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ABSTRACT

The formation of current sheets in the solar corona is investigated by a simple model in which forced recon-
nection occurs due to the perturbation caused at the photospheric boundary by footpoint motion. The time
dependence of the process is considered by means of an initial-value calculation. It is found that on the Alf-
vénic time scale, current sheets tend to develop with an amplitude that increases linearly with time. The effect
of resistivity becomes important subsequently, and the reconnected flux at the separatrix increases quadrati-
cally with time. In the nonlinear phase, helicity-conserving islands support current sheets, and the rate of
reconnection is given by a modified Sweet-Parker model. Implications for coronal heating are discussed.

Subject headings: MHD — Sun: magnetic fields — Sun: corona

1. INTRODUCTION

The problem of coronal heating is of central importance in
solar physics. One of the most effective mechanisms for heating
the solar corona is by the formation of current sheets. This
mechanism has been proposed by Parker (1972) and has stimu-
lated much research and some controversy. (See the recent
reviews by Low 1990 and Browning 1991 for discussions of
some of the relevant issues and extensive bibliographies.)

In a recent paper, we have considered the effect of a small
but finite resistivity on the formation of current sheets in the
corona (Bhattacharjee & Wang 1991). Of course, in the pres-
ence of resistivity the current density is not infinite since resis-
tivity resolves the singularity in a boundary layer. We have
given equilibrium solutions which are the “exterior ” solutions
of a boundary-layer problem and have shown that these solu-
tions exhibit a tangential discontinuity (current sheet). The
current sheet is formed as the result of the dynamical evolution
of an initially smooth equilibrium to a neighboring singular
equilibrium. We claim that current sheets must form on the
separatrices of magnetic islands if the resistive dynamics gov-
erning this dynamical evolution is helicity-conserving. This
claim is based on the work of Rosenbluth, Dagazian, &
Rutherford (1973) and Waelbroeck (1989) who have considered
the nonlinear evolution of kink-tearing modes in toroidal
plasmas. In the corona, the motion of footpoints on the photo-
spheric boundaries can deform a uniform magnetic field into a
resistively unstable equilibrium. Now, it is known that linear
resistive instabilities have somewhat different properties in
coronal plasmas than they do in toroidal plasmas because the
field lines are line-tied in the corona (Mok & van Hoven 1983;
Otani & Strauss 1988; Strauss & Otani 1988). Despite these
differences, we have shown that current sheets must form in
coronal plasmas as they do in toroidal plasmas if the dynamics
are helicity-conserving.

The analysis given in our recent paper is quasi-
thermodynamical in that we have considered the relaxation of
the coronal plasma from an equilibrium of high magnetic
energy to a neighboring equilibrium of lower magnetic energy,
keeping helicity fixed. The word “equilibrium” has been the
subject of some controversy in the solar physics literature and
calls for an explanation. We note that reconnection occurs in a
narrow boundary layer (the “inner” region) in which inertial

effects are indeed important. Away from the boundary layer, in
the “exterior ” region, the plasma obeys the equations of mag-
netostatics. Strictly speaking, the equilibrium solutions com-
puted in our recent paper describe the structure of the
solutions only in the “exterior” region. We emphasize the
“exterior” region because that is what determines primarily
the magnetic energy accessible for reconnection, and the iner-
tial effects in the boundary layer are, in fact, caused by the
basic tendency of the plasma to relax to a neighboring equi-
librium of lower energy.

Magnetic reconnection can be either “free” or “forced.”
“Free” reconnection is caused by the spontaneous occurrence
of an instability. “Forced” reconnection, on the other hand,
is driven by changing the boundary conditions of a stable
equilibrium. Since both free and forced reconnection pro-
cesses which conserve helicity will produce current sheets
(Waelbroeck 1989), the distinction between these processes
should not be overemphasized. This is especially so for the
solar corona in which the driving mechanism for both types of
processes is the twisting motion of footpoints on the boundary.
As explained in § 2 of this paper, which one of these processes
actually dominates depends on the magnitude and the time
dependence of the twist.

