PASJ: Publ. Astron. Soc. Japan 44, 141-151 (1992)

On a Hermite Integrator with Ahmad-Cohen Scheme for
Gravitational Many-Body Problems

Junichiro MAKINO
Department of Information Science and Graphics, College of Arts and Sciences,
The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153
and
Sverre J. AARSETH
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, England

(Received 1991 September 18; accepted 1992 February 7)
Abstract

We describe the implementation of the Ahmad-Cohen scheme based on a fourth-order Hermite inte-
grator. With the fourth-order Hermite scheme, we calculate the force and the time derivative of the force
analytically, and construct a third-order interpolation polynomial using two points in time. Compared with
the standard scheme (Aarseth 1985) which is widely used, it allows a longer stepsize for the same accuracy,
and the program is much simpler. In the case of the Ahmad-Cohen scheme, which uses different stepsizes
for the forces from neighboring particles and that from distant particles, the difference in the programming
complexity is even larger, since the Hermite scheme does not require corrections of the higher order divided
differences for the forces from distant particles. On scalar computers the Hermite schemes are marginally
faster than the standard scheme for the same level of accuracy, both with and without the Ahmad-Cohen
scheme. On vector machines or special-purpose hardware, such as GRAPE, the Hermite scheme would be
significantly faster since the number of scalar operation is much smaller. The gain in computing speed
using the Ahmad-Cohen scheme is (N/3.8)!/% for both the standard and Hermite schemes, where N is the
total number of particles. However, this gain can be significantly smaller on vector or parallel machines.

Key words: N-body simulation — Numerical method — Collisional systems

1. Introduction

The programs developed by Aarseth (1963, 1985) have
been widely used for numerical integration of gravi-
tational N-body systems. These programs are based
on a fourth-order Adams-Bashforth-Moulton predictor-
corrector scheme, modified so as to allow a variable step-
size and different stepsizes over particles. In addition,
it allows different stepsizes for the force from neighbor-
ing particles and distant particles, so that the force from
distant particles is calculated over much longer time in-
tervals than the force from the neighbors (Ahmad and
Cohen 1973). In the following, we denote the standard
scheme with and without the Ahmad-Cohen scheme as
the individual timestep scheme (ITS) and the Ahmad-
Cohen scheme (ACS), respectively.

In this paper we compare the standard scheme with the
Hermite scheme (Makino 1991a). In the Hermite scheme
we use higher order derivatives which are explicitly calcu-
lated, in order to construct interpolation polynomials of
the force. Makino (1991a) compared ITS and its equiva-
lent Hermite schemes (HITS for short) with different or-
ders, and found that for all orders tested (4 through 10)

HITS allows timesteps longer than for ITS by roughly a
factor of 2 for the same accuracy. However, this compari-
son is limited to an integrator without the Ahmad-Cohen
scheme. Thus, it remains to be investigated how the Her-
mite integrator with the Ahmad-Cohen scheme (HACS
for short) compares with the Ahmad-Cohen scheme. In
this paper we describe the implementation of HACS and
compare its speed and accuracy with that of ACS.

In section 2 we describe the Hermite integrator. Ac-
cording to Makino (1991a), the fourth-order scheme
seems to be the best choice, unless we require extremely
high accuracy. We therefore concentrate here on the
fourth-order schemes. The fourth-order Hermite scheme
has a very important advantage in that it can be imple-
mented as a self-starting scheme. Therefore, both HITS
and HACS are much simpler than ITS and ACS.

In section 3 we present the results of numerical tests.
The integration error in the total energy of HITS is
about 1/10 that of ITS for the same number of timesteps.
With HITS, we can use timesteps that are about twice
as long as that we require with ITS for the same accu-
racy, since the error is proportional to the fourth power
of the timestep size. For Ahmad-Cohen schemes, we first

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1992PASJ...44..141M

142

determine the optimal set of parameters that minimizes
the calculation cost for a given accuracy. The optimal
number of neighbors is found to be (N/4)3/4, confirm-
ing the analytical prediction by Makino and Hut (1988),
where N is the total number of particles. For the Ahmad-
Cohen schemes, the gain in accuracy by using the Her-
mite scheme is also about a factor of 10. The gain in
computational speed that we obtain by using the Ahmad-
Cohen scheme is (N/3.8)1/4 for the case of a scalar com-
puter.

In section 4 we discuss the efficiency of integration
schemes for real hardware. If N is large, the cost of
force calculation determines the total cost. The num-
ber of floating-point operations for Hermite schemes per
timestep is about twice that for standard schemes, since
we explicitly calculate the time derivative of the gravi-
tational acceleration. The difference in the computation
time per timestep ranges from less than 30% to nearly a
factor of 2, depending on the hardware. In the case of
vector/parallel computers or special-purpose machines,
however, the calculation cost of the time integration it-
self cannot be neglected; in this case the Hermite scheme
is better, since the number of timesteps is smaller and
the calculation cost per timestep is also smaller. In the
extreme case, the difference can be a factor 3 or larger.

