74	17.407	0.024	21	0.960	0.030	21	0.596	0.016	20
16	15.941	0.006	12	0.591	0.012	13	0.338	0.009	12	75	17.898	0.020	17	0.944	0.036	16	0.601	0.026	17
17	15.732	0.006	13	0.517	0.011	10	0.289	0.005	14	76	18.194	0.054	9	0.745	0.061	9	0.414	0.047	8
18	18.332	0.029	13	1.214	0.074	8	0.630	0.049	13	77	16.012	0.005	20	0.726	0.009	21	0.445	0.008	21
20	15.696	0.003	19	0.548	0.005	19	0.316	0.007	20	78	18.025	0.023	18	0.927	0.053	18	0.572	0.037	18
21	16.029	0.007	19	0.551	0.008	19	0.289	0.009	20	79	17.927	0.024	19	1.260	0.053	18	0.712	0.029	19
22	15.766	0.007	20	1.449	0.012	20	0.859	0.008	20	80	15.616	0.004	20	0.541	0.006	20	0.297	0.006	20
23	14.997	0.006	15	1.596	0.011	14	0.914	0.005	14	81	11.014	0.018	21	1.008	0.020	19	0.971	0.018	20
24	16.022	0.012	9	0.000	0.009	9	0.577	0.019	10	52	1.0.1.02	0.000	21	0.169	0.004	21	0.211	0.005	20
20	16.715	0.000	10	0.972	0.013	10	0.343	0.008	11	83	10.075	0.005	19	1 192	0.007	7	0.407	0.009	19
20	17 575	0.015	20	0.000	0.022	18	0.523	0.020	20	85	16 685	0.018	18	0.967	0.020	19	0.574	0.019	19
28	16 919	0.023	13	0.323	0.019	12	0.434	0.017	13	86	16.724	0.010	11	0.995	0.006	11	0.617	0.012	12
29	13.305	0.006	21	0.391	0.004	21	0.248	0.005	20	87	17.860	0.014	19	0.861	0.031	19	0.557	0.024	20
30	13.474	0.006	21	0.406	0.004	21	0.251	0.005	20	88	15.795	0.004	20	0.993	0.004	20	0.566	0.004	21
31	13.597	0.003	16	0.445	0.005	16	0.287	0.004	16	89	18.709	0.041	8	0.975	0.082	4	0.713	0.029	7
32	15.402	0.007	8	0.594	0.010	6	0.353	0.006	9	90	17.654	0.014	16	0.895	0.021	16	0.566	0.020	16
34	17.724	0.018	18	0.898	0.015	18	0.555	0.023	19	91	18.229	0.031	15	1.136	0.059	15	0.619	0.038	15
35	18.391	0.055	9	0.985	0.063	7	0.680	0.063	8	92	18.518	0.043	9	1.000	0.083	9	0.597	0.069	9
36	14.526	0.004	20	0.485	0.004	20	0.299	0.005	20	93	18.066	0.016	14	1.327	0.042	12	0.822	0.024	15
37	14.724	0.004	21	0.467	0.004	21	0.282	0.004	21	94	16.129	0.008	20	0.694	0.007	19	0.422	0.006	19
38	16.132	0.007	21	0.647	0.010	20	0.374	0.010	21	95	15.829	0.006	18	0.583	0.007	17	0.341	0.007	18
39	17.622	0.014	20	1.169	0.025	19	0.662	0.019	21	96	15.787	0.009	20	0.708	0.004	19	0.416	0.006	19
40	17.740	0.014	21	1.217	0.031	18	0.720	0.011	20	97	13.189	0.005	19	1.491	0.005	19	0.819	0.004	19
41	17.709	0.015	21	0.892	0.020	20	0.520	0.025	10	98	14.120	0.003	20	0.800	0.003	20	0.474	0.003	19
42	18.317	0.023	15	1.125	0.033	14	0.003	0.020	15	100	17 820	0.015	20	1 143	0.017	20	0.433	0.009	20
44	18.388	0.049	9	1.147	0.072	8	0.691	0.043	8	101	18.078	0.021	17	1.005	0.037	17	0.634	0.033	18
45	15.778	0.007	13	0.561	0.010	13	0.312	0.007	12	103	16.761	0.010	20	0.779	0.012	20	0.436	0.008	20
46	17.901	0.022	16	1.046	0.017	15	0.644	0.022	16	104	15.227	0.006	18	0.538	0.006	17	0.318	0.007	18
47	18.377	0.031	11	1.229	0.040	6	0.827	0.047	11	105	15.704	0.005	19	1.896	0.015	20	1.092	0.007	20
-18	15.261	0.004	17	0.857	0.008	17	0.519	0.004	17	106	17.433	0.019	20	1.139	0.021	21	0.679	0.017	20
-19	16.573	0.010	17	1.687	0.021	17	1.008	0.013	17	107	15.362	0.005	19	1.939	0.013	19	1.116	0.007	19
50	17.896	0.020	18	1.714	0.060	12	1.005	0.019	18	108	17.175	0.016	20	1.147	0.024	20	0.654	0.016	19
51	14.430	0.004	1-1	0.419	0.004	13	0.251	0.004	13	109	17.433	0.016	10	0.997	0.024	11	0.599	0.029	11
52	17.564	0.018	17	1.661	0.034	15	1.026	0.018	18	110	16.683	0.019	10	1.145	0.020	10	0.717	0.016	10
53	16.323	0.012	20	0.626	0.010	20	0.343	0.009	21	111	16.598	0.029	.3 10	1.000	0.040	ತ 10	0.008	0.032	ა 20
54	16.559	0.010	20	1.003	0.023	21	0.612	0.011	21	112	11.028	0.000	19	0.484	0.014	19	0.008	0.009	20
55	19.201	0.018	18	0.980	0.0.33	18	0.503	0.020	18	115	17.150	0.004	18	1.037	0.005	10	0.510	0.005	10
57	18.788	0.027	6	0.574	0.042	5	0.579	0.033	19	115	17.616	0.019	19	1.142	0.024	19	0.668	0.025	19
58	15.294	0.003	19	0.610	0.005	19	0.350	0.005	20	116	17.833	0.016	20	1.593	0.039	12	0.988	0.024	20
59	15.976	0.006	20	0.559	0.005	20	0.315	0.007	20	117	18.177	0.015	3	1.034	0.052	3	0.646	0.060	3
60	16.804	0.014	21	1.177	0.021	21	0.640	0.010	20	119	18.285	0.025	10	0.943	0.061	10	0.612	0.022	10
61	18.636	0.021	6	1.030	0.071	5	0.493	0.054	6	121	17.994	0.038	8	1.005	0.091	8	0.580	0.035	7
62	15.423	0.001	17	1.667	0.005	17	0.974	0.003	18	122	18.509	0.022	4	1.674	0.190	3	1.284	0.030	4
63	18.554	0.043	9	1.179	0.096	10	0.546	0.070	10	123	15.671	0.007	5	1.447	0.015	5	0.876	0.008	5
64	18,733	0.036	12	1.293	0.109	6	0.594	0.045	11	124	18.451	0.041	6	1.092	0.055	6	0.634	0.042	6
65	16.045	0.005	16	0.709	0.005	16	0.409	0.008	15	125	17.307	0.020	11	1.093	0.039	11	0.584	0.016	11
66	15.939	0.006	16	0.572	0.009	16	0.328	0.010	16	126	17.629	0.011	9	0.954	0.016	9	0.564	0.021	9
67	17.013	0.012	16	0.859	0.015	16	0.522	0.013	17	127	17.830	0.025	6	1.092	0.056	6	0.650	0.021	7
							•												

