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ABSTRACT 

In this, the first of a series of three papers, we begin a detailed description of ZEUS-2D, a numerical code for the 
simulation of fluid dynamical flows in astrophysics including a self-consistent treatment of the effects of magnetic 
fields and radiation transfer. The algorithms in ZEUS-2D divide naturally into three areas: ( 1 ) hydrodynamics 
(HD), (2) magnetohydrodynamics (MHD), and (3) radiation hydrodynamics (RHD). In this first paper, we 
give a detailed description of the HD algorithms which form the foundation for the more complex MHD and 
RHD algorithms. 

We use simple, well-developed Eulerian HD algorithms based on the method of finite-differences implemented 
in a new covariant formalism which allows simulation in any orthogonal coordinate system. The effect of 
self-gravity on the flow dynamics is accounted for by an iterative solution of the sparse-banded matrix resulting 
from discretizing the Poisson equation in multidimensions. The results of an extensive series of HD test problems 
are presented. 

Subject headings: hydrodynamics — methods: numerical — MHD — radiative transfer 

1. INTRODUCTION 

The ubiquity of hydrodynamical (HD) flows in astrophysical systems demonstrates the importance of fluid dynamical modeling 
to the field. HD processes can be used to describe the astrophysics of systems over a large range in scales, from stars and compact 
objects to the interstellar or even intergalactic medium. Since the equations of HD generally cannot be solved analytically without 
restrictive assumptions, much of the theoretical modeling relies on the numerical solution of these equations. Many numerical 
methods have been developed to generate solutions to the equations of HD, however one of the most well developed and straightfor- 
ward is the method of finite-differences. Finite-differencing is attractive for many reasons: it it robust, easy to code, efficient, and 
easily modified and extended with new algorithms. 

One of the most important frontiers for theoretical modehng is the inclusion of all of the physical effects which may be 
dynamically important to the system under study. For instance, the Galactic magnetic field can play a dominant role in the 
evolution of the interstellar medium via magnetohydrodynamical (MHD) processes, while the physics of accretion flows can be 
dominated by both the strong magnetic and radiation field from the central object. Reahstic theoretical models of such systems can 
only be produced when the numerical methods adopted to solve the problem treat all of the physical effects in a self-consistent 
fashion. 

With this in mind, we have developed a general purpose fluid dynamics code, called ZEUS-2D, for modeling astrophysical 
systems in two space dimensions including the effects of magnetic fields and radiation transfer. Generality has been the driving 
philosophy behind the development of the ZEUS-2D code so that the code may be used to model an extremely wide variety of 
astrophysical systems. Thus, the HD algorithms in ZEUS-2D have been selected as the most accurate methods to which more 
complex physical effects can be easily added in a self-consistent fashion. The numerical treatment of the MHD in ZEUS-2D 
assumes flux-freezing, but it is otherwise general. Great care has been taken to ensure that the algorithm allows for the proper 
treatment of all wave famflies in MHD, while simultaneously ensuring that the numerically evolved field satisfies the divergence 
free constraint at all times. The treatment of the radiation transfer in ZEUS-2D is based on a full transport algorithm. By actually 
solving the radiation transfer equation to close the equations of radiation hydrodynamics (RHD), we can avoid making the 
diffusion approximation. Thus, the method is equally applicable to both optically thin and thick media without requiring the use of 
flux limiters. 

In this and two other papers ( Stone & Norman 1992, hereafter Paper II; and Stone, Mihalas, & Norman 1992, hereafter Paper III) 
we provide a comprehensive description of the algorithms, methods, and test problems the authors have used in developing the 
ZEUS-2D code. At its most fundamental level, ZEUS-2D is a hydrocode, that is, it is an implementation of certain specific 
numerical algorithms for solving the equations of HD. Thus, in this first paper we focus on these HD algorithms and their 
implementation in ZEUS-2D. These algorithms form the foundation upon which are built the more complex MHD algorithms 
(described in Paper II) and RHD algorithms (described in Paper III). The division of the discussion into three papers not only 
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follows the natural organization of the subject matter, but also will allow those only interested in the MHD or RHD algorithms 
to circumvent the rest of the discussion. The level of the discussion in each paper is intended to be comprehensive enough to al- 
low others to implement the methods, as well as provide a platform for the intercomparison of the results from other methods. Re- 
sults from applying the code to specific astrophysical problems will not be presented in these papers, but are given elsewhere 
(Stone 1990). 

We begin the description of the HD algorithms in ZEUS-2D in § 2 by writing down the equations of HD which are actually solved 
in the code. In § 3 we describe the historical roots of the ZEUS-2D code, and the factors which govern the choice of the particular 
algorithms we have used. Most of this paper is devoted, in § 4, to a detailed description of the ZEUS-2D code. In § 5, we present the 
results of the tests we have performed, and in § 6 we summarize. 

2. THE EQUATIONS OF HYDRODYNAMICS 

Astrophysical plasmas are typically composed of dilute mixtures of atoms, molecules, ions and electrons. At any instant of time, 
the state of the system can be completely described at the microscopic level by specifying the distribution function (phase space 
density). The time evolution of the system is then given by evolving this distribution ftmction using the Boltzmann equation. 
However, whenever interparticle colhsions are very frequent (at least so frequent that the mean free path of a particle is much 
smaller than a scale length in the system), then one can use a much simpler, statistical description of the plasma involving only 
conserved, macroscopic quantities. The time evolution of these quantities is given by velocity moments of the Boltzmann equation. 
Taking successively higher order moments leads to the familiar equations of HD, 

Dp 
Dt 

+ pV • i; = 0 (1) 

Dv _ __ 
p — = -Vp - pV4>, 

-pV • v , 

(2) 

(3) 

Here, the dependent variables are the mass density p, the velocity v, and the internal energy density e. The D/Dt denotes the 
Lagrangean or comoving derivative, 

Z) 
Dt 

= — + i;-V . 
dt 

(4) 

The fluid equations are closed with an equation of state which gives the gas pressure as a function of the mass and internal energy 
densities (or equivalently the mass density and temperature), and the Poisson equation which determines the gravitational poten- 
tial 4>, 

V2$ = 4x6^ . (5) 

The fluid equations are simply statements of macroscopic conservation laws. For example, the continuity equation ( 1 ) expresses 
conservation of mass, while the equations of motion (2) express conservation of momenta. In this work we use the internal energy 
equation ( 3 ) rather than the conservation law for the total energy to improve the accuracy of the internal energy ( and temperature ) 
for highly supersonic flows. 

The above discussion is not intended to give a rigorous derivation of the fluid equations, as it glosses over the many issues and 
subtleties of classical kinetic theory. For our purposes, it is sufficient to note that for many astrophysical gas dynamic problems one 
can show that interparticle colhsions are frequent enough to allow one to use the continuum (macroscopic) description of the 
system given by equations ( 1 )-(5). Even so, there are many physical processes and effects which are not accounted for by these 
equations. We will describe the addition of two of these effects, namely magnetic fields and radiation transport, in Papers II and III, 
respectively. However, there are still many microphysical processes that we will not consider ( e.g., heat conduction ). Incorporating 
these processes is beyond the scope of this work; in this paper we will only be concerned with solving the equations of HD as given 
above. 

3. THE ZEUS CODE 

The equations of HD are a coupled set of hyperbolic, partial differential equations (PDEs). Without making restrictive assump- 
tions, it is generally very difficult to find analytic solutions to these equations, and we must turn to numerical methods. Numerical 
algorithms for solving hyperbolic PDEs are well developed and have been implemented in an abundance of computer codes. One 
such code, designed for solving fluid dynamical problems in astrophysics, is ZEUS. The ZEUS code began as the thesis project of M. 
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Norman to study the collapse and evolution of rotating interstellar gas clouds during star formation (Norman 1980; Norman, 
Wilson, and Barton 1980). Over the years, the algorithms were improved and extended (Norman & Winkler 1986), and the code 
was used extensively for modeling jets in radio galaxies (Norman et al. 1981, 1982). Most recently, David Clarke incorporated a 
MHD algorithm to model magnetically confined jets in radio galaxies (Clarke 1988; Clarke, Norman, & Bums 1986, 1989). 

Several features of the ZEUS code make it particularly well suited for astrophysical fluid dynamics. The code is a time-explicit, 
two-dimensional Eulerian hydrocode based on the method of finite-diflerences, characterized by a high degree of simplicity, 
robustness, and speed. Simple algorithms make for simple coding, thus improvements and changes to the algorithms can be quickly 
incorporated and tested. With the ability to use different algorithms to solve the same problem, one is led to a deeper understanding 
of what features of the solution might be strongly affected by the numerics, and what represents physics. In addition, new physics 
can be incorporated into the code easily. While more complex algorithms can give better results for HD problems (such as a 
high-order Godunov method as implemented in the PPM code; Colella & Woodward 1984), years of algorithm development are 
often required to add new physics to them. Finally, the speed of the algorithms in the ZEUS code means that one can afford to solve 
large problems at high resolution, one of the most important considerations when trying to find the converged numerical solution to 
a physical problem. 

The ZEUS code serves as the foundation of the code described here, but there have been considerable modifications and 
improvements made during the development of the ZEUS-2D code. For example, we have implemented a more general covariant 
differencing formalism which allows the use of any orthogonal coordinate system. In addition, we use a more accurate and simpler 
algorithm for the MHD than was used in the later versions of ZEUS ( see Paper II ). Code management, control, and portability have 
also been improved. These additions have led to a completely new code. In this first paper, we describe the implementation and 
testing of the HD algorithms which serves as the foundation of this new code ZEUS-2D. 

4. THE ZEUS-2D CODE 

ZEUS-2D solves the fluid equations using the method of finite-differences with a time-explicit, multistep (operator split) solution 
procedure. An operator split method breaks the solution of the PDEs into parts, with each part representing a single term in the 
equations. Each part is evaluated successively using the results from the update preceding it. For example, we can write the 
dynamical equations schematically as 

f-âW. (6) 

If we assume the operator if (t) can be split into parts, if (y) = ifj (y) + if2(y) + • • • , then the operator split solution procedure is 

(yi-y0)/At = Ll(y°)> (7) 

(y2-yl)/At = L2(y
l), (8) 

(y3 - y2)/A/ = • • •, (9) 

where the Lz are finite-difference representations of the corresponding operators i^. Of course, an operator split method is only a 
simplified approximation to the correct solution of the full nonlinear, multidimensional operator if. Furthermore, there is consider- 
able freedom in the choice of the order of the individual steps. However, numerical experiments have shown that such a multistep 
solution procedure is more accurate than a single integration step based on old data, and that there is little difference between 
solutions generated using different orderings (Hawley, Smarr, & Wilson 1984b; Norman & Winkler 1986). 

In ZEUS-2D the individual parts in the solution procedure are grouped into two steps, called the source and the transport steps. In 
the source step, we solve finite-difference approximations to 

dv 
p —= -Vp-pV$-V-Q, (10) 

— =-/»V-u-Q: Vu, (11) 

while in the transport step we account for fluid advection by solving finite-diflference approximations to the integral equations 

jtJ^pdV=-j^p(v-vg)-dS, (12) 

-jt j^pvdy=-j^pv(v~v
g)-dS, (13) 
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e(v-vg)-dS, (14) 

where vg is the grid velocity which allows for a moving grid. The origin of this form of the transport equations is discussed below. 
Note that in the source step, we have added terms which do not appear in Euler’s equations to account for viscous stresses and 

dissipation due to an artificial viscosity Q. Much like kinematic viscosity in a real fluid, the artificial viscosity acts to smooth 
discontinuities which may appear in the flow, where the finite-difference equations break down. Although dissipative processes in 
real fluids smooth shocks to be only a few particle mean free paths wide, the magnitude of the artificial viscosity is chosen so large 
that it smears shocks across several zone widths. To minimize the effect in smooth parts of the flow, one normally chooses a 
nonlinear artificial viscosity that is large in shocks but negligibly small elsewhere. With artificial viscosity, the difference equations 
will give the correct Rankine-Hugoniot relations across a shock, as well as the correct shock velocity (von Neumann & Richtmyer 
1950). However, since the shock will be unphysically (several zones) wide, one cannot study the details of shock structure with this 
method, unless one uses an adaptive mesh which allows for very small zones. 

The integral equations solved in the transport step (eqs. [12]-[14]) can be derived from use of the continuity equation ( 1 ) and 
the divergence theorem. We choose to solve integral forms for the equations so that a conservative differencing scheme may be used, 
that is, one that preserves the total quantity of the advected variable on the grid to round off error, a very desirable property. Note 
that we have measured the divergence of each advected variable on a nonstationary grid moving with velocity vg with respect to the 
fixed background. By allowing for a moving grid, we can follow global features of the flow ( such as collapse or expansion ) providing 
better resolution. We describe methods by which the grid velocity is chosen in more detail in § 4.1. 

In curvilinear coordinates, writing equations ( 12)-( 14) using the (scalar) divergence theorem ignores terms generated by the 
gradient operator acting on the unit vectors in the components of the velocity. These terms, which appear as “inertial forces,” must 
be accounted for elsewhere; in ZEUS-2D we add them in the source step. In the following subsections, we describe in detail how 
ZEUS-2D solves the operator split fluid equations (10)-(14), including the finite-difference mesh and variable centering, the 
covariant differencing formulation, the source and transport steps (including the actual finite-difference equations solved by the 
code), boundary conditions, stability and accuracy, and finally program control and management. 

4.1. The Finite-Difference Mesh 

The finite-difference method of solving hyperbohc PDEs involves discretizing each dependent variable over the spatial computa- 
tional domain, and solving finite-difference approximations (algebraic equations) to the differential evolution equations on this 
discrete mesh. In this work, we shall make the restriction that all dependent variables are functions of only two independent spatial 
coordinates, so that we need only consider two-dimensional meshes. For Cartesian coordinates, this restriction imphes slab sym- 
metry; in cylindrical or spherical coordinates it implies axial symmetry. The reason for this restriction is obvious: it greatly reduces 
the memory and cpu requirements for a numerical simulation. All of the techniques and algorithms we have used and developed in 
this work, however, are easily extended to three-dimensional calculations, provided sufficient computer resources are available. 
Indeed, the ZEUS-3D code has already been developed (Clarke, Stone, & Norman 1990). 

While we assume only two spatial dimensions, we make no restriction on the components of the vector or tensor variables that are 
evolved (such as velocity, magnetic field, or radiation pressure). Thus we evolve all components of vector or tensor variables as 
functions of two spatial coordinates. This formulation has come to be called 2.5-dimensional dynamics, and it is essential for 
self-consistent simulations of rotating flows, and for the proper treatment of all possible wave modes in MHD (e.g., see Paper II). 