2. Hermite Integration Scheme

In this section we describe the fourth-order Hermite
scheme in detail. In section 2.1 we describe the individual
timestep scheme (HITS). In section 2.2 we describe the
implementation of the Ahmad-Cohen scheme. In section
2.3 we describe the algorithm to synchronize particles at
the output time.

2.1.

In the Hermite individual timestep scheme, particle ¢
has its own time (¢;), timestep (At;), position (x;) and
velocity (v;) at time ¢;, and acceleration (a;) and time
derivative of acceleration (a;) calculated at time ¢;. The
integration proceeds according to the following steps:

The Hermite Individual Timestep Scheme

(a) Select particle ¢ with a minimum ¢; + At;. Set
the global time (¢) to be this minimum, t;+ At;.

(b)

Predict the positions and the velocities of all
particles at time ¢ using x, v, a and a.

(c) Calculate the acceleration (a;) and its time
derivative (a;) for particle ¢ at time ¢, using
the predicted positions and velocities.

Calculate az(?) and aEg) using a Hermite inter-

polation based on a and a. Add the corrections
to the position and velocity of particle i. Cal-
culate the new timestep and update t;.

J. Makino and S. J. Aarseth

[Vol. 44
(e) Go back to step (a).

The structure of the algorithm for HITS is exactly the
same as that of ITS. Thus, both ITS and HITS are ex-
amples of a PEC (predictor-evaluator-corrector) scheme.
There are, however, several differences in the details. In
step (b), we predict the velocities as well as positions,
since we require velocities to calculate a. The formulas
used are

(t—t)?

(t—t;)%.
a;

Tpj = 6
and

2
Vp,j = (t—ftidj + (t—t;)a; + v,

where j runs through all particles, including particle
i. Since a; is calculated directly, all of the quantities
used for the prediction are obtained by direct calculation,
rather than by interpolation. The predictor of HITS re-
quires no memory of the previous timesteps, and is there-
fore self-starting.

In ITS, the position of particle i (the particle to be
updated) is predicted up to the order of a(® before the
force calculation, while the other particles are predicted
up to the order a. In HITS, we predict x; and v; only up
to a. The inclusion of higher order terms in the predictor
does not change the order of the integrator and, therefore,
it has only a small effect on the accuracy.

Using the position and velocity predicted by equation
(1), we evaluate the acceleration and its time derivative
for particle ¢ according to the following:

a; + (t - tj)vj +x;
(1)

a; =3, ij@i'%m
and @)
o= [|
where
Tij = Xp,j — Tpis
Vij = Upj — Upyis (3)

and e is the softening parameter. The corrector is based
on the third-order Hermite interpolation constructed us-
ing a and a at times t; and t; + At;. The third-order
Hermite interpolation polynomial is expressed as

. At2 At3
a;(t) = ag; + Ataog; + Ta&) + _6_a§fi)’ (4)
where At =t —t;, ap and ao are the acceleration and its

time derivative calculated at time t;; agfg and a((fi) are

given by

@ _ —6(ao; — a1,) — Ati(4ao,; + 2a1,)
Qy; = AL)
1

and
12(ag,; — @1,3) + 6Ati(ao,i + a1,i)
At '

ay; =

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1992PASJ...44..141M

No. 2]

where a; ; and a; ; are the acceleration and its derivative
at time t; + At;. The correction formulae for the position
and velocity are expressed as

4 5
xi(ti + Aty) = xp; + %%i—a((fg + %g%a&)a
and (6)
At At}

3
Sag)-

For the timestep, we use the standard formula (Aarseth
1985), which is expressed as

vt + At) = v, + T5tal) +

2 .
layilla®)| + |a1?

77 . 3 2 9
jarlal®)] + |af?) |2

i

(7)

where 7 is a parameter that controls the accuracy. The
timestep is proportional to /7, and the integration error
is expected to be proportional to n2. For fourth-order
schemes the timestep formula (7) shows quite good be-
havior (Makino 1991a). The time derivatives in formula
(7) have values at the new time, t; + At;. The values of
a;; and a ; are already known, since we calculated them

directly. The value of a(l?’l-) is the same as that of aé?i) , be-
cause we use third-order interpolation. The second-order

(2)

derivative, a;7/, is calculated as

2 2 3
a(u) = aé’i) + Atiaéyi).

(8)

When we start the time integration, these higher or-
der terms are not available. In our implementation of the
Hermite scheme, we calculate the higher order terms ex-
plicitly and use them to determine the timestep, following
Aarseth (1985). To implement the Hermite integration
scheme, we use NBODY1 and NBODY2 (Aarseth 1985)
as a base (ITS and ACS, respectively). Since these codes
calculate the higher order derivatives in the startup rou-
tine, we were able to implement the starting procedure
without any extra programming effort.

It is also possible to use a special formula for the initial
timestep. A simple formula is

la|

At =ns—

Ns Ial)

with a sufficiently small value of n,. We found that for-
mula (9) gives sufficient accuracy with n, ~ 0.01, pro-
vided that the velocities of the particles are not very
small. The increase in the calculation cost is rather small,
since the timestep is adjusted to the appropriate value
fairly quickly. Even when we impose an upper limit to
the increase of the stepsize as, say, a factor of 1.2, which
is used in NBODY1/2, the timestep can increase by a
factor of 10 in about 10 timesteps.

