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ABSTRACT

Various statistical procedures related to linear prediction and optimal filtering are developed for general,
irregularly sampled, data sets. The data set may be a function of time, a spatial sample, or an unordered set.
In the case of time series, the underlying process may be low-frequency divergent (weakly nonstationary).
Explicit formulas are given for (i) maximum likelihood reconstruction (interpolation) with estimation of uncer-
tainties, (ii) reconstruction by unbiased estimators (Gauss-Markov), (iii) unconstrained Monte Carlo realization
of the underlying process, (iv) Monte Carlo realizations constrained by measured data, and (v) simultaneous
reconstruction and determination of unknown linear parameters.

Subject headings: methods: analytical — methods: data analysis — methods: numerical

1. INTRODUCTION

In two previous papers (Press, Rybicki, & Hewitt 1992a, b;
hereafter Papers I and II), we developed a method for deter-
mining whether two sets of irregularly sampled data are shifted
measurements of the same underlying function, and, if they are,
for measuring the time lag between them. Papers I and IT were
focused on the application to a particular object, gravitational
lens 09574561, and on two particular data sets, the optical
data of Vanderriest et al. (1989), and the radio data of Lehar et
al. (1992). Those papers thus did not develop the method’s
more general aspects in any detail.

This paper rectifies that omission. We here discuss, in a
unified way, a number of related statistical procedures that can
be applied to noisy, irregularly sampled data, including data
whose underlying physical process is low-frequency divergent
(as, e.g., a random walk process). In fact, it is not necessary that
the data be a time series or other ordered one-dimensional set.
The methods described here apply equally well to spatial data
(for example, image reconstruction) or to data measured on an
unordered set.

We are interested, primarily, in the problem of estimating
the true values of the underlying physical process at points
(“times ”, say) which may or may not be associated with mea-
surements. The methods we discuss all involve solving sets of
linear equations over all the data. As such, they are closely
related to, or generalizations of, a variety of standard tech-
niques in the literature. Estimation at a measured point is
usually called Wiener filtering, or optimal filtering. Estimation
at a nonmeasured point is often called linear prediction, or
least-squares prediction, or minimum variance estimation. We
will see that the issue of statistical bias is an important one; the
unbiased case that we discuss is usually called Gauss-Markov
estimation (see, e.g., Drygas 1970; Malley 1986). We will also
be interested in the issue of reconstructing, given a set of mea-
surements, not just the “best” interpolation, but also
“typical ” realizations, whose statistical properties are as close
as possible to the underlying process, which can then be
explored with Monte Carlo simulations. This application
relates closely to the so-called “missing data” or “data
dropout ” problem.

To the extent that the methods discussed are standard ones
(see, e.g., Rao 1973; Lewis & Odell 1971), this paper should be
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viewed as primarily pedagogical. However, we have found that
the existing literature is in practice so fragmented into special
cases, and lacking in unified discussion above-named tech-
niques, as to be almost irrelevant to the emphasis of this paper.
While we do not claim anything in this paper as truly “new,”
neither are we able, in many cases, to recommend anything in
the literature as worth consulting (at least by astrophysicists).

We hope also to be clear about where, along the way, certain
statistical assumptions need (or do not need) to be made. Do
we assume that a process is stationary? Do we assume that it is
Gaussian? At what point is the Baysian bargain entered into?

In the interests of a practical emphasis, we will illustrate the
discussion by application to a particular (artificial) data set.
Figure 1 shows a set of 26 irregularly sampled data points and
their error bars. In a nutshell, the question to be answered in
this paper is: What is the function that underlies the measure-
ments in Figure 17 An alternative title for this paper might be,
“How To Play Connect-the-Dots in a Noisy, Fractal World.”

Of course, there also exist other, quite different, approaches
to the problem of irregularly sampled data (e.g., Scargle 1989)
and the modeling of aperiodic or chaotic processes (e.g.,
Scargle 1990).

2. WIENER FILTERING OR LINEAR PREDICTION

Let y;, i=1,..., M, be a set of M measurements, each of
which is equal to the sum of an underlying signal s; and a noise
value n;. It is convenient to represent the quantities as column
vectors of length M, so

y=s+n. 1

Suppose we want to estimate the value of the signal at some
particular point which may or may not be one of the M points
already measured. Call the true value there s, (the asterisk can
be thought of as taking a value in the range 1, ..., M, or else
having a new value M + 1). If our estimate is to be linear in the
measured y;’s, then we can write

M
S* = '—Zld*iyi + x* ) (2)

where the d,;’s are coefficients that depend on the asterisk. The
summation is the linear estimate of s, and x,, is the discrepancy
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FiG. 1—Artificial data set used as the example throughout this paper. The
data are irregularly sampled, with gaps of various sizes. The process under-
lying these data is low-frequency divergent, something between 1/f noise and
random walk.