With the co variant differencing scheme used in the work (described in the next section), we label the two independent coordinate 
directions as xx and jc2. Figure 1 diagrams how the two-dimensional - x2 domain is discretized into zones. In the x{ direction, 
zones are labeled by the index i, running from ii (for “i-inner”) to io (for “i-outer”). In the x2 direction, zones are labeled by the 
index j, running from ji to jo. Finite differencing the evolution equations near the boundaries of the grid requires values for the 
dependent variables to be specified beyond the computational domain. Thus, at each boundary, two rows of “ghost” zones are 
added. Values for the dependent variables in the ghost zones are specified using boundary conditions appropriate to the geometry 
and physics of the problem being solved (these boundary conditions are described in § 4.5). Thus, evolution equations are not 
solved for the ghost zones. Two ghost zones are needed to specify the derivative of the variables, both for inflow boundary 
conditions and for the higher order interpolation methods used in the transport step. 

Spatial positions on the computational grid are defined using coordinate vectors. The positions of the zone boundaries in each 
direction are specified by the “a-grid,” thus x l¿zz is the left boundary of the ith zone, while x2aj is the lower boundary of the yth 
zone. Zone centers are specified by the “b-grid,” thus (xlèz, x2bj) is the coordinate position of the center of the (z, y)-zone. 
Distances between zones can be specified independently, so that dx\a¿ = xlai+l - x\¿zz and ¿¿x 1 èz = x 1 èz - x 1 , and similarly 
for the dx2aj and dx2bj(sœ Fig. 2). Independent grid spacing allows for nonuniform grids and more efficient zoning of problems. 
However, since our formulation requires the grid to be orthogonal, a particular grid spacing in one direction ( say, in x{ ) applies over 
the entire domain of the direction orthogonal to it (i.e., in x2). 

Discrete values for each dependent variable are stored for each zone. ZEUS-2D uses a staggered mesh so that scalars, and the 
individual components of vectors and tensors, are centered at different locations on the mesh. In general, scalars and the diagonal 
components of tensors of even rank are stored at zone centers, while the components of tensors of odd rank are stored at the 
appropriate zone interfaces (e.g., the 1-component of vectors are stored at zone interfaces in the 1-direction, and the 2-component 
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iiml iip1 io iop2 

iiml Hp1 io iop2 

Fig. 1.—Discretization of the two-dimensional computational domain in the ZEUS-2D code. Zone centers, denoted by dots, are located on the 
“b-mesh,” which is labeled by the indices on the bottom and right-hand side. Zone edges define the “a-mesh,” which is labeled by the indices on the top and 
left-hand side. The thick line denotes the boundary of the computational domain, located on the a-mesh at i = ii and top 1, and j = ji and jop 1. Two rows of 
ghost zones are added beyond each boundary. 

of vectors are stored at zone interfaces in the 2-direction). The off-diagonal components of tensors of even rank are stored at the 
appropriate zone comers. Thus, the transformation from the continuous HD variables to the discrete quantities used in the 
numerics is (see Fig. 3) 

xla(i-l) xla(i) xla(H-l) x1a(i+2) 
¡4- dxla(i-l) >}< dx1a(i)  >¡4- dx1a(i+1)_>¡ 

Fig. 2.—Spatial positions of an arbitrary point on the computational domain in the ZEUS-2D code are denoted by the coordinate vectors x lu(/) or 
x\b(i), and x2a(j) or xlb(j). The a-mesh values are located at zone edges; the b-mesh values are located at zone centers. Grid spacing in each direction is 
arbitrary and independent. The dots denote the centering and indexing of zone-centered (scalar) and face-centered (vector) variables on the mesh. 
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Fig. 3.—Centering of the primary hydrodynamical variables in the ZEUS-2D code. The density, internal energy density, rotational velocity, and 
gravitational potential are all zone centered, while the 1- and 2-components of the velocity are face centered. 

p(xux2) d(x\bi9 xlbj) = dij , 

e(xux2) e(x\bi, xlbj) = , 
vi(xl, x2) vl(xlai,x2bj) = , 

v2(xi,x2) v2(x\bi,x2aj) = ^ , 

x2) v3(xlbi9x2bj) = v3ij , 

^(xl9 x2) Qixlb', x2bj) = Qij . 

Note that we have given scalars and vectors the same indices, rather than using the “half-index” notation ( e.g., v\i+l l2J), despite the 
fact that they are centered at different locations on the grid. This should not cause confusion as long as one recalls the centering of 
the variables, and that the zone interface with the same index i or j as the corresponding zone center is always at the smaller 
coordinate position ( i.e., jcIû, <xl bt and xluj < x2bj\ see Fig. 2 ). Furthermore, using the standard multidimensional implementa- 
tion of the artificial viscosity (see § 4.3), no rank-two tensor variables are needed for the HD. We will encounter rank-two tensors, 
however, in the RHD ( see Paper III ), and for the implementation of a tensor artificial viscosity ( Appendix B ). Active zones ( zones 
where the evolution equations are used to update the variables) for zone-centered quantities (^j, eij9 v3i j9 and $z j) run from i = ii, 
io and j = jijo. Active zones for face-centered quantities in the 1-direction (vl¿J) run from i = ii + 1, io and j = jijo, while active 
zones for face-centered quantities in the 2-direction (i^j) run from i = ii, io and j = ji + l Jo. 

There are two advantages to using a staggered mesh. The first is that most spatial differences are centered, for example, vectors 
which are formed from differencing scalars are in a centered location between these scalars. Centered differences are formally 
second-order accurate, as opposed to the first-order accuracy of forward or backward differences. Second, a staggered mesh reduces 
the number of interpolations needed for solving the advection equations (12)-(14)inthe transport step. Thus, the velocities, when 
centered on zone interfaces, naturally describe the flux of fluid into or out of a zone. However, staggered meshes often require 
additional averaging of variables in other parts of the calculation (for instance, forming the momentum from the mass density and 
velocities), which can ultimately limit the overall accuracy (and convergence rate) of the code (e.g., see Paper II). Here, by 
convergence rate, we mean the rate at which the error in the numerical solution decreases as the number of grid points is increased. 
Furthermore, a staggered mesh can increase the difficulty of applying boundary conditions for some variables. In this work, 
however, we have found the advantages of a staggered mesh outweigh the disadvantages. 

For some problems, it is advantageous to allow for globally nonrectangular meshes. For instance, for a simulation of an accretion 
disk surrounding a central gravitating object in cylindrical coordinates, one would like to be able to exclude the origin r= z = 0 from 
the domain to avoid potential numerical difficulties at the surface layer of the central object. This could be achieved with a series of 
steps in the boundary of the domain near the origin. This capability is incorporated in ZEUS-2D by allowing the inner and outer 
index of each coordinate label to be arrays of the other coordinate label. Thus, ii -► ii(j) and io -► io{j), where each 7th value can be 
specified independently, and similarly ji -> ji ( i ) and jo jo(i). The minimum and maximum indices over the whole grid for each 
coordinate label are stored in the scalars is, ie and js, je. 
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Finally, as mentioned in § 4, the coordinate mesh can be moved with respect to a stationary background using grid velocities. Grid 
velocity vectors are defined at zone interfaces identical to the positions of the fluid velocity vectors. After each time step, the grid 
velocities are used to recompute the positions of the grid boundaries (a-mesh) and the positions of zone centers (b-mesh). Grid 
velocities can be prescribed in any arbitrary manner, and grid movement in the two directions is independent. For instance, to make 
the code semi-Lagrangean, we can equate the grid velocity to the fluid velocity along a particular strip of zones. Or, if we are studying 
a collapse problem, we might make the grid collapse in some arbitrary manner that approximates the actual dynamical collapse of 
the flow. These, and several other options, are implemented in ZEUS-2D as choices for the calculation of the grid velocities. Note, 
however, that we have defined the grid and coordinate system in ZEUS-2D to be orthogonal. Grid motion must preserve that 
orthogonahty, thus along each slice in jt2 at a given xl, the grid velocity vectors in the 1 -direction must be identical, and vice versa for 
the grid velocities in the 2-direction. This scheme is not as general as a truly two-dimensional adaptive mesh algorithm as developed 
by R. Fiedler (1990, private communication) or Berger & Öliger ( 1984), and it Umits somewhat our ability to follow accurately 
two-dimensional flows with the moving mesh. There are many examples of the power of fully adaptive meshes in HD calculations; 
thus implementing a more sophisticated algorithm in ZEUS-2D would be a very profitable task. 

4.2. The Covariant Formalism 

Having defined the spatial mesh on which the equations of HD will be solved, and discretizing the dependent variables on this 
mesh, we could now write down the finite-difference approximations to the differential equations that will ultimately be solved by 
ZEUS-2D in the source and transport steps. Normally, one would proceed by choosing a specific coordinate system in which to 
write the differential equations, and then finite-differencing these coordinate-dependent equations. Of course, the resulting algo- 
rithm can then be used to solve problems only in that single coordinate system. Modifying the difference equations (and thus the 
numerical code) to solve problems in another coordinate system is usually a lengthy and tedious task. In this work, however, we 
have developed a covariant formalism for differencing the dynamical equations. By using the scale factors of the diagonal metric 
tensor which describes the particular orthogonal coordinate system in which one would like to solve the equations, we can write all 
of the vector and tensor operators which appear in the equations in a coordinate-independent fashion. Covariant expressions for all 
vector and tensor operators used in this work are given in Appendix A. We can finite-difference these covariant equations, including 
the scale factors, in the usual fashion. The resulting difference equations are applicable to any orthogonal coordinate system. The 
only coordinate-dependent step is the computation of the scale factors, which can be done once and for all at the start of the 
calculation (provided the mesh is stationary). 

In this work, we are primarily interested in three coordinate systems, Cartesian (jc, y) coordinates for which 

{xi,x2,x3) = {x,y,z), (âi,à2, Á3) = (l, 1, 1), (15) 

cylindrical (RZ) coordinates for which 

= (z, r, </>), (A,, A2, Aj) = (1, 1, r), (16) 

and spherical polar (RT) coordinates for which 

(xu x2, x3) = (r, 0, 0), (/*!, A2, A3) = ( 1, r, r sin 0), ( 17) 

where the A, are the metric scale factors. In these cases, x3 is always the ignorable coordinate for two-dimensional calculations, and 
the scale factors are simple functions of the coordinates, namely 

/*!=!-£!, (18) 

h2 = f(xl) = g2, (19) 

*3 = /(*l)/(*2) = &1&2 > (20) 

where we have used the gi,g2, gsi, and g32 to denote the actual scale factor variables used in the ZEUS-2D code (and which appear 
in the finite difference equations below). Without loss of generahty, we can drop gt from the difference equations. Since the 
remaining scale factor variables g2, g3l, and g32 are themselves functions of the coordinates, they must be centered on the mesh 
appropriately. For each scale factor, we define an a-mesh and a b-mesh value, and center these quantities as shown in Figure 4. For 
some of the covariant equations, the derivatives of the scale factors are needed. From the scale factors for the three coordinate 
systems used in this work (eqs. [15]-[17]), the derivatives of the scale factor variables actually used in the code (eqs. [19]-[20]) 
are, for Cartesian geometry, 

àg3i 
dXi 

= 0, (21) 
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g32a(j+U 

g32b(j) f- ' 
■ ^ 

g32a0) 1  

I 

g2a(i) g2b(i) g2a(i+1 ) 

g31a(i) g31b(i) g31a(i+l) 

Fig. 4.—Centering of the metric scale factor variables g2, g?>\, and g'M used in the finite difierence equations with the covariant formalism. A zone 
centered on the arbitrary point Jt\b{i), x2b(j) is shown. The a-mesh is denoted by solid lines, the b-mesh by dashed fines. 

for cylindrical geometry, 

and for spherical polar geometry, 

d#2 = n ^31 = n dff32 = 1 

dxx 
5 dxx 

5 dx2 

#-l, ^-1 dxx dxx 

dg32 
dx2 

= cos 6 . 

(22) 

(23) 

Values for these derivatives are also defined on both the a-mesh and the b-mesh and centered appropriately. 
By writing the scale factors in the form of equations ( 18)-(23) we can reduce the memory requirements and floating point 

operations of the covariant formalism. However, we have also imposed restrictions on the coordinate systems that can be used in 
ZEUS-2D. For example, the scale factors for an oblate spheroidal coordinate system cannot be written in the form of equations 
(18)-(20) since hx ¥= \ in this case, thus we cannot compute using these coordinates (which might be particularly suited to 
simulations of a rotationally flattened star). However, extending our implementation to increase its generahty is straightforward. 

By introducing general curvilinear coordinates, we have also introduced the possibility of numerical errors when diflerencing 
near coordinate singularities. The occurrence of this error can easily be demonstrated in spherical polar coordinates. For radial 
derivatives, if we use the simple differencing, 

1 d_ A(r2F) _ 
r2 drK r2Ar [(r, + r,_1)/2]2(r, - r,_,) ’ 

(24) 

then near the origin we do not recover the correct difference formula resulting from the volume difference, 

1 d / ..2 T7\ A(r2F) _ rjF) - r^iy, 
r2 dr'' A(/-3/3) r-/3 - r3_!/3 

(25) 

Although both these difference approximations are identical at large radii, near the origin (ri_l 0) there is a serious discrepancy 
since [(rz + r¿_1)/2]2[r/ - ¥= r¿/3 - r¿_1/3. Similar problems occur from differencing the polar angle derivatives. This is, in 
fact, an example of a general method of reducing finite difference errors near coordinate singularities that Evans ( 1986) has termed 
“coordinate regularization.” Mönchmeyer & Müller ( 1989) have also described a general method of differencing conservation laws 
on a non-Cartesian mesh. We do not use coordinate regularization in its full generahty here, however. In this work, we merely 
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ensure that we use the volume diflerence formulae whenever necessary. This is achieved by introducing the volume factor variables, 
defined for Cartesian geometry as 

dvl\ = Ax, dvll = Ay, (26) 

for cylindrical geometry as 

dvl\ = kz, dvI2 = A(r2/2), (27) 

and for spherical polar geometry as 

dvll = A(r3/3), dvl2 = A(-cos 6). (28) 

Like the metric scale factors and their derivatives, the volume factor variables are functions of the coordinates and are therefore 
defined on both the a- and the b-mesh and centered appropriately. Then, whenever terms like ( h2h3 ) “1 ( dF/ djtj ) or ( A3 ) “1 ( dF/ dx2 ) 
appear in the differential equations, they must be differenced using these volume factor variables as 

1 di7 ^ 1 AF 1 dF ^ 1 AF 
h2h3 d*! £32 dvll ’ h3 dx2 g31 dvl2 * 

4.3. The Source Step 

In the source step, we solve finite-difference approximations to the differential equations ( 10)-( 11 ). Physically, these equations 
represent the source and sink terms for each of the dependent variables, which have been operator split from the advection terms 
added later in the transport step. Following the operator split method, the source step itself is divided into three substeps. In the first, 
we update the velocities due to pressure gradients, gravitational forces, and coordinate curvature terms (inertial forces); in the 
second, we use the partially updated velocities to add the artificial viscous stresses and dissipation; and in the third we add the 
compressional heating term. Let the superscript n denote quantities at the start of the source step ( resulting from the last cycle of the 
calculation ), while n +a, n + b, and n + c represent the partially updated quantities resulting from each of the above three substeps. 
Then, using the covariant expressions for the spatial operators, the actual difference equations used in ZEUS-2D for each of these 
substeps are as follows. 