In our previous paper, we have considered the evolution of
the coronal plasma from a smooth equilibrium to a neighbor-
ing singular equilibrium, but we did not deal explicitly with the
time dependence of the process. In the present paper, we
consider the time dependence of “forced” reconnection in a
somewhat simplified, analytically tractable variant of Parker’s
model. We solve an initial-value problem similar to that of
Hahm & Kulsrud (1985, hereafter HK) who considered a
model problem suggested by Taylor (unpublished). Despite the
differences between Taylor’s model and Parker’s model of the
corona, the qualitative features of the two models have some
similarities. In particular, we show that the coronal plasma
evolves in phases: an ideal phase in which a current sheet tends
to form with an amplitude that increases linearly with time t,
and a width that shrinks as ¢~ 1. Thus the current sheet is not a
finite-time singularity. Resistivity intervenes before the singu-
larity can be realized, and the ideal phase is followed by a
reconnection phase. During the linear reconnection phase, the
reconnected flux at the separatrix increases approximately
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quadratically with time. Following this linear reconnection
phase is a nonlinear phase during which reconnection occurs
at a rate that scales with resistivity in the same manner as the
reconnection rate in the Sweet-Parker model. This turns out to
be the helicity-conserving nonlinear phase discussed by Wael-
broeck (1989), but omitted by HK. Though the current sheet
formed in this phase is not strictly a -function, it is sufficiently
singular that it causes intense coronal heating. We give esti-
mates of the heating and compare the predictions of our
analysis with recent numerical simulations.

2. TIME SCALES

In Parker’s model of the solar corona (Parker 1972), the
initial state is a straight uniform magnetic field

B=B,:2, (1)

contained between two horizontal planes at z = + L. (We use
rectangular coordinates [x, y, z].) The configuration (1) is a
vacuum field and cannot undergo reconnection. It is meaning-
ful to speak of reconnection, either free or forced, only after a
current density is generated by the motion of footpoints. We
assume that the motion of the footpoints generates a smooth
magnetic field of the form

B=By2+Vyx2, Q)

considered by Parker (1972) and subsequently by others (van
Ballegooijen 1985; Zweibel & Li 1987; Strauss & Otani 1988;
Bhattacharjee & Wang 1991). If the configuration (2) is
resistively unstable, and the instability is helicity-conserving,
then a current sheet will form at a separatrix of equation (2)
where Vy =0 (Waelbroeck 1989; Bhattacharjee & Wang
1991). It is possible, however, that the free energy available for
reconnection may not always be large enough to cause a
helicity-conserving tearing instability. A current sheet can still
form in such a configuration by the mechanism of forced
reconnection which we treat here. For simplicity, in order to
decouple free and forced reconnection, the quasi-static equi-
libria considered here are taken to be stable to tearing modes.

We consider the effect of continuous twisting motion of the
footpoints on the configuration (2) in a characteristic time scale
T ~ afvy, Where a is a typical length scale transverse to Z, and
v, is a typical twisting velocity. The magnetic field between the
two planes responds to the twisting motion on the boundaries
on the Alfvén time scale t, =v,/L = w,"', where v, =
Bo/(dmp)'/? is the Alfvén speed and p is the density of the
plasma. Compared with t,, the time scale of resistive diffusion
T = 4ma?/nc? is very slow in the solar corona, and we assume
that

Ty <To < Tg - 3)

The inequality 7, < 7, enables us to consider magnetic fields
approximately in static equilibrium. The presence of a small
but finite resistivity causes reconnection on a time scale 7g
which scales typically as a fractional power of 4 (e.g., as n'/? in
the Sweet-Parker model). We have, therefore,

TA<TK<TR. (4)