(9)

Hermite Integrator with Ahmad-Cohen Scheme

143
to— Mte—t, t
I T T T X : 1
1 : ! 1
1 I ! |
1 . ! |
- o
1
Aty | : X
| | ! ! 1 |]
I 1 T T T T 1
tnl t112 tn1’ tn2’
Fig. 1. Time sequence for the Hermite Ahmad-Cohen
scheme.

2.2. Hermite Ahmad-Cohen Scheme

Figure 1 shows how the Ahmad-Cohen scheme (ACS)
works for one particle. The gravitational force on a parti-
cle is divided into two components, one from its neighbors
and the other from distant particles. In ACS, these two
components are updated using different timesteps, At,
for the neighbors and Aty for distant particles. Thus, at
certain timesteps we calculate only the forces from neigh-
bors (neighbor step), while at other timesteps we calcu-
late both the forces from neighbors and distant particles
(distant step). Whether a particle is a neighbor or not is
determined by the distance. If this particle is within the
distance r, from the particle for which we calculate the
acceleration, it is included in the list of neighbors.

When we start the time integration, we first create
a list of the neighbors; at the same time we calculate
the acceleration due to neighbors a,, and that due to
distant particles ay. In HACS, we also calculate their
time derivatives. At the first neighbor step (time t,;),
we predict the position of the particle using the total ac-
celeration and its derivatives, which are the sum of the
contributions from the neighbors as well as those from
distant particles. At time t,;, we calculate a,, only, and
not a4. In order to apply the corrector, we need the total
acceleration at time, t,;. This is obtained by extrapolat-
ing the acceleration (a4) by

aq(t + At) = ad(t) + Atag(t). (10)

We apply the corrector in the same way as in HITS. At
the next neighbor step, time t,,2, we again predict the po-
sition and velocity of the particle. The total acceleration
at time t,; is approximated as the sum of a,, calculated
at time t,; and a4 predicted using equation (10). The
time derivative of the total acceleration at t,; is just the
sum of @, (t,1) and a4(to), since we neglect the change in
ay during the interval Aty, which is larger than ¢, — tg.
Using the predicted position we calculate the new a,, and
@, and apply the corrector.

When we reach time t; = tg + At, (distant step), we
need to calculate the following:

i) The acceleration and its derivative due to neigh-

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1992PASJ...44..141M

144

bors based on the list of neighbors calculated at
time to. We denote these an o4 and @y o4, re-
spectively.

ii) The acceleration a4 014 and its derivative aq o1q
due to distant particles, also based on the list
of neighbors calculated at time tg.

iii) The new neighbor list calculated using the po-
sitions of particles at time ¢;.

iv) The acceleration annew and its derivative
@p new due to neighbors based on the new list
of neighbors created at time ¢;.

v) The acceleration @4 new and its derivative @4 new
due to distant particles based on the new list of
neighbors created at time ¢;.

The first two are necessary in order to apply the cor-
rector for both accelerations due to neighbors and dis-
tant particles. The corrector for the acceleration due to
neighbors is calculated in the same way as in the neighbor
steps. The corrector for the acceleration due to distant
particles is also calculated in a similar way. We construct
the third-order Hermite interpolation of the acceleration,
ag4, using the acceleration and its time derivative at time
to and t1, and integrate it from ¢y to ;.
In our present scheme, the accelerations based on the
old and new neighbor list are calculated in the following
steps, in the same way as described in Ahmad and Cohen
(1973) and Aarseth (1985):
step 1: Calculate @, 014 and @y o1q in the same way as a
neighbor step.

step 2: Apply the corrector calculated for the accelera-
tion due to neighbors.

step 3: Construct a new neighbor list and calculate the
accelerations and their derivatives based on this
list.

step 4: Calculate the acceleration and its derivative due
to the distant particles based on the old neighbor
list. They are calculated as

= (ad,new + an,new) — Qn old

ad,old = (ad,new + an,new) - an,old'

Qg old
(11)

step b: Apply the corrector for the acceleration due to
distant particles using a4 c1q and @q,oid-

In ACS, higher order derivatives, or more precisely the
divided differences used to generate higher order deriva-
tives, must be corrected so that they reflect any change
in the membership of the neighbor list. With HACS, we
do not need this correction as far as the time integration
is concerned. ACS is based on a Newtonian four-point
interpolation. Therefore, we need to know the acceler-
ation calculated for the updated neighbor list at three
previous times, separately for a, and a4. However, the

J. Makino and S. J. Aarseth

[Vol. 44

quantities calculated in the previous timesteps are based
on the old neighbor list. In order to correct the old ac-
celerations, first we make a list of new neighbors which
are not present in the old neighbor list, and a list of
old neighbors which are not present in the new neighbor
list. For each particle in these two lists, we calculate the
analytical time derivatives of its contribution to the ac-
celeration up to a®, and correct the time derivatives of
a,, and ay using them. In HACS, we do not need to cor-
rect the higher order derivatives for the time integration.
All of the complicated procedures described above are
not necessary. Thus, a HACS integrator is much simpler
than an ACS integrator.