4.3.1. Substep 1 

In this substep we add pressure gradients, gravitational forces, and curvature terms. Thus, 

vl^-vllj _ 
At 

PiJ - P?-K dj? . _ , . 
 -Li7  LF/ 

dxlbi(dlj + d"_hj)l2 dxlbi 

v2l+a - v2n
u _ 

At 

[{V21, + v2n
i j+l + v2Uj + ^2^_1v/+1)/4]2 / dg2ai\ | [(»3”,. + u3”_1,/)/2]2 / dg3lai\ 

g2ai \ dxl ) g3lat \ dxl ) 

Ph-Pu-i + [^*i\ 
g2bidx2bj(dlj +dlj-l)/2 g2bidx2bj g2big32aj \ dx2 ) ' 

(30) 

(31) 

Note that, due to the staggered mesh, averaging of some variables to the appropriate zone interfaces is required in these equations. 
The pressure p"j is computed at the beginning óf the source step using the equation of state. Most commonly, we use an ideal gas 
law, so that p"j = {y - 1 ) e^j. The gravitational potential 4> " 7 is computed at the beginning of the source step from a solution of the 
Poisson equation ( 5 ) using the density d”j. In § 4.7 we describe the numerical solution of the Poisson equation as implemented in 
ZEUS-2D. The curvature terms, which appear only in curvilinear coordinates, are inertial forces due to geometry terms in the 
divergence operator acting on the momentum flux. 

4.3.2. Substep 2 

In this substep we add the artificial viscous stress and heating terms. The manner in which these terms are differenced depends on 
the form of the viscosity used. The customary approach is to use the formulation of von Neumann & Richtmyer ( 1950), which is 
based on an analysis of planar shocks in one dimension. The method is extended to multidimensions by defining the coefficients of 
viscosity in each direction independently, which are then used to compute separate scalar artificial pressures q¿ for the update in 
each direction. The success or failure of the von Neumann & Richtmyer approach lies in the proper definition of these scalar viscous 
pressures. The triumph of the von Neumann & Richtmyer analysis was the realization that a nonlinear viscous pressure, sensitive 
only to compression, would result in the correct entropy jump across shocks and the correct shock propagation velocity, while 
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having negligibly small effect away from shocks. Thus, von Neumann & Richtmyer proposed 

Vol. 80 

l2p(dvldx)2 if {dv/dx) < 0 

otherwise 
(32) 

where / is a constant with dimensions of length which determines the strength of the artificial viscosity. For a multidimensional 
implementation, the zone-centered viscous pressure used in the separate updates in each direction is then 

^ij= 

= 

Cidijivli+u - vljj)2 

0 

' Cidijivlij+i - v2ij)2 

0 

if 

otherwise 

if (v2iJ+1 - V2.J < 0 

otherwise 

(33) 

(34) 

where we have replaced / with the dimensionless constant C2 = 1/Ax. Physically, C2 measures the number of zones over which the 
artificial viscosity will spread a shock and is typically chosen to be C2 « 3. Given the scalar pseudo viscous pressures needed for the 
separate updates in each direction as defined above, the appropriate artificial viscous stress and dissipation terms to be added to the 
momentum and energy equations are then (see eqs. [10]-[11]) 

v\l+b-vlua 

At 

v2^b - v2?+a 

At 

 ffi/J ffl/—1,7  
dxlbMlj + dUj)/!' 

(ßu - 
g2bidx2bJ(dlj + dlj^)/2’ 

pn+b - e- ■ 
At 

«2<,+i - v2,.i\. 
g2bidx2aj ) * 

(35) 

(36) 

(37) 

This extension of the von Neumann and Richtmyer artificial viscosity to multidimensions is ad hoc. A rigorous treatment 
involves defining an isotropic artificial viscous stress tensor, and then using the components of this tensor in the pseudoviscous 
terms in the evolution equations. Nonetheless, the formulation described above has proven to be adequate for Cartesian geometry. 
Its use in curvilinear coordinates, however, can potentially lead to serious numerical difficulties ( Tschamuter & Winkler 1979). For 
instance, in curvilinear coordinates, radial inflow along converging gridlines represents compression even when dv/dr = 0, and 
therefore should produce pseudoviscous heating, whereas the von Neumann & Richtmyer approach predicts <7 = 0 in this case. 
These difficulties can be avoided by using a tensor artificial viscosity (Tschamuter & Winkler 1979; Winkler & Norman 1986) 
which implements all of the desirable properties of the von Neumann & Richtmyer method in a covariant formalism. Again, the 
success of the method lies in the proper definition of the tensor components, the details of which are given in Appendix B. The 
explicit difference equations for the artificial viscous stress and dissipation terms to be added to the momentum and energy 
equations are also given in Appendix B. 

In practice, we choose to update the velocities and internal energy density using either the von Neumann & Richtmyer form (eqs. 
[ 33 ] - [ 37 ] ) or the tensor form ( Appendix B ) of the artificial viscosity. The sole purpose of the nonlinear viscosity is to provide the 
correct jump conditions and shock velocity. In many problems, numerical experiments have shown that the von Neumann & 
Richtmyer approach fulfills these goals adequately, even in non-Cartesian geometries. Thus, we have used the tensor formulation 
only for problems which demand it. 

In some test problems, with strong shocks, it is necessary to add linear artificial viscosity to damp oscillations which can occur in 
stagnant regions of the flow. The scalar linear artificial viscous pressure is defined as (Lapidus 1967; Norman & Winkler 1986) 

= CipCaAv , (38) 

where C{ is a constant of order unity and Ca is the adiabatic speed of sound (C* = yp/p). The linear viscosity is sensitive to both 
compression and expansion, and a different viscous pressure is computed for each direction in multidimensional flows. The explicit 
difference equations for the linear viscosity update are identical to those for the von Neumann & Richtmyer formulation (eqs. 
[ 35 ] - [ 37 ] ), except q is replaced by q^ defined above. The update is performed directly after the nonlinear update described above, 
but before substep 3 below. 

4.3.3. Substep 3 

The source step is completed by adding the compressional heating term. If we are using an ideal gas equation of state, then an 
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implicit update involving the time-centered pressure pn+l/2 can be used to improve energy conservation. Thus, 

{en+x - en)l(M) = -pw+1/2V-1;, (39) 

where pn+l/2 = (pn + pn+l )/2. Using the equation of state, p = (y - l)e, this can be rearranged to give an exphcit expression for 
en+l, which is then differenced as 

1 -(A//2)(7- IKV^k; 
1 +(A//2)(7- IXV.uX,; 

pn+b c iJ * (40) 

Note that (V • v)l J is a zone-centered scalar, an explicit finite-difference expression for which is given in Appendix C. This procedure 
can be used only for a gamma-law gas. For a more general equation of state, a predictor-corrector method is used, 

~ e"jb)l{kt) = -plj(V • v)iJ , 

«r - = -ïiph+, 

(41) 

(42) 

where /?pred is computed from the equation of state using £pred. Once the congressional heating term has been added, the source step 
is completed, and the partially updated variables are ready to be passed to the next step of the calculation, the transport step. 

4.4. The Transport Step 

In the transport step, we solve finite-difference approximations to the integral advection equations ( 12)-( 14). These equations 
state that the rate of change of the quantity of a variable q within the volume of a zone centered on q ( called the control volume) is 
equal to the divergence of the flux of q through the control volume surfaces. A time finite-difference approximation for these 
equations which is second-order-accurate in space and time can be written schematically as 

{Qt^nu - <iijTij)/(At) = - -n, + ^L+1 - ^h)n+l/2 (43) 

where t" is the control volume at time level n (note t"+í = t" if the grid is not moving). The flux in the /cth direction is 

(^tj)n+l/2 = ((vk'J - vSki)Qk,i,jÄk,ij) , (44) 

where ( vkiJ - vgkl ) is the fluid velocity relative to the grid, q*4J is the value of q interpolated to the interface of the control volume, 
and Äk iJ is the area of the control volume interface, all in the Æth direction. The angle brackets denote that all quantities on the 
right-hand side are time centered. Note if q is zone centered, then due to the staggered mesh, the velocities are naturally centered at 
the faces of the control volume ( a primary reason for introducing a staggered mesh in the first place ), otherwise the velocity must be 
averaged to the faces. Exact conservation of the total quantity of the variable q (at least to machine round off) can be achieved by 
computing the fluxes for every interface on the grid at once, and then using the same flux to update adjacent zones. Thus, the flux in 
the 1-direction entering the zone (/, j) is the same as that leaving the zone ( / - 1, y). Integrating over the entire computational 
domain by summing equation (43) over all zones causes the flux to cancel in pairs; thus, except for the flux across the domain 
boundaries, the total quantity of q will be conserved. 

For multidimensional flows, the advection problem is usually simplified by using directional sphtting, which involves using a 
series of one-dimensional advection steps to build up the full solution (Strang 1968). For instance, to solve the two-dimensional 
problem represented by equation (43), we use two one-dimensional updates, starting with a sweep in the 1-direction, 

ViJ 
At i i i / x i. (45) 

followed by a sweep in the 2-direction, 

~n+l„n+\ „n+a^n+a 
QiJ 7 iJ ~ QiJ 7 iJ 

At [ ( ( v^íj+ i vg2j+ ! ) q*ij+1 Á2¿j+1 ) (( v2ij vg2j) q*ijÄ2,ij) ] (46) 

The fluxes in the second step are computed using the partially updated quantities from the first sweep (e.g., qn+a). In principle, to 
maintain second-order accuracy for the advection, the directional sphtting must be applied in a symmetric fashion. For instance, if 
X and Y represent the advection operator applied in two orthogonal directions, then the simplest symmetric directionally split 
update is (^X)(Y)(\X). Such a scheme increases the computing time by 50% over the simpler, unsymmetrical XY update. 
However, numerical experiments (Finn & Hawley 1989) have shown that for moderate resolutions (<105 zones in two dimen- 
sions), the small increase in accuracy is not warranted by the large increase in CPU time. For a fixed amount of CPU time, a more 
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accurate solution is achieved by using greater resolution with an unsymmetrical splitting. In ZEUS-2D we have therefore used an 
unsymmetrical splitting. We do, however, alternate the order of the update between successive cycles (e.g., we use XY at Atn and 
YX at Atn+1), which may help to increase the accuracy of the scheme without adding any extra computational overhead. 

One of the most challenging aspects of Eulerian HD has been the development of stable and increasingly more accurate 
algorithms for computing the time-averaged, interpolated value of the variable g at the faces of the control volume, to be used in the 
computation of the fluxes. By introducing the concept of upwindedness, Godunov ( 1959 ) was the first to achieve a stable algorithm 
for the advection of discontinuities on an Eulerian grid. Upwindedness dictates that the interface value chosen should be that given 
by the distribution of the variable upstream of the interface. Subsequent work has concentrated on increasing the accuracy of the 
method by introducing more accurate representations of the distribution of a variable within the upstream zones, using increasingly 
higher order interpolation polynomials. An essential ingredient of this work has been the realization that a further requirement for 
stability of a higher order method is that of monotonicity. Physically, this requires that a distribution of q(x, t) which locally 
increases or decreases monotonically before advection maintains that quality after advection. A monotonie algorithm will not 
introduce new local extrema into the flow, the essential requirement for stability. Hawley et al. ( 1984b) and Clarke ( 1988) have 
given excellent discussions of the effect of monotonie schemes as implemented in ZEUS-2D in suppressing instabilities. 

In ZEUS-2D, we have implemented three schemes for interpolation, the first-order-accurate donor cell method, the second- 
order-accurate van Leer method (van Leer 1977), and the third-order-accurate piecewise parabolic advection (PPA) method 
developed by Colella & Woodward ( 1984 ). The order of accuracy of each scheme refers to the order of the first term dropped in the 
Taylor series expansion used to generate the method. Below we describe each of these methods as applied to the calculation of the 
face-centered upwinded values q* of a zone-centered scalar . 

1. Donor cell (first-order) method.—The simplest interpolation scheme is to assume that the variable q is constant with a zone, 
leading to the upwinded values 

if Vj vgj > 0 

^ f n • (47) 
[q, if vt - vg¡ < 0 

By ignoring any variation of q within a zone, the donor cell method is quite diffusive. Features advected with this method become 
smeared out quite rapidly; thus, in practice, this method is never used in ZEUS-2D, except for tests. 

2. van Leer (second-order) method.—We can improve the accuracy of the scheme by improving the order of the interpolation 
used. The van Leer ( 1977) scheme uses a piecewise linear function to represent the distribution of q within a zone; thus the 
upwinded interpolated values are 

ÍQi-i + (A*/-i - (t>, - %)Aí)(í/í,-i/2) if Vi - vgi > 0 

I<7/ - (A*, + (f, - vgi)At)(dqi/2) if u, - vg, < 0 ’ 

where the dq, are the monotonized, van Leer slopes computed from the harmonic average 

dqt = ' 

2(Ag,-_1/2A(7,-+i/2) 

10 

if Atf,+1/2Atf,_1/2 > 0 

otherwise 

(48) 

(49) 

where Aqi+X/1 = {qi+l - ^O/Ax, . The definitions of the van Leer slopes in equation (49) takes into account a nonuniform grid 
spacing. Note that when the van Leer slopes are zero, the method reduces to the donor cell (first-order) method given in equation 
(47). The van Leer method offers the advantages of improved accuracy (less diffusion) combined with speed. It is therefore the 
scheme most often used in ZEUS-2D. 