Since 1, and tx are both bounded by 7, and 7z, we should
consider the relative magnitudes of 1, and tx. If 7 < 74, the
reconnection rate is faster than the twisting rate, and the recon-
nection is driven mostly by the free energy already stored in the
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equilibrium—this is an instance of “free ” reconnection. On the
other hand, if 74 > 1,, the reconnection is “forced.” In what
follows, the regime of interest is

Tp LT LT L Tg - &)

Typical parameters for the solar corona are (see, for instance,
Withbroe & Noyes 1977; and more recently, Browning 1991):
T4~ 1-10 5, 75~ 10%-10% 5, 75 ~10°-10'° s, and 74~
(trTa)Y? ~ 10*-10° s. Inspection of the inequality (5) shows
that it does correspond to many situations of interest.

2. QUASI-STATIC EQUILIBRIA
The incompressible resistive MHD equations are (in cgs

units)
i Jx B
p<—~+v-v>v=——§—-Vp, ©)
ot c
E+ 22, Y
108
E=--2
v x cot’ ®)
4
VxB=§J, )
V-B=0, (10)
Ver=0, (11)

where the symbols have their usual meanings.

For coronal loops, the length L ~ 0.1-5 x 10'° cm and the
transverse dimension a ~ 10% cm (see, for instance, Browning
1991). Thus these loops are characterized by small values of the
geometric parameter €, = a/L < 1. Using €, as an ordering
parameter, it is possible to simplify considerably the resistive
MHD equations. We consider force-free solutions with Vp = 0.
In Parker’s model, the total magnetic field can be written

B=B,2+b, (12)

where |b|/B, ~ €,. For twisting motions of the footpoints
subject to the inequality (3), we have

Ot <ol =5 (13)

Hence, in the exterior region, the inertial term is much smaller
than the Lorentz force term, and we can assume that the
coronal plasma evolves through a sequence of quasi-static
force-free equilibria,

J=0oB, (14)

where o is a scalar function.

It is assumed that the photospheric footpoints at z = +L
are twisted with the velocity v, = (wo/K,) sin K, yX, where K
is a constant. This twisting motion generates the velocity field

sin Koy z
oJ’_x

o (15)

vo —_—'(00

in the coronal volume. Since wy7, < 1, the coronal plasma
responds quickly and generates the perturbed magnetic field b,
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specified by Ohm’s law,
ob
E—Vx(voxB)=0. (16)

With v, given by equation (15), the configuration (2) is
deformed with an equivalent helical wavenumber k = k(f)
along z, related to the frequency w, by

wo = Ldk/dt , 17)
where ka = 0(¢e,). The magnetic field (2) changes to
B~Byz+bx+Vy x2, (18)
where b, and  obey the equations
ob, 0
=5 tBo, (19)
and
0
a—l/:+vO-V1//=0, (20)

with Y(r, t = 0) = x(r). Integrating equations (19) and (20) with
respect to time and assuming k(0) = 0, we get, respectively,

b=~ B, sin K, y, 1)
Ko

and
l// = l//[x - X*(t), y] ’ (22)

where x,(t) = [ vo(t)dt’ = z(wo t/Ko L) sin K y.
Equation (18) gives

- (Vx B~ —V3y —kBycos Ky, (23)
where V| =~ %(0/0x") + $(/0y) with X’ = x — x,(t). From equa-
tions (14) and (23), we get

ﬁ (—=V2y — kB, cos Ko ) ~ aB, , (24)

where o = 0(¢,). Using the condition B - Va = 0 which gives
Oa

Bo£+b-VlazO, (25)
and the identity 0y/0z = — ky 0y/0x, we get
VY x Va~0. (26)

It follows from equation (26) that
a=oy), 27

if Vi # 0. If Vi = 0, where separatrices lie, current sheets can
occur in violation of equation (27).