tion to the Cousins system, but in the last stage of each reduction all stellar images on these frames were transformed from the instrumental to the standard system in the same manner as the program fields. The transformed magnitude files for these standard clusters from the nights listed in Table 1 were used in the statistical analysis discussed in the next section.

3. DERIVATION OF THE MEAN MAGNITUDES

All of the magnitude files for each cluster set were matched to a master coordinate system via a linear coordinate transformation. A simple database manager was then used to evaluate the BVR magnitudes for each star. For each set of magnitudes we have computed the mean,

median, and standard deviation about the mean. An iterative rejection process was used to exclude discrepant data points. In each iteration the largest residual relative to the median was eliminated from the sample and the mean and standard deviation recomputed. If the standard deviation was decreased by at least 20%, then the point was permanently eliminated from the sample and the rejection process continued. A maximum of three rejection iterations was performed for each star. Rejection about the median proved to be very robust and 11 stars were found to give occasionally poor magnitudes. In each case the bad data points were found to be the result of field crowding effects on images taken under very poor seeing conditions. Because it was our intent to form a mean list of uncrowded

-

558 ODEWAHN ET AL.

FIG. 3—Finding chart for the new NGC 4147 standard field. Star names given in Table 2 are plotted to the right of each star in the sequence. North is at the top and east is to the left. Coordinates on the axes are plotted in pixel units (1 pixel=0.654 arcsec).