3. PPA (third-order) method.—The PPA scheme uses parabolic interpolation within a zone to compute upwinded interface 
values. Schematically, the PPA interface values can be written as 

* íQr,í-\ + £(<7/-i - Qr,í-\) + £( 1 - £)(2<7/_i - qRyi-i ~ qL,i-i) if > 0 
Qt = \ , (50) 

Uz,,/ + £(?/ - Ql,í) + £( 1 - £)(2tfz - qRii - qLJ) if - vgi < 0 

where £ = v¿At/Ax = fraction of the width of a zone that the interpolation parabola moves in At, and qLJ and qR i are the 
monotonized left and right interface values of the zth zone given by the PPA algorithm. The heart of the PPA method lies in the 
computation of these interface values. In ZEUS-2D we use the method implemented by Clarke ( 1988 ) in the ZEUS code, originally 
described by Colella & Woodward ( 1984). A detailed description of the method, including the monotonicity constants and contact 
steepeners, is given in these references and will not be repeated here. However, one key point to be made is that by using parabolae 
for interpolation, the PPA method requires that two points be specified upwind of the interface. In general, the PPA method uses a 
five-point molecule centered on the zone being updated. Thus, at boundaries, values must be specified for two ghost zones beyond 
the computational domain. 
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For advecting contact discontinuities, PPA is unrivaled in its ability to keep such features sharp, restricting them to a width of 
only two zones; however, this impressive performance comes at a high cost in CPU time. For many multidimensional dynamical 
problems, it is not clear that this high cost generates a significantly “better” solution than, say, the van Leer scheme run at higher 
resolution. Furthermore, using a third-order scheme in the advection step does not necessarily mean that the solution generated by 
the entire code will converge at that rate, since the errors may be dominated by other parts of the solution procedure. For instance, 
Finn & Hawley ( 1989) have recently demonstrated that when a spatially varying velocity field is present, the van Leer and PPA 
algorithms must be modified to account for velocity gradients across a zone in order to maintain their second- and third-order 
convergence properties. These points will be demonstrated in the results of some of the test problems we have performed. With these 
points in mind, the interpolation algorithm most often used in ZEUS-2D is the van Leer method, despite the fact that PPA is fully 
implemented in the code. Note that the piecewise parabolic advection (PPA) scheme as implemented in the ZEUS-2D code and to 
which the above discussion is directed is not equivalent to the piecewise parabolic method (PPM), which combines the third-order 
interpolation described above with a Riemann solver to evolve the HD equations. 

Given interpolated and time centered values for a variable using any one of the three schemes described above, we can then 
proceed to construct time-centered fluxes and perform the advection using finite-difference approximations to the appropriate 
advection equations. We demonstrate this procedure using the mass density advection equation. With the directionally split 
algorithm, the update is performed in the 1-direction independently from the update in the 2-direction. The face centered fluxes of 
mass density in the 1-direction are 

^\j = vgX^gla’i+'^glla^^dvlla'j , (51) 

where d*ij is the face-centered, interpolated values for the density, while the gla^1'2 and ^31a?+1/2 are time-centered values for 
the metric scale factors to account for grid motion. Note that we do not time center grid variables which are functions of the 
2-coordinate, since the grid is held fixed in the 2-direction while performing the 1-direction advection. The update for the mass 
density due to advection in the 1-direction is then 

{d^dvlla^dvlla) - dljdvl\a’¡dvl2an
j)l{te) = -{&\+hj - ^{j), (52) 

where dvlla” and dvlla” are the volume factor variables defined by equations (26)-(28), with dvlla?*1 being evaluated at the 
advanced time to account for grid motion. Once the 1 -direction advection is completed for all zones, the update due to advection in 
the 2-direction is performed using 

= dljivlij - Vg2j)g3lb?dxla’lg32anj+l/2, (53) 

(d,ijldvl\aydvl2anj+l - d^dvlla?dvl2anj)/(&t) = , (54) 

where the dvl2anj+l are the volume factor variables evaluated at the advanced time to account for grid motion in the 2-direction. 
Equations ( 51 )-( 54), applied sequentially, represent the two-dimensional advection of mass density on the grid using directional 
sphtting. Note that by completing the update in the 1-direction before starting the update in the 2-direction, the partially updated 
densities are used in the calculation of the fluxes in the 2-direction (eq. [53]). 

Advection of the other HD variables (e, vl, v2, and v3) proceeds in a similar manner. However, there are two important 
differences in the advection of the other variables as compared to the advection of the mass density. The first is that to improve local 
conservation for these variables, we use consistent transport, a notion first introduced by Norman et al. ( 1980). Thus, although the 
integral equations are globally conservative when differenced using the control volume approach, local conservation of the variables 
can be seriously affected by the numerical diflusion inherent in the finite-difference equations and interpolation algorithm. Consis- 
tent transport attempts to minimize the effect of this diffusion on local conservation by making the fluxes of the fundamental 
variables consistent with the flux of mass transported through the mesh. As demonstrated by Norman et al. ( 1980 ), this can make a 
dramatic improvement to the local conservation of specific angular momentum in the problem, which can ultimately affect the 
overall evolution of the system. Consistent transport dictates that the fundamental quantities to be advected are the mass density 
( p ), the specific internal energy (£/ p ), and the three components of the specific momenta defined as(1y1/p) = u1,(52/p) = A2^2 and 
{s3/p) = h3v3. Geometric factors are introduced in the definitions of the momenta s2 and s3 so that physically these variables 
represent angular momenta in cylindrical and spherical geometries. By using momenta as the fundamental variable in the transport 
step, rather that velocity as in the source step, we must transform between these variables at the start and end of the transport step. 
Since the velocities and density are located at different positions on the staggered mesh (e.g., Fig. 3), arithmetic averaging of the 
density is required to transform from velocity to momenta, and vice versa. Velocities are held fixed throughout the entire transport 
step, until they are updated using the newly advected densities and momenta at the conclusion of this step. 

The fluxes of these variables are made consistent with the flux of mass density by the use of face-centered mass flux variables 
defined via 

M},j= (55) 

Mlj = dZJvlu-vglj). (56) 
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Apart from the area factors of the zone faces, these formulae are identical to the density fluxes used in the updates of the density 
(eqs. [51] and [53]). With the mass flux variables defined above, fluxes of the other variables are then constructed, first in the 
1-direction using, 

&\t] = (e/d)lljM\ jg2ar¡+112g?>\a1+U2dvl2an
] , 

Ki = »KiAWlj + M}+lJ)g2brll2gl\brV2dvl2anj , 

œ],i = v2*ug2a,¡(MlJ + M¡j_,)g2a"+,/2g31a?+,/2dvl2bj , 

./¡J = v3*ijg3laig32bjM!Jg2a"+,/2g31a"+I/2dv/2aj , 

which are used in the update of these variables due to advection in the 1-direction, 

(e"jldvlia"+ldvl2anj - e"jdvlla"dvl2a")/(At) = - ^)j), 

{s\'¡ydvl\b';+'dvl2anj - sl^dvllbld^a^HAt) = - ^Uj), 

(s2"jldvlla"+idvl2bnj - s2ljdvna^dvl2bn
J)/(At) = , 

(s3"jldvlla"+ldvl2aj - s3ljdvlla?dvl2anj)/(At) = . 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

The area and volume factors which appear in the fluxes (eqs. [57]-[60]) and advection update (eqs. [61]-[64]) demonstrate the 
second distinction in the advection of these variables as compared to the mass density, namely that the staggered mesh alters the 
centering of the control volumes for some of the variables. While the control volumes for all zone-centered variables (d. e/d, and 
s3) are the same, they are different for 1-direction vectors (il ) and 2-direction vectors (,v2) (see Fig. 5). Thus, the fluxes of d, e/d, 
and .v3 are all face centered in both directions, while the fluxes for il are zone centered in the 1-direction and face centered in the 
2-direction, while the fluxes for s2 are face centered in the 1-direction and zone centered in the 2-direction. 

Once the update of all variables due to advection in the 1-direction is complete, we then perform the advection in the 2-direction 
by first computing the fluxes in the 2-direction, 

= (e/d)Z¡jMlJg3lb?(bclbtg32anj+U2 , 

+ MllJg3la/dxlb/g32a"+l/2 

Ml, = s2Z,ug2bn
i\{Mlj + M2j+l)g3\br/ chela/g32b" 

■*li = s3Zug3\bn
ig32an

jMlig3\bn
idx\bn

ig32af'i2, 

+1/2 

which are used for the update due to advection in the 2-direction, 

dolía/dvl2andx ~ e/¡dolía/dol2anj)l{At) = -(dP2
Uj+x - ■_,), 

(sl/jldollb/dofàaŸ' - sl/jdvllb/dvl2anj)/{At) = -{^jj+i - ^jj), 

{s2/jldolía/dol2b"+l - s2/Jdolla/dol2bn
J)/{At) = -(J^, - , 

{s3/jldolía/dol2anj+l - s3dvl 1 a/dvlla/)/{At) = - ( J jj,, - .// ,). 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

The transport step is now finished. One cycle, representing the integration of the equations of HD by one time step, is complete, and 
the current values of the dependent variables are ready to be fed back into the start of the source step to begin the next cycle. 

4.5. Boundary Conditions 

Whenever the dependent variables are updated in the source or transport steps, boundary conditions must be applied to keep the 
values stored in the ghost zones consistent with the active zones. These conditions are simple, expheit equations which give the 
values of the dependent variables in the ghost zones from the values in the adjacent active zones, without actually solving the 
evolution equations. The exact form of the boundary conditions applied depends upon the geometry and physics of the problem 
being solved. In ZEUS-2D, we have implemented several different conditions which can be apphed independently to each variable 
along each different boundary. These conditions are the following: 
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Fig. 5.—The control volumes, denoted by the shaded regions, are different for the zone-centered variables (top), face-centered in the 1-direction 
variables ( middle), or face-centered in the 2-direction variables (bottom). The fluxes are of each type of variable are located on the edges of the appropriate 
control volumes, as denoted by laige arrows. The a- and b-mesh are denoted by solid and dashed lines, respectively. 

1. Reflecting Boundary Condition.—All zone-centered variables and the tangential components of velocity in the ghost zones are 
set equal to the corresponding values of their images among the active zones. The normal component of velocity is set to zero on the 
boundary and reflected for the second ghost zone. 

2. Axis of Symmetry Boundary Condition.—This condition is identical to the reflecting boundary condition, except that the 
zone-centered 3-component of velocity is set equal to the negative of the value in the corresponding active zones, forcing it to go to 
zero on the boundary. 

3. Inflow Boundary Condition.—Here the values of all the variables in the ghost zones are held equal to a set of predetermined 
values (which may be allowed to vary in time). Outflow is not permitted. For supersonic inflow, this condition is exact, while for 
subsonic inflow, some spurious reflection of wave energy may occur (i.e., in principle, the boundary condition should be perfectly 
transparent to outgoing waves, but in practice, the numerical implementation of the boundary condition always has some nonzero 
reflection coeflicient associated with it). 

4. Outflow Boundary Condition.—This is the most difficult boundary condition to implement properly. In ZEUS-2D we have 
used the simplest approach possible and set all values of variables in the ghost zones equal to the values in the corresponding active 
zones (extrapolated the flow beyond the boundary). For supersonic outflow, this technique is exact. However, for subsonic outflow, 
spurious reflection of wave energy will occur at the boundary. If the reflected waves affect the dynamics of the simulation, this 
problem must be addressed, either by using a larger computational domain, or by increasing the accuracy of the boundary condition 
(e.g., by extrapolating along characteristics rather than gridlines; Thompson 1987). 

5. Periodic Boundary Conditions.—All zone-centered variables and the tangential component of velocity in the ghost zones are 
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set equal to the values in the corresponding active zones on the other side of the grid. The normal components of velocity in the 
second ghost zone is set equal to the value in the appropriate active zone on the opposite side of the grid, while on the boundary ( first 
ghost zone) it is computed from the difference equations. 

As implemented in ZEUS-2D, the boundary conditions can be applied independently for every zone on every boundary of the 
computational domain. This allows for changing the boundary condition along a boundary (e.g., to give a jet nozzle inlet). 

In addition, to increase the modularity of the implementation, the boundary conditions for each different variable are imple- 
mented in a different subroutine, which can be called from any other part of the code. Thus, modifying or improving the boundary 
conditions is a straightforward task. Note that the implementation of the boundary conditions described here only applies to the HD 
variables. The boundary conditions used for the magnetic fields and radiation variables are described in Papers II and HI, respec- 
tively. 

4.6. Stability and Accuracy 

Upwinding of the advected fluxes as described in the transport step is essential to maintain stability, that is, to prevent the growth 
of short wavelength (sawtooth) oscillations. In addition, a time-explicit code must also limit the time step used to evolve the 
dynamical equations to satisfy the Courant-Friedrichs-Lewy (CFL) stability condition. Physically, this condition can be understood 
as limiting the distance that information can travel in one time step ( via waves or fluid motion ) to be smaller than one grid zone. We 
must choose the largest time step possible such that every zone locally fulfills the CFL condition, so that for a one-dimensional 
calculation, 

A/ < min (Ax)/(| w| + CJ , (73) 

where u is the local fluid velocity, Ca is the local adiabatic speed of sound, and the minimum is taken over all grid zones. Although 
we have stated this condition on physical grounds, it can be derived with mathematical rigor by performing a von Neumann 
stability analysis of the dynamical equations ( Richtmyer & Morton 1957). For multidimensional flows, a suitable time-step limit is 
the smallest of all onenlimensional CFL conditions in each orthogonal direction. Thus, in ZEUS-2D we choose the explicit time 
step using 

M = Co/[max {bt\2 + bt? + bt? + bt?)]112 . (74) 

Here, the maximum is taken over all zones, C0 is a safety factor (called the Courant number, typically C0 « 0.5 ), and the various 
limiting time steps are defined as 

btx = [min (A*!, £ix2)]/Ca , (75) 

bt2 = Axj/ii’i - vgi), = &x2/(v2 - vg2). (76) 

The bt4 arises from the inclusion of artificial viscosity in the dynamical equations. This changes the mathematical nature of the 
momentum equation to a diffusion equation. For stability, explicit diffusion schemes are limited to a time step of 

At < (Ax)2/4v , (77) 

where p is the coefficient of kinematic viscosity. The equivalent v for the artificial viscosity can be determined by comparing the 
artificial viscosity terms to those in the Navier Stokes equations, thus p = /2V • v where / is a constant with dimensions of length 
which describes the strength of the artificial viscosity. Thus, the fourth time-step limit defined in equation (74) is then 

bt4 = min (A*i)2 (Ax2)
2 \ = / Ax, Ax2 \ 

4l2(Avl/Axx) ’ 4l2(Av2/Ax2)) \4C2At>, ’ 4C2Av2) ’ 
(78) 

where we have used the dimensionless coefficient of artificial viscosity C2 defined through C2 = 1/ Ax (see § 4.3). 
Since the characteristic speeds will in general be changing as the evolution proceeds, the time step must be allowed to vary as well. 