It is worth pointing out that considerable analytical simplifi-
cation has been achieved here by an aspect-ratio (small €;)
expansion. Without this small parameter, the problem of three-
dimensional force-free fields (e.g. [14]) is not, in general, ana-
lytically tractable (except in the simple case & = constant). The
question of the location of separatrices in a fully three-
dimensional field is of great interest, but one that is not con-
sidered here. Here, for analytical simplicity, we consider a very
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long and thin coronal loop with a strong axial field which
happens to be of considerable practical interest.

4. FORCED RECONNECTION IN PARKER’S MODEL

Since the twisting velocity (eq. [17]) is periodic along y,
it is sufficient to consider reconnection in the domain
—ay <y <ag=mn/2K,. In the presence of even a small but
finite amount of resistivity, islands will open up at the
separatrix y = 0. We shall use a boundary-layer method which
relies on the smallness of the island-width A (HK ; Waelbroeck
1989). Near the separatrix, inertial and resistive effects are
important. Away from the separatrix, where the island is not
strongly perturbing, the plasma can be described by a linear
quasi-static approximation. Considering only a single Fourier
mode, we write

Y(x, y) = Yo(y) + P) exp (iko X)) , (28)

where ko x' = ko(x — x,) = ko x — ot,
0=2 kyagw, Z sin k (29)
= 0 4o oL oY

and
Yo(y) ~ €4 By y2/200 . (30)

The problem separates into two regions: the inner region
|yl ~ A < ay, and the outer region A < |y| < ao. The outer
region equation, obtained by linearizing equation (26), is

V' — ki =0. (1)

Due to the motion of footpoints at the boundaries z = + L, the
constant-y surfaces in the coronal volume are perturbed. With
the footpoint displacement

¢(x, y) = ¢0) exp {iko x — wt)} (32)

we have

€0 Bo yE(Y) = ao Y() . (33)

To be consistent with equation (15), we require &(y) = — &(—y).
If we now set &(+a,) = +&,, this model reduces to the model
of forced reconnection proposed by Taylor (HK; Wang &
Bhattacharjee 1992), with Y(+a,) = €, B, &,. Equation (31)
can then be solved following HK. The solution is

_ _ _ sinh kyy sinh kq y
= — | % <inh b
v() !P(O)[COSh koy F tanh k, ao] t € Bo o sinh kya,’
y20. (34

Equation (34) describes two possible neighboring equilibria. If
¥(0) = 0, a current sheet occurs at y = 0, causing a finite jump
in b, given by

cos ko x

Ab, = J(ao) ——>— .
by = 2koYlao) o ko g

(35
This equilibrium solution has the same topology as the initial
unperturbed equilibrium. The other solution has ¥(0) =
€ By &y/cosh ky ag and is given by

cosh kg, y

cosh kgay (36)

J’(J’) =¢€,By &
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This solution is smooth but has a topology different from that
of the initial equilibrium in that it contains islands of width
(2agy Eo/cosh kqag)'/?. In order to determine whether these
equilibria are realized in practice, HK solve an initial-value
problem. In the next section, we revisit their results.

S. THE INITIAL-VALUE PROBLEM

We imagine that the boundary perturbation &, specified by
equation (32), is set up slowly in time in accordance with equa-
tion (5). The plasma evolves through a sequence of quasi-static
equilibria everywhere except the region near the separatrix
where inertia and resistivity are important. These dynamical
features can be described on the fast Alfvénic time scale by the
ideal MHD equations and on a longer time scale by the
resistive MHD equations. For very long and thin coronal
loops of negligible beta with a strong axial magnetic field, it is
appropriate to use the reduced MHD equations (Strauss 1976;
HK). Using equations (7)—(9), it can be shown that the flux
function  obeys

oy ncz _,

6t+v Vx//—47r Viy, (37
where the velocity v can be obtained from a stream function ¢,
ie.,

v=:xV¢. (38)
Note that the incompressibility condition (11) is satisfied iden-

tically. The curl of the momentum equation (6) yields a
dynamical equation for ¢, given by