The timestep for the next distant step, and the size
of new neighbor sphere, 7,, are calculated in the stan-
dard way (Aarseth 1985). The timesteps for neighbor
and distant steps are calculated as

TP
At, = 0. }a]|a$3)1+|an2|2
lanlja|1+lald|?

Aty = \/ﬂd

These criteria have the same form as formula (7), ex-
cept that the terms are those of the acceleration due to
the neighbors or distant particles. For the neighbor step,
we use the total acceleration, |a|, instead of |a,|. Com-
pared to the formula that uses |a,|, we found that this
formula requires a fewer number of timesteps for roughly
the same accuracy. In addition, it makes comparisons
between ITS and ACS easier, since with equation (12)
the size of neighbor step, At,, is roughly the same as the
stepsize of ITS, if n, = n. With our formula, the step-
size of the neighbor step is controlled so that the error of
the neighbor force compared to the total force remains
constant. With the formula that uses |a,|, the relative
error of the neighbor force, itself, is kept constant. Thus,
the timesteps become unnecessarily small if the neighbor
force is small compared to the total force.

For a distant step, we use the distant acceleration, a4,
in order to ensure the stability of the integrator. In prin-
ciple, we could also use the total acceleration here. How-
ever, such a formula tends to result in a too large dis-
tant timestep, since the distant force can become much

and

(12)

laqlia +laq)?
laqllaly | +lald|?

- smaller than the total force. For example, when a par-

ticle undergoes a close encounter with another particle,
the total force is dominated by the contribution from the
nearest particle. If we were to determine the distant step
using the total force, the stepsize would be far too large.
We therefore adopted a formula that uses ay. With our
formula the timestep of the distant step is adjusted so
that the relative error of the distant force, itself, is con-
stant. If the distant force is much smaller than the total
force, the distant force is integrated with unnecessarily

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1992PASJ...44..141M

No. 2]

high accuracy. However, it is difficult to avoid this loss
without causing a stability problem.

In the original ACS described in Aarseth (1985), the
number of neighbors is stabilized to a value that depends
on the local density. In our test calculation described in
section 3, however, we stabilize the number of neighbors
to a constant value which does not depend on the local
density. The difference in the calculation cost and accu-
racy caused by this modification is rather small, but it
simplifies the analysis of the result.

2.3. Synchronization of Particles at Output Time

When we calculate some physical quantity of the sys-
tem, such as the total energy at a certain time, we need
the positions and velocities of all particles to an order
consistent with the order of the time integration. Since
we are using individual timesteps, the time to produce
output does not synchronize with the times of particles.
Thus, we have to predict the position and velocity of
particles at the output time to the order of a(®.

In ITS or ACS, it is simple to perform this prediction,
since the prediction procedure is the same as that used in
the integrator, itself. In Hermite schemes, however, we
do not have the necessary higher order derivatives, since
they are not used in the time integration.

In HITS, we can easily calculate the higher order
derivatives. In fact, as described in section 2.1, we have
already calculated them to determine the new timestep.
Therefore, all we need to do is to save these higher order
derivatives in memory.

In HACS, it is slightly more difficult to obtain higher
order derivatives. At a distant step (¢ in figure 1), we
calculate the accelerations a,, and a4, for both the old
and new neighbor lists. At time ¢y we calculate a4, and at
time t,; we calculate a,,, both based on the old neighbor
list constructed at time ty. Thus, we can construct higher
order derivatives separately for ay and a,, at time t;.

When we reach the first neighbor step after the distant
step, time ¢,,;-, we calculate a,, using the new neighbor
list, and apply the corrector using a,, at time t; calcu-
lated using the new neighbor list. Therefore, higher order
derivatives of a,, at neighbor steps are calculated using
the new neighbor list, while the higher order derivatives
of a4 are still based on the old neighbor list constructed
at time ty. After the first neighbor step, therefore, the
higher order derivatives of a; and a,, are not consistent.

At present, we apply a correction of the higher order
derivatives in the same way as in ACS, but only when the
next distant time exceeds the next output time. Since
these higher order derivatives are used only to calculate
diagnostics, they are not used if we do not require diag-
nostics before the next distant timestep. In that case,
therefore, we do not have to calculate the higher order
derivatives.

Hermite Integrator with Ahmad-Cohen Scheme

145

If we use the hierarchical timestep algorithm (McMil-
lan 1986; Makino 1991b), all particles are synchronized
without any extra cost, at the longest timesteps. If the
interval to calculate the output is longer than the average
size of timesteps, the hierarchical timestep is, perhaps, a
better choice, since in that case we do not have to calcu-
late the 2nd- and 3rd-order derivatives analytically.