The time step is limited to an increase of no more than 30% to maintain accuracy, yet may decrease by any amount to maintain 
stabihty. 

While fully implicit time-differencing schemes are not subject to the CFL stability criterion, they are inefficient for the study of 
short time-scale dynamical flows; therefore we do not use them here. However, when radiation is included in the dynamical 
equations, the CFL condition for all possible characteristic speeds can become overly restrictive. We have therefore implemented a 
fully implicit algorithm for evolving the radiation dynamical variables. In these circumstances, ZEUS-2D operates used a mixed 
explicit-implicit method. The implementation of the fully implicit RHD algorithm is described in detail in Paper III. 
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4.7. The Solution of the Poisson Equation 

In the previous sections, we have described the numerical algorithm implemented in the ZEUS-2D code for solving the HD 
equations. Since these equations are hyperbolic, we must be concerned with space and time discretization, and such issues as 
stability and the treatment of discontinuities (shocks). However, since the Poisson equation is elliptic, numerical solutions are 
much easier to obtain. In this section, we describe our numerical procedure for accomphshing this. 

Many numerical methods have been utilized to solve the Poisson equation, as it occurs in many physical situations. For our 
purposes, we need a solver which will work on a two-dimensional nonuniform mesh with general boundary conditions. Thus, many 
of the fastest methods developed for specialized problems (e.g., spectral or Fourier transform methods) are ruled out. We will 
concentrate on solving the sparse matrix which results from finite-differencing the Poisson equation. We begin by discretizing the 
Poisson equation in two dimensions. The gravitational potential is zone centered; thus using the covariant form of the Laplacian 
operator given in Appendix A, the finite-difference equation can be written as 

= Sij , (79) 

where 

a, = {g2ai+lg'$\ai+ldvl2aj)l dx\bi+\ 

a2 = (g3>2aj+ldvlla,)/(g2bjdx2bj+l), 

3 glbj \dx2bj+l dxlbj) J\ dxlbi+l dxlbj ) 

a4 = (g2aig3\aidvl2aj)ldxXbi , 

a5 = (g32ajdvl\a¿)/(g2bjdx2bj), 

Sij = dvllUi dvfcajAirGdij . 

To avoid discretization errors at the origin in curvilinear coordinates, we have used the volume differencing described in § 4.2. 
Clearly, the Laplacian results in a five-point molecule on a two-dimensional orthogonal mesh. We cannot obtain a solution for ¿ 
without simultaneously achieving a solution for all its nearest neighbors. Thus, solving the Poisson equation represents solving 
N2 coupled linear equations, where N is the number of zones on a side. 

Rewriting equation ( 79 ) in matrix form results in a sparse banded matrix whose structure is diagrammed in Figure 6. This sparse 
banded pattern occurs universally for a two-dimensional operator using a five-point difference molecule; we will encounter matri- 
ces similar in structure for the implicit solution of the radiation moment equations in Paper III. 

The appropriate boundary conditions for the problem are incorporated directly into the matrix elements themselves or the 
right-hand side. For each boundary of the domain, we have implemented two possible boundary types, ( 1 ) Neumann, in which the 
slope of the gravitational potential is set to zero, and ( 2 ) Dirichlet, in which the value of $B in the ghost zones is specified. Neumann 
boundary conditions are used at symmetry boundaries (axis or equator), while Dirichlet are applied at outer boundaries, far from 
most of the mass distribution. Neither the Neumann nor the Dirichlet boundary conditions affect the structure of the matrix shown 
in Figure 6. Neumann boundary conditions simply modify the diagonal elements of the row in which they are applied, while 
Dirichlet boundary conditions modify the right-hand side. 

For the case of Dirichlet boundaries we compute $B using a multipole expansion formula (Jackson 1975), 

$s = G 2 Pl(fiB)rÿl+"MI, (80) 
/ 

where P¡ are the Legendre polynomials which are functions of the cosine of the angle fiB between the position vector and axis of 
symmetry, r is the magnitude of the position vector of the boundary point, and the multipole moments Af7 are given by 

M,= f p^r'PMdV . (81) 
J y 

This method only applies to curvilinear coordinates for which there is an axis of symmetry. The Legendre polynomials can be 
generated using the recursion relation 

(n + l)Pn+l(x) = (2n + l)xPn(x) - nP^x), (82) 

where P0(x) = 1, and .Pi(x) = x. 
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Fig. 6.—Schematic structure of the sparse banded matrix resulting from differencing the Poisson equation in two dimensions. The “al,..., a5” are the 
coefficients of the dependent variables as defined in eq. (79). A value of B denotes that matrix element can be affected by Neumann boundary conditions. 

Equations (80)-(81 ) are discretized as 

= G 2 , (83) 
/ 

where M¡= dij^jP^ßi^dvllaidvllaj . (84) 
* j 

In practice, when the problem boundaries are far from most of the mass distribution, then the series in equation (83) converges 
rapidly, and only a few moments are needed. However, we have found that when the density becomes significant in the zones near 
the boundary, the series converges slowly, and many moments must be taken to achieve an accurate solution. (In fact, if the mass is 
not centrally condensed, the series may diverge). As implemented in ZEUS-2D, we continue to add higher moments until $B has 
converged to one part in 103, up to a maximum of 100 terms. 

Careful inspection of equation (79) reveals that the sparse banded matrix resulting from discretizing the Poisson equation is 
positive definite and symmetric. Methods for solving such matrix equations are widely available, and we have used several. First, we 
have implemented the alternating direction implicit (ADI) method described by Norman & Winkler ( 1986) and Black & Boden- 
heimer (1975). With this method, one looks for steady state solutions to the diffusion equation 

— = V24> - 4^ , (85) 
àg 

where g is some iterative time scale which has no relation to the true dynamical time. An iterative method which breaks this 
multidimensional equation into a series of one-dimensional sweeps is used; these are repeated until convergence is achieved. Thus, 
the matrix problem is reduced to solving tridiagonal matrices, for which very fast and vectorizable algorithms are well known 
(Richtmyer & Morton 1957). Recently, adaptive methods (dynamic ADI, or DADI) have been developed (Larson, Hewett, & 
Anderson 1989) to choose the optimal convergence time-step in the solution of equation (85) which greatly speeds convergence 
over the simple time-step ordering described in Norman & Winkler (1986) and used here. 

We have also used several other methods to solve the matrix, including the Incomplete Cholesky decomposition Conjugate 
Gradient (ICCG) and General Mean Residual (GMRES) methods (R. Bramley 1989, private communication). We have found 
that roughly comparable timing is achieved by all of these methods for typical problem sizes of interest (grids of ~ 105 zones). In 
practice, however, we nearly always use one of the latter solvers ( those other than ADI ) for simulations. These methods are also used 
in the implicit RHD, thus we can share the storage required by the solver between uses. In addition, by basing all of the sparse matrix 
solvers on library routines, we can easily implement new efficient solvers (such as DADI) as they become available. This can be a 
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vital point, since when in use, sparse matrix solvers occupy the bulk of the CPU time needed for a simulation. In fact, unless the 
density distribution is changing rapidly, a solution of the Poisson equation may not be needed every cycle. We keep track of the 
relative error in the currently stored gravitational potential compared to the current density distribution by rearranging equation 
(79) so that 

$3 = -j- (Su - a^,+u - a2$,v+1 - a4$,_u - ^o-i) • (86) a3 

We only perform a solution of the Poisson equation when 

(87) 

where e ~ 10~5. In practice, this technique can reduce the frequency of solving the Poisson equation to once every tenth cycle, with 
substantial savings in CPU time. 

4.8. Program Control and Management 

Having described each of the components of the ZEUS-2D code, we can now summarize how these pieces are linked together in 
the actual code. Figure 7 is a schematic flow chart of the code. After initialization and problem set up, the main loop of the code is 
entered. Each successive cycle of the main loop representing integration of the PDEs forward in time by one time step includes 
solution of the Poisson equation to compute the gravitational potential (eq. [79]), the source step (three substep solution of the 
difference eqs. [30]-[31], [35]-[37], and [40]), the transport step (directionally split solution of the advection equations, 
represented by the difference eqs. [ 51 ] - [ 72 ] ) followed by calculation of new grid velocities ( if the grid is moving), and calculation 
of a new time step to satisfy the CFL condition. Execution of the main loop is then repeated until one of the several stopping criteria 
is reached. The main loop also contains data output options, and an interrupt checker, a subroutine which provides control of the 

Fig . 7.—A schematic flow chart of the ZEUS-2D code including only the hydrodynamical algorithms. All of the major steps in the solution procedure, as 
described in the text, are shown. 
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program during execution. By typing any one of several dozen different commands at any time during execution, one can initiate a 
data dump, modify the values of control flags and variables, or pause, stop, or restart execution. 

The driving philosophy of the code development and implementation has been to make the code as modular and portable as 
possible. In implementing the actual algorithms in FORTRAN, we have followed closely the paradigm established by Winkler & 
Norman ( 1986) for efficient and bug-free coding. We have followed the FORTRAN 77 standard as closely as possible to maintain 
portability. We have also used graphics software which is widely available; vector graphics are generated using NCAR graphics, 
raster image files are generated internally for animation by a variety of postprocessing software which runs on local workstations 
(e.g., Imagetool, Datascope, etc.), while floating point data is dumped in the HDF file format to interface with software developed at 
NCSA. All of these methods use software in the public domain for which the source code is available, so that ZEUS-2D and any of 
its dependent graphic library routines can be installed, compiled, and run on any machine which contains a FORTRAN and C 
compiler. 

Whenever a code grows to a size longer that a few thousand fines, then efficient management (e.g., editing and compiling) of the 
source code becomes a problem (without common block substitution, the full ZEUS-2D code including the MHD and RHD 
algorithms currently amounts to over 30,000 fines of source). With ZEUS-2D, we use the precompiler CPP (which is part of the 
UNIX operating system), combined with the UNIX directory structure and utilities, to manage the editing and compilation steps. 
One useful feature of CPP is its ability to allow one to define various macros which will cause CPP to either include or suppress all 
portions of the code labeled by that macro during compilation. Thus, one can generate FORTRAN code which is optimized for the 
problem at hand. For example, by not defining the MHD macro at compilation, the CPP precompiler will produce an executable 
which is optimized for HD calculation with no reference to MHD either through unused (and wasted) array storage space or 
unreferenced subroutines. CPP macros are used to control all of the many physics, geometry, and data output modes in ZEUS-2D, 
greatly simplifying the code management procedure. Indeed, having used CPP, we feel that developing and applying a code as 
complex as ZEUS-2D would be very difficult without a precompiler. 

5. THE HYDRODYNAMIC TEST PROBLEMS 

The ZEUS-2D code represents an entirely new implementation of the algorithms found in the ZEUS code. In addition, new 
capabilities have been added such as a covariant formalism and PPA (third-order) interpolation for all variables. We therefore must 
run a complete battery of HD tests for this new code. Initially, such tests are designed to catch bugs in the coding. However, with 
careful and structured coding, such bugs in the implementation should be quickly traced down. Thereafter, tests provide the much 
more important task of benchmarking the algorithms. By testing the code on many different problems, we can gain an appreciation 
of the effectiveness, and the limitations, of the algorithms implemented. Such insight is essentiajTo differentiating when a character- 
istic of a simulation is due to the physics, or is potentially an artifact of the numerics. 

In this section, we present the results of the HD tests run on the ZEUS-2D code. Our philosophy of testing had been to isolate and 
test the numerical solution of individual terms in the difference equations, and slowly build more and more complicated problems 
until all portions of the code are in use. With this philosophy, we first present results from simple one-dimensional advection 
problems, next we show results from a one-dimensional shock tube problem, and finally we give results from two-dimensional tests 
involving strong shocks. 

5.1. Cartesian Advection Tests 

By far the most complicated step in the solution procedures is the transport step, wherein the dependent variables are advected 
across the grid. We therefore start by testing this portion of the code. The results presented here will only be for the mass density 
variable (¿/j) ; we have checked that we obtain identical results for the other dependent variables. In addition, all one-dimensional 
tests have been performed independently in each orthogonal direction. 

Advection tests are easily constructed by ignoring the source terms in the difference equations and assuming a time-independent 
velocity field. Analytic solutions to the differential equations with these restrictions are trivial to obtain. The simplest test we have 
performed is the one-dimensional advection of a square pulse in Cartesian geometry. Initially, the pulse is 50 zones wide, and 
centered at x = 30. The test involves advecting the pulse for a distance of 5 times its width. Figure 8 shows the results using the four 
choices of advection algorithms in ZEUS-2D: donor cell, van Leer, PPA, and PPA with the steepener. The results show that the 
donor cell method is the most diflusive: the pulse has completely lost its shape and no longer has the correct amplitude. The van 
Leer result is considerably better: the discontinuities in the variable are kept to about 14 zones, and the pulse has the correct 
amplitude. The PPA result is even better: discontinuities are now only 6 zones wide; while PPA with steepener keeps the discontin- 
uities to only 2 zones wide. This test demonstrates the great range in accuracy of the methods for advecting discontinuities. Not 
surprisingly, the most sophisticated algorithm (PPA with steepener) obtains the best result for this problem; indeed it would be 
difficult to improve it. The PPA and van Leer results are good, while the donor cell result is unacceptable for simulations. We note, 
however, that due to the conservative differencing scheme used in the transport step, the area under the pulse in all cases is identical 
to the initial value to within one part in 107”8, regardless of the scheme used. 

A more quantitative comparison of the advection algorithms can be made by comparing the convergence rates of the different 
schemes for a one-dimensional advection test. The convergence rate is computed by comparing the numerical solution at a certain 
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Fig . 8.—Results for the Cartesian advection of a square pulse of density, originally 50 zones wide, a distance of 5 times its width using the donor cell ( top 
left), van Leer (to/? right), PPA (bottom left), and PPA with a steepener ( bottom right) advection algorithms. Analytically, the edges of the pulse are located 
at jc = 255 and 305. 

time to the expected analytic solution. Using an Lx error norm, the error in the numerical solution is 

í = (I: k-íi)/ao (88) 

where N is the number of gridpoints, q¿ is the numerical solution, and q the analytic solution. For different resolutions, this error 
should decrease as e ~ Ajcr where r is the convergence rate. The convergence rate is therefore found by computing the Lx error norm 
at several different resolutions, and finding the slope of the log-log graph of error versus resolution. In principle, a first-order scheme 
should converge at a rate of 1, a second-order at a rate of 2, and a third-order at a rate of 3. 