0 . 1
Et'Vi(f)-i-Z'quS X V_LVi(/)=EI;Z'VlVi!/I xV, y.
(39)

The velocity v, specified by equation (15) is derivable from the
stream function

$o = K_I: cos Kg yo - (40)

Wo 2z
2
0
5.1. The Linear Phase

Following HK, for short times, we can linearize equations
(37)-(39). Assuming perturbations of the form (28) and
| ko 1 0/0,| > 1, and using the identity

ot

we can Laplace-transform and nondimensionalize equations
(37)—(39) to obtain (HK)

(ﬁ + v, V) exp (kx) =0, 41)

2
‘;T‘f = eQ@4Y¥ + 0U) , (42)
a’u 0
W=9<\P+ZU)’ (43)
where
k ® -
¥=—7 f dt exp (—pOJ (v, 1), (44)
€0 Do Jo
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—4ek2 (= .
v-= ks J dt exp (—pd0, 1), 45)
0
and
2

Y a___Pa _ P

o €ay’ € ko ag)tr’ @ 4 46

HK solve equations (42) and (43) to get

k2 k -1
W(0) = 0 %o { 0 + 22/;;“0 I(/;)} , (47)

" psinh kya, tanh kqya,
where
+ o _

I(w) = f do,Z(6,, 1) , (48)

Z=[QW¥O0IZ, 0,=0/2, p=8Q, (49
32 0 v

Z=—>=" ~UJ.
7 =2 (l{' +3 U> (50)

In the limit t < 0y ' < 1, = 123143, HK show that the inverse
Laplace-transform of equation (47) gives

117(0) ~ 2 w (L)z , (51)

n sinh kga, \7g

where 1y = (tg7,)"/? is the characteristic time scale in the
Sweet-Parker model of magnetic reconnection (Sweet 1958;
Parker 1957). In this limit, the current sheet amplitude at the
separatrix is given by

7(0) ~ =< KecoBodo (i> , (52)

3=
2n* sinh kgag \Ta

with a width that shrinks as ¢ !. Hence the plasma tends to
form a current sheet in the linear phase on the ideal time scale
T5. However, such a sheet is not a finite-time singularity
because it takes an infinite time to form a sheet of zero thick-
ness. Furthermore, as indicated by equation (51), the effect of
resistivity intervenes well before t = 1.

For t > 7, but t ~ 7, = 73/51%°, HK calculate an extension
of the linear phase using the so-called “constant-j ” approx-
imation. However, we show in the next section that for most
cases of physical interest, nonlinear effects play a significant
role for times much shorter than 7, (Waelbroeck 1989; Wang
& Bhattacharjee 1992). This generally makes the “constant- ”
linear phase academic.

5.2. The Nonlinear Phase

A necessary criterion for the validity of linear theory is that
the island width w be much smaller than the reconnection layer
width A. An upper bound for A is the current sheet width in the
linear phase,

2kgBy€g &y /4T - T Ty
=————J0) = —. 53
sinh kyaq | ¢ 70 2ky t (53)

The island-width is given by

1/2 1/2
w=2< “j;) 17(0) =2koao(3 —5"—“"——) LA

€0 By © sinh kg aq Tk
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Then the ratio
w. 4/(2 60 Aao 12 t 2
—=—=—— k2a)—]) , 55
A = (n sinh k, a0> 0o 7, (53)

where 1, = 13/*1¥* < 1,, increases quadratically with time. For

most cases of physical interest k, a, ~ 1, whence

w & 1/2 t 2
@6 0

To make estimates, we take £q/a, ~ 1072, With 7, ~ 1027, <
wg ! < 1, ~ 1031,, we see that w can exceed A for t < 7, (<1,).
Hence, nonlinear effects play an essential role for ¢t > 7,. For
t ~ 7, (<€7,), the plasma enters the Sweet-Parker reconnection
phase.