3. Performance and Accuracy

In this section we present the results of numerical com-
parisons between the standard schemes (ITS and ACS)
and their equivalent Hermite schemes (HITS and HACS).
We use the Plummer model as an initial condition, in-
tegrate it for one crossing time and measure the total
energy at every 1/8 crossing time; we then calculate the
r.m.s. change of energy. We use the standard system of
units where the gravitational constant (G) and the to-
tal mass of the system (M) are both unity and the total
energy of the system is £ = —1/4. In this system, the
crossing time is 2¢/2. We use a softening parameter of
size 4/N, where N is the number of particles. For all
calculations, we used a SPARC station 1 and 1+. All
calculations are performed in 64-bit precision.

In section 3.1 we present the result for ITS and HITS.
In section 3.2 we compare ACS and HACS.

3.1.

The calculation cost and accuracy of ITS and HITS are
controlled by only one parameter, the accuracy parame-
ter (n) used to determine the timestep in equation (7).
We vary 7 from 0.04 to 0.0025 and plot the calculated
energy error as a function of n, the number of timesteps
per particle per crossing time. Figure 2 shows the result
for N = 25,100, 400. For all values of N, the error is in-
versely proportional to the fourth power of the number of
timesteps, as expected from the order of the integrator.
For the same number of timesteps, the error of HITS is
typically 1/10 that of ITS. In other words, HITS allows
101/4 ~ 1.8 times larger timestep than ITS for the same
accuracy.

Figure 3 shows the number of timesteps (n) per particle
as a function of the total particle number (N), for n =
0.02. Roughly speaking, the dependence is n & N/3. In
other words, for this range of N, the size of timestep is
determined by the interparticle distance.

Individual Timestep Schemes

3.2. Ahmad-Cohen Schemes

With the Ahmad-Cohen scheme, three parameters con-
trol the accuracy and calculation cost: 7, the accuracy
parameter for the stepsize of neighbor steps, 74, the ac-
curacy parameter for the stepsize of distant steps, and
N,,, the number of particles in the neighbor list.

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1992PASJ...44..141M

146 J. Makino and S. J. Aarseth [Vol. 44
L T | T TTT | | T T] T TT 12 T T T T I T T T T l T T T T
10-5 \\& n\\ o -
g %R r
c S i
107 - 1
N C
EAN - E -
]
S 107 N L
w
a = 4
\ C Q] 8 —
lo_a _A N=25 \® -
E & N=100 —Hermite o
” ® N=400 --Aarseth -
| 6
10°
EI I | B ! | 1 1 | Lt 11 1 1 1 Il l | 1 L | I 1 1 1 1
50 100 200 500 1000 0 5 10 15
n (a) N,
Fig. 2. Average energy error as a function of the num-
ber of timesteps per particle per crossing time. The e —
individual timestep scheme is used. The solid and I | rprrTrTprTETT
dashed curves indicate HITS and ITS, respectively. B N=100 €=0.04 B
The triangles are for N = 25, squares for N = 100, L B
and hexagons for N = 400.
6 — —
T T L T T £ B]
O
\w - —
K4
O - N
200 — — 4 — —
q - —
_2llII|IIII|lIII|IIlIIIIII
0 10 20 30 40 50
(b) N
Fig. 4. Relative cost of ACS over ITS, plotted as a func-
tion of the number of neighbors. The accuracy pa-
rameter for neighbor steps () is 0.02. The accu-
100 | ol | | — racy parameter for distant steps (ng) is 0.01, 0.014,
50 100 200 0.02, 0.028, 0.04, from top to bottom. (a) N = 25,
N (b) N =100, (c) N = 400.

Fig. 3. Average number- of timesteps per particle per
crossing time as a function of the number of particles
(N). The accuracy parameter (n) is 0.02. Both axes
are logarithmic. The number of particles (N) used
is 25, 50, 100, 200 and 400.

The number of neighbors is known to have only a weak
effect on the accuracy, while n,, and 7y control the ac-
curacy through the size of the timestep. In the follow-
ing, therefore, we first determine the optimal N, which
minimizes the calculation cost for some given 7,, and 7.
Then, with this N,,, we determine the relation between

7n, and 74 that provides the best accuracy for a given cal-
culation cost, and finally for this optimal set of parame-
ters, compare the calculation cost of ACS and of HACS,
as well as those of (H)ITS. For the optimal neighbor num-
ber, we use the value obtained for the ACS scheme. The
value obtained for the HACS scheme is quite similar. For
the ratio between 7,, and 74, we show the results for both
schemes, which are again similar to each other.