Figure 9 shows the errors and convergence rate for advecting a Gaussian pulse a distance of 10 times its width using donor cell, 
van Leer, and PPA. The square pulse is unsuitable for this test as it involves discontinuities which can never be resolved, regardless 
of the number of gridpoints. The error norms show that PPA gives the most accurate result at every resolution, over three orders of 
magnitude better than donor cell at the highest resolution. The van Leer method, though not as accurate as PPA, still gives errors 
which are two orders of magnitude smaller than donor cell at high resolution. The convergence rates for this problem are 0.6 for 
donor cell, 2.1 for van Leer, and 3.0 for PPA. This result agrees quite closely with what we expect for a one-dimensional advec- 
tion test. 

Although many other Cartesian advection tests can be designed using a variety of different waveforms ( Clarke 1988; Woodward 
1986), these are generally used to compare various advection algorithms. Instead, we have used the Cartesian advection tests 
primarily to check for bug-free coding and therefore have confined ourselves to a very Umited set of waveforms. A more detailed 
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ERR0RS IN GRU55IRN PULSE 

RRTES 0F C0NVERGENCE 

Fig. 9.—Relative errors (/op) and convergence rates (bottom) of the donor cell (DC), van Leer (VL), and PPA advection algorithms for the Cartesian 
advection of a Gaussian pulse of density a distance of 10 times its width. 

description of the performance of the advection algorithms implemented in ZEUS-2D for advecting various waveforms can be 
found in the above references. 

5.2. Non-Cartesian Advection Tests 

To demonstrate the covariant nature of ZEUS-2D, we can also perform advection tests in non-Cartesian geometries. A suitable 
one-dimensional test is a “relaxation” problem, wherein a constant density and a velocity field proportional to r (vr = v0r) is 
initialized, and the density is allowed to decay away. For this problem, the analytic solution to the continuity equation is p(t) = 
p0e~2vot in cylindrical geometry and p(t) = p0e~3vot in spherical geometry. Thus, at both V = 6 in cylindrical geometry and v0t = 4 in 
spherical geometry, the analytic solution gives the same value for the density: p = 6.14x 10_6Po* The numerical solution computed 
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by ZEUS-2D for this problem gives density values of p = 5.78X10-6 in cylindrical geometry and p = 5.60X10"6 in spherical 
geometry. Thus, even though the density has decreased by nearly six orders of magnitude, the error in the amplitude is only 5.9% in 
cylindrical and 8.8% in spherical geometry. In addition, the numerical solution remains perfectly flat in both cases, a powerful 
confirmation of the geometry-dependent terms. 

5.3. Pressure-Free Collapse of a Sphere 

A final one-dimensional advection test is the gravitational collapse of a homogeneous, pressure-free sphere. An analytic solution 
describes the collapse of every mass shell (Hunter 1962), 

where ß is given by 

(r/fb) = cos2 ß, (p/po) = cos 6 ß , 

ß + ^sin 2ß = t \/y <5p(0). 

(89) 

(90) 

The free-fall time, defined as the time at which every mass shell reaches the origin (r = 0) simultaneously, occurs when ß = tt/2, or 
rff= VÖ7j7[32G^Ö)i. 

To run this test, we set up a homogeneous sphere in spherical geometry with p = (7 = 1 initially. The free-fall time is thus rff = 
0.543. We stop the evolution when t = 0.535, when the density has increased by nearly three orders of magnitude, and compare the 
numerical and analytic solutions. Since for a homogeneous sphere an exact numerical solution for the gravitational forces is 
obtained, this problem is an excellent test of radial advection. 

The results as computed by ZEUS-2D are shown in Figure 10. We find that for a nonmoving grid, an anomalous spike occurs in 
the density in the first few zones near the origin, although the rest of the zones agree well with the analytic solution. As recently 
demonstrated by Mönchmeyer & Müller ( 1989 ), the error at the origin is a result of using a coordinate-centered staggered mesh. It 
can be entirely eliminated by using a volume-centered staggered mesh (or equivalently, using the notion of coordinate regulariza- 
tion in its full generahty ). This solution, however, requires substantial and cumbersome changes to the diflerence equations and the 
transport step. We have found this error can be substantially reduced by using a moving mesh. Thus, if we allow the mesh to collapse 
with the cloud by setting the grid velocity vectors equal to the fluid velocity at every gridpoint (except for the boundaries), then the 
advection errors are minimized, and the solution at the origin is substantially improved. This test demonstrates the usefulness of the 
moving mesh formulation. Furthermore, choosing the correct numerical method can be important to getting the most suitable 
result. 

5.4. Sod Shock-Tube Test 

We can increase the sophistication of our test problems by designing a one-dimensional problem which tests all the transport and 
source terms (including artificial viscosity). In HD, the quintessential test has become the shock-tube problem, first used by Sod 
(1978), and more recently by Hawley et al. ( 1984a, b), to benchmark numerical HD algorithms. The shock-tube problem involves 
setting up two discontinuous states, a hot dense gas on the left and a cool rarefied gas on the right, at i = 0, and letting them interact. 
Nonlinear waves are generated at the discontinuity and propagate into each state; a shock wave into the right state and a rarefaction 
fan into the left. The analytic solution to this problem (called a Riemann problem) gives a description of the propagation of these 
nonlinear waves for i > 0. As a test of a numerical algorithm, the shock-tube problem demonstrates whether the code can give the 
correct shock jump conditions and velocity in a stable manner. Although this is a one-dimensional Cartesian test, it can be run in 
both directions, and along the z-axis in cylindrical geometry. 

The Sod shock-tube problem is a specific set of choices for the initial conditions in the left and right states. For a 7 = 1.4 gas, the 
pressure and density are 1.0 in the left state, while in the right state the pressure is 0.1 and the density is 0.125. Initially, the 
discontinuity is located at x: = 0.5 at a cell interface. The velocity is initially zero everywhere. Hawley et al. ( 1984a) describe how the 
analytic solution to this problem is generated for t> 0. 

Figure 11 shows the results of the Sod shock-tube problem as computed by ZEUS-2D using 100 zones and the van Leer advection 
algorithm. The analytic solution (solid lines) shows the shock wave at far right, followed by a contact discontinuity and the 
rarefaction fan at left. The numerical solution (open circles) traces these features well. The shock and contact discontinuity are 
resolved by about 4 zones, consistent with the artificial viscosity and second-order advection scheme used. The foot and head of the 
rarefaction fan, which represent discontinuities in slope rather than the variables themselves, are also slightly smeared due to the 
diffusivity of the scheme. Using PPA on this problem does not significantly reduce this smearing. Small overshoots in the numerical 
solution near regions where the slope of a variable changes discontinuously from zero are also noticeable. Using a highly developed 
one-dimensional adaptive mesh code, Winkler & Norman ( 1986) have shown that such overshoots are in fact the correct solution 
to the viscous finite difference equations as Ax ^ 0. These overshoots are therefore a sign of a scheme with a low diffusivity. We also 
note that the amphtude of the specific energy is incorrect behind the shock front; this is likely due to the fact that the fundamental 
variables in the shock-tube problem are density and pressure rather than density and specific internal energy, as are evolved with 
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Fig. 10.—The density distribution for the pressure-free collapse of a homogeneous sphere at t = 0.985 free-fall times using a stationary (top) and a 
moving (bottom) radial mesh that collapses with the sphere. The analytic solution is denoted by the solid line in both cases. 

ZEUS-2D using the consistent transport scheme. A code which does not use consistent transport would be slightly better suited to 
this problem. Hawley et al. ( 1984b) has provided extensive comparisons of commonly used numerical algorithms in astrophysics to 
this problem, including those used in ZEUS-2D. We find exact agreement to these published results. Hawley et al. conclude that for 
the algorithms that were tested for this problem, the algorithms we have implemented give the most accurate results. 

5.5. Tests with Strong Shocks 

Woodward & Colella (1984) have provided an extensive comparison of HD algorithms to three difficult test problems involving 
strong shocks in one and two dimensions. We have performed these tests on ZEUS-2D to benchmark our algorithms with these 
other codes. We describe our results below. 
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XI 

Fig. 11.—Results for the density {top left), pressure (top right), velocity (bottom left), and specific internal energy e/d (bottom right) for the Sod 
shock-tube problem computed using ZEUS-2D. A grid of 100 zones is used. In each case, the analytic solution is plotted as a solid line. 

5.5.1. Two Interacting Blast Waves 

The first problem described by Woodward & Colella ( 1984) is the interaction of two strong blast waves in one dimension. The 
problem is set up using three constant states of a gamma-law gas (y = 1.4) which is at rest between two reflecting walls on the 
domainjcE[0,1]. The density is everywhere set to 1.0, and from x = 0 to 0.1 the pressure is 1000, from x = 0.9 to 1.0 the pressure is 
100, and in between it is 0.01. The discontinuities in pressure generate two strong shocks which reflect off* the boundaries and 
interact with each other, producing a complicated pattern of shocks and discontinuities for t > 0. Although no analytic solution is 
given, Woodward & Colella present the results of a very high-resolution PPM calculation, to which the results of all other codes are 
compared. In Figure 12 we give the results obtained at ¿ = 0.038 using ZEUS-2D with 1200 zones and both the van Leer and the 
PPA schemes, to be compared directly with the results given in Woodward & Colella. 
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Fig. 12.—Density resulting from the interaction of two blast waves computed using 1200 zones and the van Leer (top) and PPA (bottom) advection 
algorithms. 

Qualitatively, the ZEUS-2D solutions are very good. All of the shocks and contact discontinuities are present in their proper 
positions on the grid as given by the PPM solution. Comparing the solutions to each other, we see the PPA result is superior. Not 
only does the PPA solution have sharper contact discontinuities, but also the amphtude of the spike at jc = 0.76 is closer to the best 
PPM value of ~ 6.5. Since this test was originally designed to demonstrate the relation between the accuracy of the overall solution 
to the thickness of discontinuities on the mesh, it is not surprising the PPA method gives better results. Though methods which keep 
shocks thinner on the grid do better (e.g., PPM or adaptive mesh methods; Winkler & Norman 1986), the simple algorithms in 
ZEUS-2D do quite well on this difficult problem. 

5.5.2. Mach 3 Wind Tunnel with a Step 

In this two-dimensional test, a uniform Mach 3 flow is set up in a wind tunnel containing a step. The tunnel is three units long and 
one high, and the step is 0.2 units high and located 0.6 units from the left side of the tunnel. Reflecting boundary conditions are used 
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for the top and bottom of the tunnel, flow in on the left and flow out on the right. The density is initially everywhere set to 1.4, the 
pressure is 1.0 ( 7 = 1.4 is used), and therefore for a uniform Mach 3 flow the velocity is everywhere 3.0. As described by Woodward 
& Colella ( 1984), we modify the flow quantities in the zones near the comer of the step to try to reduce numerical errors generated 
at this singular point. Thus, in the first four zones above and just to the right of the step, the density and magnitude (but not 
direction) of the velocity is reset so that the entropy and sum of the enthalpy and kinetic energies per unit mass are identical to the 
values of these quantities in the zone immediately to the left and below the comer. The same conditions are applied to the first two 
zones in the row above. In a staggered mesh, this reset is very difficult to implement properly. The zone-centered velocity is an 
average of the velocities at the interfaces; thus reseting the velocities within a zone requires modifying the interface values, and thus 
the velocities in the neighboring zones as well. As a result, the solutions presented here are marred by numerical errors generated by 
the incorrect boundary conditions at the comer of the step, especially at low resolution. Nonetheless, this problem provides a 
self-consistent test for comparing the advection algorithms within ZEUS-2D, as well as quahtative comparisons to other schemes at 
high resolution. 

Figure 13 shows the resulting density profiles (plotted with 30 equally spaced contours) using the van Leer advection scheme at 
time t = 4.0 and resolutions of Ax = Ay = Ax = Ay = and Ax = Ay = Figure 14 shows the same results using the PPA 
method at the same time and resolutions. The effect of increasing the resolution is dramatically demonstrated in these plots. Not 
only are discontinuities thinner in the high-resolution runs, but also the shock positions are closer to the best PPM values. In the 
lowest resolution, the Mach stem at the upper boundary has not yet formed. The numerical error generated at the comer of the step 
is clearly demonstrated by the anomalous Mach stem at the lower reflection, caused by the interaction of the shock and an 
anomalous boundary layer along the surface of the step generated at the comer. This error certainly affects the overall flow, 
particularly the positions of the shocks and reflections. Thus, only the highest resolutions have a structure close to the best solution 
given by Woodward & Colella ( 1984). 

Comparison of the PPA and van Leer results shows that PPA gives a better result at every resolution. The positions of the shocks 
and the length of the Mach stem are closer to the best PPM values, and the contact discontinuity generated at the triple point is 
sharper, as witnessed by the sharper kink in the density contours. The increased accuracy of the PPA result is bought at the expense 
of CPU time, however. Table 1 gives the CPU time for the solution at each resolution using both the van Leer and PPA methods. 

MAX= 5.43E+00 MIN= 7.52E-01 

MAX= 7.13E + 00 MIN= 3.76E-01 

Fig. 13.—Density contours resulting from the Mach 3 wind tunnel with a step using the van Leer algorithm and grids of 20x80 zones (top), 40x160 
zones (middle), and 80X320 zones (bottom). Thirty equally spaced contours between the maximum and minimum are used. 

Fig. 14.—Density contours resulting from the Mach 3 wind tunnel with a step using the PPA algorithm and grids of20x80 zones (top), 40x 160 zones 
(middle), and 80x320 zones (bottom). Thirty equally spaced contours between the maximum and minimum are used. 
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TABLE 1 
Execution Times for Mach 3 Wind Tunnel 

with a Step Test on a Cray-XMP 

Resolution Algorithm Cycles CPU Time (s) 

20 X 80   van Leer 1149 14.7 
40 X 160   van Leer 2310 80.5 
80 X 320   van Leer 4764 546 
20 X 80   PPA 1227 28.1 
40X 160   PPA 2510 166 
80 X 320   PPA 5114 1190 

Note that the grids used for this problem cover a domain which has an axial ratio of 1:4, whereas we have used only the leftmost 1:3 
portion of the domain for analysis. This avoids any numerical errors which may be associated with the outflow boundary condition 
on the right-hand side of the grid. For this two-dimensional test, PPA takes significantly longer, nearly 2.2 times longer at the highest 
resolution. 