FIG. 4—Finding chart for the new NGC 7006 standard field. Star names given in Table 3 are plotted to the right of each star in the sequence. North is at the top and east is to the left. Coordinates on the axes are plotted in pixel units (1 pixel=0.654 arcsec).

© Astronomical Society of the Pacific • Provided by the NASA Astrophysics Data System

FIG. 5—Finding chart for the new NGC 7790 standard field. Star names given in Table 4 are plotted to the right of each star in the sequence. North is at the top and east is to the left. Coordinates on the axes are plotted in pixel units (1 pixel=0.654 arcsec).

stellar images, these objects were eliminated from the final magnitude tabulations. In Fig. 2 we show a plot of magnitude versus Julian Date for a typical set of magnitude measurements. Circled points indicate measurements eliminated in the rejection process. These plots were used to confirm that the rejected points were indeed discrepant observations and to search for possible long-term variable stars. It should be noted that each set of V, B-V, and V-R is treated independently at the point of deriving mean values. This procedure will occasionally permit a point to be accepted in one or two passbands, but be rejected in another. An improved analysis might require that a point rejected for a star in one bandpass on a given night should nullify the use of the other bandpass measurements for that star on that night.

In Tables 2-4 we tabulate the final mean magnitudes and colors for the stars in each sequence, the mean errors of the means, and the numbers of observations used to compute mean values. For the sake of compactness we have not tabulated the relative X, Y positions of each star in the photometry tables published here. However, the electronic versions of these tables, which do include the X, Y coordinates, are available upon request (sco@aps1.spa.umn.edu). Finding charts for the new sequences are shown in Figs. 3-5. A star identification number is printed to the right of each star. In Figs. 6-8 we plot the estimated mean error in V, B-V, and V-R as a function of V magnitude to demonstrate the greatly decreased scatter in the final mean photometry.

In addition to establishing a set of magnitudes with ob-

FIG. 6—Mean (open circle) and median (crosses) V, B-V, and V-R values as a function of estimated mean error for the NGC 4147 sample. This standard sequence was computed from nine nights of observations.

560 ODEWAHN ET AL.

FIG. 7—Mean (open circle) and median (crosses) V, B-V, and V-R values as a function of estimated mean error for the NGC 7006 sample. This standard sequence was computed from ten nights of observations.

jectively determined errors, we have increased the usable color range in the standard fields by pushing the sequences to fainter limits. It should be stressed that the present analysis serves only to decrease and quantify the amount of accidental scatter in the photometry. Since our color transformation coefficients and zero-point terms are tied to the C85 photometry, any systematic errors associated with that photometry (Stetson and Harris 1988) will remain in our data. Full assessment of the external errors of this photometry will require independently calibrated all-sky photometry.

We wish to thank L. Davis for the use of her NGC 7790 photometry prior to publication. We also wish to thank R. L. Pennington, W. A. Zumach, and members of the staff of the Capilla Peak Observatory for their assistance in obtaining the CCD observations. This work is supported by the

FIG. 8—Mean (open circle) and median (crosses) V, B-V, and V-R values as a function of estimated mean error for the NGC 7790 sample. This standard sequence was computed from 21 nights of observations.

National Science Foundation under Grant No. AST88-15867.

REFERENCES

- Beckert, D. C., and Newberry, M. V. 1989, PASP, 101, 849
- Christian, C. A., Adams, M., Barnes, J. V., Butcher, H., Hayes, D. S., Mould, J. R., and Siegel, M. 1985, PASP, 97, 363
- King, I. R. 1971, PASP, 83, 199
- Humphreys, R. M., Landau, R., Ghigo, F., Zumach, W., and Labonte, A. E., 1991, AJ, 102, 395
- Landolt, A. U. 1973, AJ, 78, 959
- Pennington, R. L., Humphreys, R. M. Zumach, W. A., and Odewahn, S. C. 1991, in Digitized Optical Sky Surveys, ed. H. T. MacGillivray, to be published
- Stetson, P. B. 1990, PASP, 102, 932
- Stetson, P. B., and Harris, W. E. 1988, AJ, 96, 909
- Stetson, P. B. 1987, PASP, 99, 191