3.2.1.
Figure 4 shows the ratio between the calculation cost
per timestep of ACS and that of ITS as a function of the

Optimal neighbor number

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1992PASJ...44..141M

No. 2] Hermite Integrator with Ahmad-Cohen Scheme 147
5 TT7TTT T 1T [17T TT | T T TT I ' TTT T I I rrrT | T T A—
- N . \
i N=400 €=001] | o Experimental g
- A o
- 20 — a D_
4 & Theoretical E
B -1 a a
E i 2 8
&) — o
S L S~ 10— R —
K3 + A R .
©er \// i o]
i B i g]
L ¥‘//_ 5 & A |
| n A
— - _
2 B ;
‘ L Lyl L 0
| | L1141 L | I I | |) S T | I L1117 : :
0 10 20 30 40 50 50 11910 200
N,
() Fig. 4. (Continued) Fig. 5. Optimal number of neighbors as a function of N.
c ig. 4. ontinue

number of neighbors (IV,,), for several different values of
N and 7ng. We have used 7, = 0.02 for all runs. The
calculation cost per timestep is defined as

Cirs = k1N
and

(13)
Cacs = k1 (Nn+N§ZZ;),

where k; is the CPU time to perform one prediction and
one force calculation; < ng > is the average number of
neighbor steps per crossing time, and < ng > is the av-
erage number of distant steps per crossing time. We ne-
glect here the cost of calculations other than those of
the prediction and force calculation. The relative cost
(Cacs/Cits) has a minimum at a certain value of N,.
This optimal value of Ny, (Np opt), is larger for larger N
and smaller n4. In figure 5 we plot N, opt as a function
of N for several different ny. The triangles in figure 5
indicate the theoretical prediction of the optimal N, by
Makino and Hut (1988), which is expressed as

3/4
N, = (@!X)

na 4
in the case of timestep formula (12). The experimen-
tal result and the theoretical prediction show fairly good
agreement.

(14)

3.2.2. Ratio between neighbor and distant steps

Figure 6 shows the energy error as a function of the ra-
tio between the accuracy parameters (94/7,), for several
values of 7,. The number of neighbors (N,,) is chosen
according to equation (14). Solid curves are for HACS,
and the dashed curves are for ACS. Roughly speaking,

The squares are obtained experimentally. The trian-
gles indicate the theoretical prediction of equation
(14). The accuracy parameters are same as in figure
4. For the same N, a larger Ny opt corresponds to
a smaller ng4.

if , > ng, the error becomes smaller as we reduce 7,.
If n, < n4, the error is determined by 74 and does not
depend on 7,. For small N, we can clearly see this ten-
dency. For the case of N = 400, however, this tendency
is difficult to see. This is probably because the timestep
formula for the distant step [equation (12)] is not opti-
mal, as discussed in section 2.2.

We set 7, and 74 to be equal in order to compare the
different schemes. Though for large N it might not be
the true optimal point, the dependence of the calculation
cost is relatively weak, as will be shown in section 3.2.4.

3.2.3. Comparison of HACS and ACS

Figure 7 shows the energy error as a function of the
number of timesteps per particle. For these runs, we
set 17, = ng. The number of neighbor particles is chosen
according to equation (14). The error of HACS is a factor
of 5-10 smaller than that of ACS for the same number
of timesteps. This behavior is roughly the same as that
shown in figure 2, though the gain by the Hermite scheme
is slightly smaller for ACS than for ITS.

3.2.4. Relative merit of (H)ACS over (H)ITS

Here, we take into account only the cost of the force
calculation and the prediction. The contribution of the
other calculations is discussed in the next section. In the
following, we compare the calculation cost per timestep
for (H)ITS and (H)ACS, neglecting the difference in the
accuracy obtained for the same number of timesteps. In

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1992PASJ...44..141M

148 J. Makino and S. J. Aarseth [Vol. 44
-3
10 TTTTT —
E al r
C 3 107 =
107 = - -]
3 3 B]
C] 10° -
A F i A E 3
g s N C 3
g 107 = 5 R -]
=3 = = =l - .
v E] \4 8
- — 10 = —
=S 7 E 3
10° — C .
u N=25 ¢=0.16 107 - N=100 €=0.04 —
- B = 3
10-7 ! [A | 1 1 o] N | | 1 1
2 5 1 2 5 2 5 1 2 5
(a) Na/n (b) Na/Mn
T T —I T T TT I /r , 1T <A
107 = =
E 3
107° .
A 3 E
g f :
= [~ -
a L i
\2
10° -
107 N=400 ¢=0.01 —
S 3
1 1 | 1111 l | 1 1
2 5 2 5

(c)

1
nd/nn

Fig. 6. Energy error as a function of the ratio between the accuracy parameters (14/mn). The solid curves represent the results
of HACS, and the dashed curves are for ACS. The triangles, pentagons and octagons indicate for n, = 0.08,0.02, and
0.005, respectively. (a) N =25, (b) N =100, (c) N = 400.

the case of ITS and ACS, the obtained accuracy is practi-
cally the same. In the case of HITS and HACS, it seems
that HACS is slightly less accurate. Anyway, the dif-
ference is rather small and does not make a significant
difference in the conclusion.

Figure 8 shows the relative cost of (H)ACS over
(H)ITS, defined as Cacs/Cits (see section 3.2.1), as
function of N. The accuracy parameters are n = 7, =
14 = 0.02. The number of neighbors is chosen according
to equation (14). Makino and Hut (1988) predicted that
this relative cost is given by

Cacs V2 1 7\ ~1/4
Crrs {m/s) " [3r<2/3>13/4} (E) N

@@ e

As can be seen from figure 8, this prediction is in good
agreement with the experimental results, except for the
very small N.