5.5.3. Double Mach Reflection of a Strong Shock 

The final test problem described in Woodward & Colella ( 1984) is the double Mach reflection of a Mach 10 shock from an 
inclined plane. To reduce the difficulty of modeling an inclined reflecting boundary on a rectangular mesh, the shock is initially 
introduced at an angle to the mesh and allowed to reflect from the lower boundary. Thus, the problem is set up using a rectangular 
domain, one unit high and three units long, filled with a uniform gas at rest with density 1.4 and pressure 1.0 (7 = 1.4 is used). A 
planar shock is initialized at an angle of 60° to the x-axis, starting at x = j and extending to the top at j = 1. The flow conditions 
behind the shock are given from the jump conditions using the preshock values and the shock speed. Thus, behind the shock, the 
density is 8, the pressure is 116.5, and the velocity is 8.25 normal to the shock front. The left boundary and the lower boundary from 
x = 0 to 1/6 are always set to the postshock conditions. From x = | to 3 the lower boundary is reflecting, while the right boundary is 
flow out, and the upper boundary is modified to describe the exact motion of the shock. By initializing the shock at an angle to the 
grid, a small numerical error is introduced which is apparent in all of the plots given here as isolated contour fines stretching from 
the upper right comer back to the reflected shock. This same error also appears in the results given by Woodward & Colella and 
cannot be easily eliminated. 

Figure 15 shows the resulting density profiles (plotted using 30 equally spaced contours) using the van Leer algorithm at time t = 
0.2 and resolutions of Ax = Ay = ^, Ax = Ay = and Ax = Ay = Figure 16 shows the same results using the PPA algorithm at 
the same time and resolutions. Again, the influence of resolution is dramatic in these plots? However, since there are no difficult 
boundary conditions which need be applied in this problem, we find much better agreement between the solutions at every 
resolution and the best PPM results for this problem. At high resolution, the shocks are much thinner, and the complicated shock 
structure at the double Mach reflection, including a small jet along the lower boundary bounded by a contact discontinuity, is 
captured much better. 

At every resolution, the PPA results are once again superior. Indeed, at the highest resolution, there is little difference between the 
ZEUS-2D result using PPA and the best PPM result; the shocks in the latter case are thinner and smoother. Once again, however, 
the PPA result is much more computationally expensive to achieve, as demonstrated by the timing information given in Table 2. 
Note that once again, we have used a 1:4 computational domain, but have plotted the results only for the leftmost 1:3 portion of the 
grid. At the highest resolution, PPA is 2.1 times slower than van Leer. 

5.6. Tests of the Poisson Equation Solver 

Tests of the Poisson solver are fairly easy to design, as many analytic solution for the gravitational potential are possible. Even 
without analytic solutions, consistency checks can be performed by initializing a general density distribution on the grid, computing 
the numerical potential, and then differencing this potential and checking that the original density distribution is recovered. In this 
work, we have concentrated on testing with analytic solutions. This provides a check of the numerical gradient of the potential to the 
analytic solution, which is important since it is the gradient of the potential which appears in the evolution equations. We have used 
three analytic solutions: 

1. A homogeneous sphere of radius R and density p0: 

2irGPo{R2 - r2/3) 

/r 

if r < R 

if r> R* 

V$(r) = 
-|irGp0r 

~irGp0R
3/r2 

if r < R 

if r> R’ 

(91) 

(92) 
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MAX= 2.16E+01 MIN= 1.40E+00 

Fíg. 15 Fig. 16 

Fig . 15.—Density contours resulting from the double Mach reflection of a strong shock using the van Leer algorithm and grids of 30X120 zones ( top), 
60x240 zones (middle), and 120x480 zones (bottom). Thirty equally spaced contours between the maximum and minimum are used. 

Fig. 16.—Density contours resulting from the double Mach reflection of a strong shock using the PPA algorithm and grids of 30X120 zones (top), 
60X240 zones (middle), and 120X480 zones (bottom). Thirty equally spaced contours between the maximum and minimum are used. 

2. A centrally condensed sphere of radius R and density distribution 

Pc 

so that 

p(r) = 1 + (r/rc)
2 

0 

r <R 

r> R 

*(0 = 
4irGpcr

2
c 
axctanir/rQ 1 / 1 + (r/yy)2 

r/rc 2 \ 1 + (R/rc)
2 

-4irGpcr
3

c/r[R/rc - arctan (R/rc)] 

V$(r) = 
GM(r) 4irGpcr

3
c/r

2[r/rc - arctan (r/rc)] 

4irGpcr
3

c/r
2[R/rc - arctan (R/rc)] 

if 

if 

3. And finally a homogeneous ellipsoid with a density distribution 

if 

p(r, z) = 
Po 

0 if 

r z* 
— H 2—1 
a¡ a\ 

r2 z2 

— H—J > 1 
a, a\ 

if 

if 

r < R 

r> R 

r <R 

r> R 

(93) 

(94) 

(95) 

(96) 
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TABLE 2 
Execution Times for Double Mach Reflection Test 

on a Cray-XMP 

Resolution Algorithm Cycles CPU Time (s) 

30X 120   van Leer 415 10.5 
60 X 240   van Leer 853 64.2 

120 X 480   van Leer 1734 456 
30 X 120   PPA 434 19.7 
60 X 240   PPA 888 129 

120 X 480   PPA 1802 970 

where a, and a3 are the semimajor axes. From Chandrasekhar ( 1969, p. 42), the analytic solution for such an object is 

if 

<Hr,z) = 

wGpo^ajAi + CI2A2 + ajA3 - A,r2 - A3z
2) 

irGp</i\a3 

— r* 

r2 z2 \ 
1 + 2(a2 — a2) a3-aj)^1 

tfäl + X 

V$(r, z) = 

(^-a2)(a2 + X) 

lirGpoiAjr2 + A jz2)I/2 

rf, 

irfal + X 

2irGpoaja3 

zli 

(a¡ + \)]íáf+X (aj - aj)(aî + \) 

r^aï + X 
2(a3-a2) (aj - aj)(a2 + X) 

2 2fä + X 
aj-aj 

+ z 
.(a2 + X)V7fTx (aj - a2)(a2 + X) j 

2\\l/2 

where for an oblate spheroid (ax = a2> a3) 

= z42 = [( 1 - e2)l,2le3] arcsin e- (l - e2)le2 , 

A3 = 2e~2 - 2[( 1 - e2)/ez] arcsin e , 

[1 - {a^|al)
2Y,2, 

if 

if 

if 

r z , 
— H 2—1 
a2, ai 

2 2^1 a\ ai 

r2 z2 , 
ai ai 

r2 z2 

— H—2 > 1 
ai ai 

(97) 

(98) 

(99) 

(100) 

(101) 

Object3 

TABLE 3 
Errors for Tests of the Poisson Equation Solver 

Symmetry0 Geometry0 Relative Error in $ Relative Error in V<¡> 

HS . 
CC . 
HE. 
HS . 
CC . 
HE. 
HS . 
CC . 
HE. 
HS . 
CC . 
HE. 

E 
E 
E 
O 
O 
O 
E 
E 
E 
O 
O 
O 

RZ 
RZ 
RZ 
RZ 
RZ 
RZ 
RT 
RT 
RT 
RT 
RT 
RT 

2.23 X 10"4 

3.80 X IO"4 

2.42 X IO"3 

1.56 X 10"3 

4.29 X 10"3 

8.37 X lO"3 

4.02 X IO"5 

5.60 X 10"4 

3.95 X lO'3 

1.31 X IO"4 

5.71 X IO"4 

5.83 X 10“3 

6.04 X 10~3 

2.21 X 10"3 

1.96 X 10"2 

1.91 X lO”2 

2.22 X 10“2 

6.44 X 10'2 

1.11 X 10"4 

9.98 X 10"4 

1.86 X 10-2 

9.02 X lO"4 

3 HS = homogeneous sphere; CC = centrally condensed sphere; HE = homogeneous ellipsoid. 
b E = even (equatorial) symmetry; O = odd (no equatorial) symmetry. 
c RZ = cylindrical geometry; RT = spherical polar geometry. 
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A = 

X = 

V 2 A / «3 + ^ 
, — —, arctan \ / — j , 

V ai-a3 

[(r2 + z2 - af - ûj) + V(a2 + a| - r2 - z2)2 - 4(a2a2 - r2a2 - z2a2)]/2 , 

and for a prolate spheroid (a, = a2 < a3) 

A^A^e-2-^- e2)/(2e3) In [( 1 + e)/( l - e)], 

A3= (l- e2)/e3 In [( 1 + e)/( 1 - e)] - 2( 1 - e2)/e2, 

[1 - (ai/a3)
2]l/2 , 

(102) 

(103) 

(104) 

(105) 

(106) 

MAX=6.44E—02 MIN=2.25E-06 

Fig . 17.—Contours of the error in the potential ( top) and gradient of the potential ( bottom ) for a homogeneous ellipsoid in cylindrical geometry with no 
assumed equatorial symmetry. The axial coordinate Z is plotted horizontally, the radial coordinate R vertically. Sixteen equally spaced contours between the 
maximum and minimum are used. 
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MAX= 1.74E-02 MIN=7.68E—08 

Fig . 18.—Contours of the error in the potential ( top) and gradient of the potential ( bottom ) for a homogeneous ellipsoid in spherical geometry with no 
assumed equatorial symmetry. Sixteen equally spaced contours between the maximum and minimum are used. 

/, = 
y« a\ 

In 
(Vfl| + \-Vaj-fl?)2 

a\ + \ 

X = [(r2 + z1 — a\- a]) + + aj- r2 - z2)2 - 4(a2
laj - r2al - z2<z2)]/2 . 

(107) 

(108) 

For the tests, we have initialized each of the above configurations in spherical and cylindrical geometry both with and without 
equatorial symmetry, and compared the numerical potential and gradient to the above analytic results. Table 3 fists the results of 
these tests. 

In Figures 17 and 18 we give contour plots of the errors in the potential and the gradient of the potential for a homogeneous 
ellipsoid in cylindrical and spherical geometry with no equatorial symmetry assumed ( the largest errors occur for this case ). We find 
the bulk of the error is confined to the surface on the object where the density drops discontinuously to zero. Resolution strongly 
affects the solution here, as the numerical representation of the smooth boundary is very approximate. Even so, from Table 3, we 
find the largest error in the gradient is 6.4%, in cylindrical geometry, and this is dramatically reduced to 1.74% if we use spherical 
coordinates which are better able to describe the ellipsoid. The contour plots also show that even when no equatorial symmetry is 
assumed, the error contours are symmetric and smooth across the equator. 

6. SUMMARY 

In this paper we have given a detailed description of the HD algorithms in the ZEUS-2D code. These algorithms form the 
foundation of the more complex MHD and RHD algorithms described in Papers II and III, respectively. 

In addition to the description of the algorithm, we have also presented the results from the HD test problems performed on 
ZEUS-2D. These tests are intended not only to demonstrate the correct implementation of the algorithms, but also to gain insight 
into the performance of the methods in obtaining solutions to physical problems. This insight may be invaluable in avoiding 
potential problems caused by numerics rather than the physics being simulated. 

A great variety of test problems (a “test suite”) have been used to calibrate ZEUS-2D. The advection tests demonstrate the range 
of accuracy inherent to the various advection algorithms implemented in ZEUS-2D. The PPA algorithm has the lowest intrinsic 
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diffiision and highest rate of convergence and would therefore be the clear choice for pure advection problems. The one-dimen- 
sional shock-tube tests recover exactly the results published previously for the algorithms we have implemented. In addition, we 
have also performed the series of tests involving strong shocks described by Woodward & Colella ( 1984 ) and find that qualitatively, 
our results compare well with the best PPM results for the same problems. Although Godunov-type codes such as PPM produce 
superior results to the HD methods implemented in ZEUS-2D for problems involving strong shocks, it is very difficult to incorpo- 
rate new physical effects (such as RMHD) into these schemes in a self-consistent fashion, which precludes their use here. Compari- 
sons using van Leer and PPA advection on these problems show that PPA always gives the most accurate result. However, PPA 
requires a greater computational expense; typically PPA is twice as slow as van Leer advection for two-dimensional problems. On 
the other hand, donor cell advection is clearly too diffixsive for any practical applications and is therefore never used in simulations. 
Finally, tests of the Poisson equation solver implemented in ZEUS-2D with analytic solutions demonstrate the small errors present 
in the gradient of the potential can be primarily attributed to the lack of resolution of the density distribution. 

We thank David Clarke, Chuck Evans, John Hawley, Dimitri Mihalas, and Louis Wicker for many useful discussions. J. S. would 
like to thank Dimitri Mihalas, the Department of Astronomy, and the National Center for Supercomputing Applications (NCSA) 
at the University of Illinois for financial support during this work. The computations were performed on the Cray X-MP at 
the NCSA. 

APPENDIX A 
COVARIANT EXPRESSIONS FOR VECTOR AND TENSOR OPERATORS 

In this appendix we give coordinate independent expressions for all vector and tensor operators used in this work. These 
expressions can be derived directly from the covariant forms for the operators, and the relations between the components of abstract 
covariant or contravariant tensors and the components of the associated physical tensors. Such formulae can be found in virtually 
any text on tensor calculus, as well as Mihalas & Mihalas ( 1984). 

For brevity, we shall consider only orthogonal coordinate systems (although the method can be extended to nonorthogonal 
coordinate systems as well), so that the metric tensor which characterizes the space is diagonal and can be written as 

[h\ 0 0\ 
^= 0 hi 0 . (109) 

\0 0 h2J 

The determinant g of the metric tensor, which appears in many tensor formulae, is then simply g = h\hlhl. The hi are the scale 
factors of the metric and in general are functions of all of the coordinates, hi = hi{xl,x2,x^). In this work we are primarily interested 
in three coordinate systems, Cartesian coordinates for which 

{xi,x1,x2) = (x, y, z), (¿J, A2, /z3) = (1, 1, 1), (110) 

cylindrical coordinates for which 

(x1,x2,x3) = (z, r, 0), (/*!, A2, /z3) = (1, 1, r), (111) 

and spherical polar coordinates for which 

{xux2,x?)) = (r, 0, 0), (Ai, A2, As) = O, ^ rsin0). (112) 

In these cases, x3 is always the ignorable coordinate for two-dimensional calculations. As well, the scale factors are particularly 
simple functions of the coordinates, which has implications for the efficient implementation of the coordinate independent expres- 
sions. However, in what follows we make no restrictions on the number of dimensions or on the functional form of the scale factors. 
This ensures the expressions can be applied to three-dimensional calculations, as well as more complex orthogonal coordinate 
systems. 