In our previous paper (Bhattacharjee & Wang 1991) we have
demonstrated the formation of a current sheet on the time
scale 7, from the requirement of helicity conservation in the
nonlinear regime. (Needless to say, helicity conservation holds
in the linear regime as well, but it is the persistence of this
conservation law in the nonlinear regime which distinguishes
dynamics that produce a current sheet from dynamics that do
not.) We shall not repeat the demonstration here; the integral
equation that describes the exterior region has been discussed
in detail elsewhere (Rosenbluth et al. 1973; Waelbroeck 1989;
Bhattacharjee & Wang 1991). Instead, we consider here the
interior region where resistivity is important. In the Appendix,
we show, using a slightly modified form of the original Sweet-
Parker (SP) theory (Sweet 1958; Parker 1957; Park, Monti-
cello, & White 1984; Waelbroeck 1989; Wang & Bhattacharjee

1992), that
3/2
Kol ) L, (57)
sinh kga,/ 7,

Usp(0, 1) ~ \/Eeo B, a0<
The amplitude of the current sheet in this nonlinear phase is

jsp(o) ~ & ﬁ (2)1/2[M:|3/2 . (58)

4 a, \14 sinh kq a,

The width of this sheet, from equation (A5), is seen to be

74 sinh kg ag |12
A~ /2 [—A ——Lﬂ} a . (59)

r koo

Combining equations (52) and (58), we conclude that the
amplitude of the current sheet increases at first linearly with ¢
till it reaches the valve (58) in the nonlinear Sweet-Parker
phase. Subsequently, the current sheet passes on to the Ruther-
ford regime in which it decays on the time scale of resistive
diffusion (Rutherford 1973; HK 1985; Wang & Bhattacharjee
1992).

These results are qualitatively in accord with numerical
simulations. That forced reconnection causes current sheets
has been seen in reduced MHD simulations (Park et al. 1984;
Biskamp 1986). In the context of the solar corona, relevant
numerical simulations have been carried out by Strauss (1990,
1991) and Mikic and coworkers (1990). For the problem of
forced reconnection discussed in this paper, we cite a recent
paper by Strauss (1991). The initial conditions for Strauss’s
simulation are roughly similar to ours. We draw the reader’s
attention to Figure 3 of Strauss’s paper which shows that in the
initial phase the peak value of the current density grows lin-
early with t. The departure from the linear behavior for inter-
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mediate times is not predicted by our analysis. A difference
between the simulation and the analysis lies in the time depen-
dence of the footpoint motion. In the analysis, it is assumed
that w, 7, < 1, ie., the characteristic time scale for the twisting
is much longer than the Alfvén time scale. However, in the
simulation it appears that wgt, S 1, which suggests that the
twisting is built up faster than the present calculation allows
for. This may account for the departure from linear growth
observed in the simulation for intermediate times.

We remark that in Strauss (1991), no instability is seen, and
according to the nomenclature introduced in § 1, this is indeed
a case of forced reconnection. The earlier work of Strauss &
Otani (1988), by contrast, followed the evolution of an unstable
kink-tearing mode, and is an example of free reconnection. In
the presence of a freely reconnecting instability, the current
sheet develops exponentially on the short time scale. In forced
reconnection, by contrast, the current sheet grows out of the
stable MHD continuum at an algebraic rate on the short time
scale. On the nonlinear Sweet-Parker time scale 1,, both types
of reconnection processes lead to flux destruction at an alge-
braic rate. The current sheet that is formed on this nonlinear
time scale eventually smooths out on the time scale 7 of
resistive diffusion.