The relative cost of (H)ACS over (H)ITS given in equa-
tion (15) is significantly higher than previously reported.
Both Ahmad and Cohen (1973) and Aarseth (1985) ex-
perimentally obtained the scaling of the calculation cost
per timestep to be proportional to N6, for N up to sev-
eral hundred. In the limit N — oo, this scaling must

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1992PASJ...44..141M

No. 2] Hermite Integrator with Ahmad-Cohen Scheme 149
\ T
' TT I R | T T ' T 17T o T T I T TTT I T I | TT
T o Experimental I
Theoretical
5 — —
N
& &
~N N
g & L i
V2 &)
31— —
Ll T B T [Y

200
n,

50 100 500 1000

Fig. 7. Same as figure 2 but for Ahmad-Cohen schemes
with an optimal parameter choice.

break down, since the timestep for the distant step can-
not exceed the crossing time. The difference between
our result and the previous results is mainly because we
measure only the force calculation cost, in units of the
number of force calculations. For small N, the contri-
bution of calculations other than the force calculation is
relatively large and, therefore, the scaling of CPU time
obtained for small NV is different from the asymptotic be-
havior in the large-N limit. On a SPARC station 1+,
the CPU time for ACS is 78% and 48% of those for ITS
for N = 50 and N = 200, respectively. They are some-
what larger than the relative cost shown in figure 7. The
actual CPU time to integrate the system for 1 crossing
time is 2.80 minutes for N = 200, using ACS.

4. Efficiency on Actual Hardware

In section 3 we compared the efficiency of different in-
tegration schemes in terms of the number of force calcu-
lations per crossing time. In practice, however, the com-
puting time on actual hardware is not determined solely
by the number of force calculations. In this section, we
first discuss the relative merit of Hermite schemes com-
pared to standard schemes. We then discuss the gain
that we can expect from the Ahmad-Cohen schemes on
actual hardware.

4.1.

One force calculation of the Hermite scheme is more
expensive than that of the standard scheme, simply be-
cause we must calculate a. The number of floating-point
operations required to predict the position of one parti-
cle is 19, and that to calculate the acceleration is 16, ex-

Efficiency of Hermite Schemes

50 100 200 500

Fig. 8. Ratio between the calculation cost of (H)ACS
and that of (H)ITS, plotted as a function of N for
the optimal parameter choice for (H)ACS. The solid
line represents the analytical prediction of equation
(15).

cluding one division and one square-root operation. To
predict the velocity, there are 12 more operations. To
calculate a, 22 more operations are required. Therefore,
depending on the relative speed of the square-root and
the division, the calculation of one interaction of the Her-
mite scheme is, in the worst case, about a factor 2 more
expensive than that of the standard scheme.

The actual difference in speed is strongly hardware de-
pendent, simply because the relative speed of a square
root or a division compared to that of an addition or a
multiplication depends on the hardware. One extreme
case is 68020- or 80386-based workstations or personal
computers, on which a square root operation is only a few
times slower than an addition. On these machines one
step of the Hermite integrator would take twice as long.
The other extreme is recent RISC-based workstations,
on which it is not unusual that a square root operation
is 20-50 times more expensive. On these machines the
difference in the CPU time for one step is rather small.

The number of timesteps required to attain the same
accuracy is about a factor 2 smaller for Hermite schemes.
Therefore, even for the worst case, the Hermite scheme is
only marginally slower than the standard schemes, and
nearly a factor 2 faster for the best case.

We must take into account the cost of calculations
other than the force calculation and the prediction.
These calculations include the selection of the particle
to update, the prediction of its position and velocity
(ITS/ACS), the correction of the predicted position and
velocity, determination of the next timestep, and correc-
tion of the higher order derivatives (ACS). For simplicity,

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1992PASJ...44..141M

150

we call this cost the cost of time integration.

The number of floating-point operations for time inte-
gration is about 130 per timestep for ITS, and about 90
for HITS, if we neglect the calculation cost of the search
for the next particle to be advanced and the timestep de-
termination. The number of timesteps needed to achieve
the same accuracy is about a factor 2 smaller for HITS.
Thus, there is a difference of about a factor of 3 for the
calculation cost. With the Ahmad-Cohen scheme, this
difference is even larger, since we do not need to correct
the higher order derivatives at distant steps in the case
of HACS.

On a scalar machine, the difference in the cost of the
time integration does not change the total calculation
cost, since the total CPU time is dominated by the force
calculation. However, on vector/parallel machines or on
a special-purpose system, such as GRAPE (Sugimoto et
al. 1990), this difference actually changes the speed of
the total calculation. For example, for N = 1000 and
(H)ACS scheme, the average number of force calcula-
tions per timestep is about 200. The calculation cost
of the time integration is roughly equal to that of 10
force calculations on a scalar computer. Therefore, if the
speedup of the force calculation by vectorization or par-
allelization is a factor of 20, the time integration already
accounts for 50% of the total CPU time, if this part is not
vectorized at all. In principle, we can speed up the time
integration by the hierarchical timestep scheme (McMil-
lan 1986; Makino 1991b). However, the gain is rather
limited since the vector length is not large.