For a diagonal metric, the relations between the components of a covariant vector æ, or tensor and the components of the 
corresponding physical vector a{i) or tensor Ti>j) are 

a, = hiU^, Tij = h¡hjTU j), (113) 

while the relations between the components of a contravariant vector a1 or tensor Tij and the components of the corresponding 
physical vector a{i) or tensor T{i j) are 

a' = a(i)/hi, TiJ = T^^/h.hj. 

The coordinate independent expressions for various operators are then as follows. 

(114) 
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Al. GRADIENT OF A SCALAR, V/ 

The covariant expression for the gradient of a scalar is/, = df /dx,. Converting the components of the resulting covariant vector 
to physical components gives (V/)(I) ^/,/or writing it out 

(V/) = /l^ HI 1 K J) \/i, dxt ’ h2 dx2 ’ h 
df 

3 dx3 
(115) 

A2. DIVERGENCE OF A VECTOR, V • a 

The divergence of a contravariant vector is uf, = g 1/2(g1/2u')„ . Converting the components of the contravariant vector to 
physical components gives (V • a) = a', = g^',2(g'l2a{l)lh, ), which can be written out as 

V* a = 
h^hih-i dx, (/,2Aja,) + dt2 

+ dx3 
(116) 

A3. LAPLACIAN OF A SCALAR, V2/ 

The Laplacian of a scalar is most easily derived from the vector identity V2/ = V • V/. Thus, using the previous two results gives 
(V2/) = g I/2(g1/2g0fi),i ■ Expanding this result and noting that = 0 for i + j gives 

1 [ d (Wh d/\ , d Ihjhj df\ | 
J h\h2h.'$ \ hx dXi) dx2\ h2 dx2) 

d Í hxh2 df 
dx3 \ h3 dx3 

(117) 

A4. CURL OF A VECTOR, V X a 

The covariant expression for the curl of a vector is (V X a)* = g~ll2(ak.j - aj.k). Converting the components of this vector 
to physical components, and replacing the covariant vector a¿ with physical components, gives (V X a)(i) = hi (V X a)/ = 
hig~l/2[(hka(k))j - (hjaa)\k], or writing each component out: 

l 

2^3 

1 
(V X a)2 = 

(V X a)3 = 

M3 

1 
hth2 

(118) 

(119) 

(120) 

A5. GRADIENT OF A VECTOR, Va 

The co variant expression for the gradient of a vector is a^j = - {^}ak, where {£} is the Christoffel symbol of the second kind. 
The result is a rank-two co variant tensor. Converting it, and the components of the covariant vector ¿z, to physical components, we 
find (Va)(ÿ) = (hihjy'üi.j = ( A,)_1[( - {//} hka{k)\. Now, for an orthogonal coordinate system, the only nonzero Christof- 
fel symbols are 

= v 1 dgii 
2 (ln iu),i 2giidxi’ 

- - (g. ) ■ /g. = — 
2Kgjlh I8" 2 g a dx¡ ’ 

J_dgu 
2gu dxj 

_ / /i— _ \ 1 dga 
2 0n Sn)j ^v- ‘ 

(121) 

(122) 

(123) 

Thus, for example, a representative diagonal element of the tensor is 

1 
V«(U) - h2 

_ 1 du, + a2 dht + a3 dA, 
A, dx, A,A2 dx2 A.A, dx3 ’ 

(124) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

2A
pJ

S.
 . 

.8
0.

 .
7 

53
S 

ZEUS-2D. I. HYDRODYNAMIC ALGORITHMS AND TESTS 787 No. 2, 1992 

and a representative off-diagonal element is 

V«, (12) hih2 

/^2#2 ^ 
2hl dxx 

1 ^2 _ a\ 
hx dxx dx2 * 

All other components can be generated using a similar analysis, so that 

Va = 
^Ä(ll) ^fl(12) ^fl(13) 
^fl(21) ^a(22) ^a(23) ' ? 
^fl(31) ^Ä(32) ^ 

where 

(125) 

(126) 

Va(11) = — 

^a(12) > 

L a2 dhi + a3 d/zj 
hx dxx hxh2 dx2 hxh3 dx3 ’ 

ax dhx 1 dd2 

hx ~dxx 

v«(i3) - — 

^a{2\) - i 

^a{22) - ~r~ 

^a(23) _ / 

hxh2 dx2 ’ 

1_ dOi _ ax dhx 

hx dxx hxh3 dx3 
9 

a2 dh2 

hxh2 dxx ’ 

-l_ ai dhi ^ a3 dh2 
hxh2 dxx h2h3 dx3 ’ 

1 da* a2 dh2 

1 dax 

h2 dx2 

1 da2 

h2 dx2 

^(3i) - —^r1 
1 dax 

h3 dx3 

^a(32) - » 

Va(33) = — 

h2 dx7 h2h3 dx3 ’ 

_a3_dh3 

hxh3 dxx ’ 

a3 dh3 

h2h3 dx2 ’ 

1 dd3 ^ dx dh3 ^ d2 dh3 

h3 dx3 hxh3 dxx h2h3 dx2 * 

1 dd2 

h3 dx3 

A6. LAPLACIAN OF A VECTOR, V2a 

The easiest way to derive the Laplacian of a vector is to use the vector identity V2a = V(V • a) - V X V X a. Combining the 
coordinate independent expressions (eqs. [115], [116], and [118]-[120]) above gives 

i 
h\h2h^ dx2 

_L[_d_i h 
h2h31 dx2 hyh2 

d(h2a2) d(Aiai) 
dx¡ dx2 

hxh2h3 

a (/,A(li)+(Wa)+ 

1 
hxh3 [[ dx3 

hx 

h2h3 

d(h3d3) d(h2d2) 
dx2 dx3 

d 
dx3 

d 
dxx 

hxh3 

hxh2 

d(hxdx) _ d(h3d3) 
dxx dx3 

d(h2d2) d(hxdx) 
dxx dx2 

(127) 

(128) 
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ô d d 
— (Ä1M2) + (ÄAiZj) 

1 
/Zi/i2 hA 

d{hxax) _ d{hza3) 
dx3 dxl 

d 
dx2 

h. 
hyh3 

d(h3a3) d(h2a2) 
dx7 dx3 

• (129) 

A7. DIVERGENCE OF A RANK-TWO TENSOR, V • T 

The divergence of a contravariant rank-two tensor is VJj = g~l/2(gl/2Tij)j + {jj Tk\ which produces a covariant vector. 
Converting everything to physical components gives (V-T)(/) = hig~l,2(guiTmlh^j + {jj^hiT^/hkhj. The only nonzero 
Christoffel symbols for an orthogonal coordinate system are given by equations ( 121 )-( 123). Thus, after much algebra, we can 
write out the components of the divergence of a tensor as 

d lh2A T\+d^T^+d^T^ 
dxx \ h dx dx3 

r„ dh, t22 dh2 t3í djH (Tn + t21) ¿a (r,3 + r3,) dh, 
h\ dxt h J h2 dx¡ hA dxi hA dx2 hA dx3 ’ ' 

(V-t,»-îâ 

d I hA 
dx, (">:r“,+to; a r“l+—(','7'”) dx3 

Tu hh, t22 dh2 t33 dh3 | (Tn + T2l) dh2 , (r23 + T32) dh 
hA dx2 hj dx2 h2h3 dx2 ' hA dx, + h2h3 dx- 

, (131) 

itAT^+i¡k0‘^+ik(itr- 

Tn dh, T22 dh2 7-33 dh3 (Tl3+ A,) dh3 (T23 + r32) dh3 

AjAs dx3 h2h3 dx3 A3 dx3 hxh3 dxx h2h3 dx2' 
K } 

Note that for a symmetric tensor, 7^ = 7}/, and the final terms in equations (130)-(132) sum in pairs. For an antisymmetric tensor, 
Tÿ = -7}z , and Tu = 0, so that the final terms cancel in pairs, and all diagonal elements are identically zero. 

APPENDIX B 
TENSOR ARTIFICIAL VISCOSITY 

The tensor artificial viscosity can be generated by analogy to the general form of the stress tensor for molecular viscosity of a 
Newtonian fluid (e.g., Mihalas & Mihalas 1984, § 25), 

a = ^[Vv - |(V• i;)e] , (133) 

where n is the coefficient of dynamical viscosity, Vv is the symmetrized velocity gradient tensor (Vv = [ v¿J + ]/2), and e is the 
unit tensor. In writing equation ( 133 ), we have made the usual assumption that the coefficient of bulk viscosity for the fluid is zero 
( Stoke’s hypothesis ). Note also that by construction, the viscosity tensor is traceless ( since Tr(Vu) = V‘i;). Physically, this implies 
that the viscosity tensor is zero for a fluid which dilates symmetrically, which one can argue to be true on intuitive physical grounds. 

The primary difference between the real molecular viscosity of a fluid and artificial viscosity is the magnitude of the coefficient of 
dynamic viscosity fx. For artificial viscosity, the value of this coefficient must be chosen to satisfy the following constraints: 

1. The artificial viscosity must broaden shocks over several zones according to the local mesh size. 
2. The artificial viscosity must be sensitive only to compression. 
3. The artificial viscosity must be large in shocks, but negligibly small elsewhere. 

With these constraints, and by analogy to the coefficient of the nonlinear von Neumann & Richtmyer ( 1950) formulation, TW 
write 

í/2pV* v[Vv - {(V-v)e] if V-v<0 
Q-|o otherwise ’ (134) 

where / is a constant with dimensions of length, typically chosen to be a few zone widths. The key advantage to the tensor 
formulation over the von Neumann & Richtmyer approach is the use of the divergence, an invariant scalar, rather than the velocity 
gradient, a rank-two tensor which reduces to a single number only in one-dimensional Cartesian geometry. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

2A
pJ

S.
 . 

.8
0.

 .
7 

53
S 

ZEUS-2D. I. HYDRODYNAMIC ALGORITHMS AND TESTS 789 No. 2, 1992 

TW give explicit expressions for Q applicable to one-dimensional, spherical geometry. Although the extension to general multidi- 
mensional problems is straightforward, we emphasize the following points: ( 1 ) In multidimensional problems, the value of / must 
be chosen to be a single number, rather than being different in each coordinate direction. The latter choice would result in a 
nonisotropic tensor and would destroy the property Tr (Q) = 0. In practice, we choose / using the maximum grid spacing in either 
direction. ( 2 ) In this work, we drop the off-diagonal ( shear) components of the artificial viscosity tensor. We therefore choose not to 
broaden large gradients of shear, as we desire the artificial viscosity to smooth only compressive shock fronts. 

With these considerations, and using the covariant forms for the tensor operators ( Appendix A ), we can write the zone-centered, 
nonzero (diagonal) components of the tensor artificial viscosity in finite difference form as 

Ql lu = lljdJV- u),v[(Vi>(1 !)),., - j(V- U),v], 

022,v = /L4y(V- i>U(Vu(22)),v - |(V- y)(J] , 

033,v = /L4y(V- y),y[(Vy(33)),J - }(V- i>),y] , 

(135) 

(136) 

(137) 

where /, j = max (C2i£t la,, C2dx2aj), and (V • v)¡j, (V U(n))/y , (Vu(22)), _,, and (Vi>(33)),vare all zone-centered scalars, explicit finite 
difference expressions for which are given in Appendix C. The artificial viscous stress and dissipation terms in the momentum and 
energy equations are -V • Q and -Q : Vv, respectively (TW), which can be written in the following covariant form, 

(V-Q)(1) = 

(V-Q)(2) = 

_1 d_ 

glgsi àx, 

_J d_ 

gigli dx2 

(glgiiQn) 

(gliQn) + 
Qn dg$2 

gig'ii dx2 

(138) 

(139) 

Q : Vu = /2pV- u{{[(Vu(11) - Vu(22))
2 + (Vu(11) - Vu(33))

2 + (Vu(33) - Vu(22))
2]} , (140) 

where we have used the fact that Q is traceless to eliminate Q33> in favor of the other two diagonal elements. Note that in Cartesian 
geometry, these expressions reduce to the von Neumann & Richtmyer ( 1950) formulation. TW emphasize that representing the 
viscous energy generation term as a sum of squares as in equation ( 140) is an absolute necessity; by experience all other formula- 
tions will eventually produce instabilities. 

In ZEUS-2D, the diagonal components of tensors are zone centered. Thus, equations ( 138 )-( 140) can be differenced straightfor- 
wardly as 

n, = (g2ft?g31¿>,(211,-,,- - g2fi?_,g31 V.Ql I,-.,,) 
( g2a2

lgl\a, 

n. {g12b)Q22u - g32^_,Q22,;-_1) (Ql l,,,- + Q\ I,,,,, / dgllaA 
2’iJ g2blg12a) 2g2blg2>2aj \ dx2 ) ’ 

(Q : Vu),,, = - (Vu(22)),,]
2 + [(Vt>(I1))IJ - (Vu(33)),„]2 + [(Vu(33))1J - (Vu(22))„,]2}J. 

These difference equations are solved in place of equations (35)-(37) when the tensor artificial viscosity is used. 
Finally, the viscous timestep limit implied by the tensor artificial viscosity is 

(141) 

(142) 

(143) 

Ôt = 
Ax2 Ax2 

Av 4/2V • v ‘ 
(144) 

This time-step limit replaces the ôi4 discussed in § 4.6. 

APPENDIX C 
SOME FINITE DIFFERENCE FORMULAE 

In this appendix we give explicit finite difference formula for some vector and tensor operators used in ZEUS-2D: 

__ (g2a,+ig31 q,-+¡ul,-+,t, g2u1 g3la,-u 1,-,•) (^32a,-+|U2,,,-+, g32¿í!v2¡j) 
( ' ,iJ~ dvlla. g2bidvl2aj 

(VU(i,)),v = - v 1,,)/dx 1 a, , 

(145) 

(146) 
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(^V(22))i,j - 

(^V(33))iJ = 

(t>2,,/+, - vl'J | (ul,, + t>l,+ltJ) / dg2b,\ 
glbidxlcij 2g2b, \ to, / ’ 

(ul,., + (v2jj + u2,,,+1) 
2^310, \ âx, / 2g2big32bj 

dg32bj\ 
dx2 ) ' 

(147) 

(148) 
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