6. CORONAL HEATING

It is estimated that the energy loss from the solar corona into
the chromosphere at the two magnetized ends in the Parker
model is of the order of 102 W m~2 for quiet regions and
103-10* W m ™2 for active regions (Withbroe & Noyes 1977).
Clearly, a heating mechanism is necessary to maintain thermal
equilibrium for which the power flux out of the ends must be
balanced by the internal heating power. If we assume that there
are no current sheets and that the current is smoothly distrib-
uted, then the ohmic heating power can be estimated as

2
Py ~ nJ3 AL ~ %;—R @®L~ 10" — 10'* W,  (60)

where 1z ~ 10°-101% 5, a ~ 10% cm, L ~ 10'° cm, and the
transverse field b ~ 3C%a/L)B, (Berger 1992) with B, ~ 10°
gauss and the winding number C ~ 1. Equation (60) corre-
sponds to an energy flux Py/4 ~ 10~'-10"2 W m~2 which is
much less than is required for thermal equilibrium.

On the other hand, in the presence of a current sheet, the
current density J & Jga,/A where A is the sheet thickness
caused by forced reconnection. It is important to know how
widespread the current sheets are in the coronal volume so that
we can apportion correctly their contribution to coronal
heating. This has been done by Parker (1989) and more recent-
ly by Berger (1991) who conclude from kinematic consider-
ations that most of the current in the presence of random twists
of the footpoints must reside in current sheets. The heating
power due to these sheets can be estimated as

1/2
P ~nJ?Aag L ~ <@>Po ~ (1‘5 9) P, ~ 10°P,, (61)
A To Qg

where we have used equation (59) and the estimate £q/aq ~
1072, Equation (61) gives a flux (102-10%) W m~2 which
appears to be adequate for quiet regions, but not quite enough
for active regions. Larger values of flux should be possible for
larger values of either &/a,, or the winding number or both,
but we do not pursue this point here because it lies beyond the
domain of validity of our calculation.
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7. CONCLUSIONS

In this paper, we consider the evolution in time of a coronal
loop in which reconnection is forced by the twisting motion of
footpoints. This study complements our previous work
(Bhattacharjee & Wang 1991) in which we show that helicity-
conserving reconnection processes in the corona, be they free
or forced, produce current sheets at separatrices. Our previous
work considered the relaxation of the plasma through a
sequence of neighboring equilibria; here we consider the time
evolution of forced reconnection explicitly. In a simple model,
we show that current sheets tend to form on the Alfvén time
scale with an amplitude that increases linearly with time. Due
to the presence of a small but finite resistivity, these current
sheets open up to form islands which evolve subsequently into
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a reconnection phase with a rate of reconnection approx-
imately consistent with the Sweet-Parker model. The heating
caused by these sheets in the linear and nonlinear phases can
be substantial.
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APPENDIX

In this Appendix, we give a derivation for the reconnected flux J/sp(0) in the nonlinear regime (eq. [57]), using a slightly modified

version of the Sweet-Parker model.
Near the separatrix, since v -+ Vi ~ 0, we have

alpsp ne’ . ne’ Al;x
/L TR Al
ot 4n ¥ T 4n A (Al)
where A is the width of the current sheet and Ab, is given by
~ _2ko€oBo &y
Ab, x ————— . A2
* " sinh kgaq (42
By mass conservation, for incompressible plasmas,
v,a9 ~ 0, A, (A3)
where v, is the flow entering the reconnection region, and v, is the exiting flow. Also, in the inner limit of the external region
Wsp 1o
— ==-0v,Ab, . A4
a 2" Ab. (Ad)
From equations (A1)-(A4), we get
A = (ycta/2mv, )2 . (A5)
The velocity v, is obtained from energy conservation. This gives
1, Ab,\?
Spi=g 2) , (A6)
1 Ab_\?
Uy = E VA( B0 > (A7)
From equations (A1), (A3), and (A5), we get
s kolo ]
— =~ ,/2€,B _— . A8
o =V/2€0Boag oo ko do (A8)
Making use of
S
Jop =——— A9
nJsp c ot (A9)

and integrating equation (A8) with respect to time, we obtain equations (58) and (57), respectively.
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