4.2. Efficiency of Ahmad-Cohen Scheme

On some machines, the costs of the force calculation
for (H)ITS and that for (H)ACS are quite different. For
example, on vector supercomputers, such as a Cray Y-
MP or a Fujitsu VP-2600, both the calculation of the
distant force and that of the neighbor force are consider-
ably slower than the total force calculation of (H)ITS. On
vector machines, the calculation of the neighbor force is
slow because (a) the vector length is short, and (b) it re-
quires indirect addressing. The calculation of the distant
force is slower because it requires one conditional state-
ment and indirect addressing to construct the neighbor
list. '

To see the effect of these differences, let us assume (a)
that the startup time for a vector operation is equivalent
to the time to process Ny elements, (b) that the speed
of the neighbor force calculation is slower than that of
the force calculation of (H)ITS by a factor of , and (c)
that the speed of distant force calculation is slower by
another factor 3. Following Makino and Hut (1988), the
calculation time per timestep is now expressed as

a(N + Ny)

Cacs =k ——=
I'(2/3)Ni/3

+klﬂ(Nn+Ns)' (16)

J. Makino and S. J. Aarseth

[Vol. 44
1]T[Il"{_:l T ||||”l T TTTTT0 T T 17T
7]
5 . —
- B |
¢
g 3 —
S
2 —
vector N,=50, a=15 \‘\\ \
—eyector Ng=12.5, a=1.25 .
---scalar . N
1 J_lLLLlHL 1 1 IIIIHI 11 lllllll 1 \l\llllll
10' 10° 10° 10* 10°
N

Fig. 9. Same as figure 8, but showing the theoretical
gain for various vector processors.

By differentiating equation (16), we obtain the optimal
N,, which minimizes the calculation cost,
a(N + N;) 3/

3I'(2/3)8 '

The calculation cost per timestep for this optimal N,, is
expressed as

Cacs = ki [(31/4 + 3_3/4)
F(2/3)—3/4a3/4ﬂ1/4(N+Ns)3/4 +ﬂNs]

Noowi = | a7)

= 140k, [@/4BY4(N + N34 + BN, (18)
The calculation cost of ITS is expressed as
Cirs = ki (N + N;). (19)

The ratio of calculation cost of ACS and that of ITS then
becomes

a3/4[@1/4 BN,
(N + N4 N+ N, |
On vector processors with multiple pipelines such as a
Fujitsu VP-2600, we expect ng; ~ 50, a ~ 2, and 8 ~ 1.5.
In this case, equation (20) becomes

Cacs 2.25 140 :
~ . 21
Cirs (N 50073 T N 150 (21)

Figure 9 shows the speedup factor (Cacs/Cits), as a
function of the total number of particles (N) for the ideal
case of Ny =0, « = 3 =1 [equation (15)] and a realistic
case of equation (21). For the realistic case, the crossover
point is significantly higher than that for the ideal case;
even for the limit N — oo, the speedup factor is smaller
by a factor of 1.6. We also show an intermediate case of
N, = 12.5, a = 1.25, and 8 = 2, which would represent
a single-pipeline vector processor.

Cacs

= 1.40
Crrs

+ (20)

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1992PASJ...44..141M

No. 2]

5. Conclusion

We have implemented HACS, a fourth-order Hermite
integrator with the Ahmad-Cohen scheme. Its imple-
mentation is significantly simpler than the original ACS,
since HACS is a self-starting scheme. Compared to ACS,
HACS allows timesteps twice as long for the same accu-
racy, and the increase of the calculation cost per timestep
is not very large. The actual gain in speed depends on the
hardware, but will range between a factor 1 and 2. The
gain by using the Ahmad-Cohen scheme is expressed as
(N/3.8)1/4 for both the fourth-order standard and Her-
mite schemes, but would be significantly smaller on vec-
tor or parallel machines.

We thank Steve McMillan for many stimulating dis-
cussions. J. M. thanks the Institute of Astronomy for its
hospitality during his visit when this work was carried
out.

Hermite Integrator with Ahmad-Cohen Scheme

151

References

Aarseth, S. J. 1963, Monthly Notices Roy. Astron. Soc., 126,
223.

Aarseth, S. J. 1985, in Multiple Time Scales, ed. J. U.
Brackhill and B. I. Cohen (Academic Press, New York),
p.- 377.

Ahmad, A., and Cohen, L. 1973, J. Comput. Phys., 12, 389.

Makino, J. 1991a, Astrophys. J., 369, 200.

Makino, J. 1991b, Publ. Astron. Soc. Japan., 43, 859.

Makino, J., and Hut, P. 1988, Astrophys. J. Suppl., 68, 833.

McMillan, S. L. W. 1986, in The Use of Supercomputers in
Stellar Dynamics, ed. P. Hut and S. L. W. McMillan
(Springer-Verlag, Berlin), p. 156.

Sugimoto, D., Chikada, Y., Makino, J., Ito, T., Ebisuzaki, T.,
and Umemura, M. 1990, Nature, 345, 33.

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1992PASJ...44..141M