of the estimate, or equivalently
Se=diy +x,. 3)

We obtain equations for d, by minimizing the discrepancy
in the least-squares sense, i.e., minimizing with respect to d,,

xZ> =dyy — 5,)0*>
= dL(<ssTy + <mn"y)d, — 2(s,s"Dd, + {2y . (4)

Here angle brackets denote statistical ensemble averages, and
we have assumed that signal and noise are uncorrelated,
{s;n;» =0. We suppose that we know enough about the
underlying process that generates s and » so that the non-
vanishing averages can be considered known. (We will discuss
this more below.) If we define two symmetric, positive definite
correlation matrices and a “ correlation vector,”

S={ssTy, N=<nn™)y, S, =<{(s)s), 3)
then equation (4) can be written (“ completing the square ”) as
(x2> = (d, — d)T[S + NI(d, — )
— SIS+ NITIS, +<sp> . (6)
where
4, =[S+NI"'S, . (7)

Since § + N is positive definite, the value of d, that minimizes
equation (6) is seen to be d, = d,. The minimum variance
estimate s, for s, (eq. [3]) is then

§=dTy =SS+ Ny @®)

and the mean square residual, i.e., the variance of s, about s/*\,
is
{5x =520 = min = <530 — SIS+ N1 'S, . 9)
Notice that the correlation quantities S, N, and S, do not, in
principle, depend on the observed data values y, but only on
the locations (“times”) of the values, and on the underlying
process. For example, if the data are an irregularly sampled
time series, y; observed at time ¢;, then a typical component
8;; = <s;8;> = {s(t)s(ty)> depends only on t; and ¢;, but not on
a particular realization of s; or s;, since s is the quantity that is
ensemble-averaged by the angle brackets.
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Note also that, in most practical cases, the noise values are
uncorrelated, so that the noise correlation matrix NV is diagonal
N = diag ((n?)). However, our formulation will allow for the
more general case of self-correlated noise, with a general corre-
lation matrix. Inclusion of a known (or estimatable) “signal-
noise” correlation can also be done by a simple extension of
the present theory, although we shall not give the details here.

One sees in equation (8) the connection with Wiener filtering
as it is more conventionally presented (see, e.g., Press et al.
1986), generally in the context of a stationary process with a
regularly or continuously sampled time series, analyzed in the
Fourier domain. In that case, the formula usually given for the
optimal estimator is

@) >
Is(@) > + In(@) *>

This is exactly equation (8) in the special case that the matrices
S and N are both diagonal as is indeed the case for the special
assumptions made, since correlation matrices of stationary
processes on equally spaced grids are diagonal in a Fourier
basis.

In practice, one is often in the position of not having inde-
pendent statistical information about the process s(t) to esti-
mate § a priori. In that case, one may choose to make the
additional assumption of stationarity, so that §;; is a function
only of the time difference t; — t;, and not of ¢; and t; separa-
tely. Then, every (i, j) pair of data points furnishes a one-point
estimate of the correlation function S(t; —t;), and one can
implement various fitting or smoothing procedures to estimate
§ and §,, the latter depending on the time differences ¢, — ¢;
(see Paper I; Edelson & Krolik 1988; and Hjellming &
Narayan 1986; for discussion of the two-dimensional case, see
Cressie 1991). Throughout this paper, the only reason to
assume stationarity (in the present sense of time-translation
invariance) is if there is no other way to estimate the required
correlation quantities.

Indeed, there is an algebraic justification for our somewhat
casual attitude about how § is estimated: Suppose that small
errors in § lead one to use slightly wrong values d, in the
estimation equation (8). Then, the variance of the estimate for
s, is always larger than equation (9). In particular, equation (6)
can be rewritten as

2 = 2D + @, — d)'IS + NI@, —d,) . (11)

Noting that S and N are both positive definite, one sees that
the change in the variance is a pure quadratic form. Thus,
first-order errors in N or S, leading to first-order errors in 47;,
l/e\ad only to second-order increases in the variance of s, about
5

() = ) . (10)

N
One additional statistical quantity, x2, is defined by

1=yIS+N"y. (12)
Since we have not made any assumption that the underlying

processes are Gaussian, the only knowable property of 2 is its
expectation value, which is the number of data points M :

P> =<t () = <tr (S + N1~ 'wy"))
=tr (S + N1~ 'Op™))
=tr([S+N]" Y [S+N)=M. 13)

Here we have used the facts that the trace of a scalar is itself,
while the trace of a matrix product is invariant under cyclic
permutation of its factors. Without further assumptions, we
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cannot say anything about the distribution of ¥? around its
mean.

Equations (8) and (9) are the principal results of this section,
giving a prescription for estimating the underlying value s,,
and an uncertainty of the estimate, at any point. Figure 2
shows the application of these formulas to the data of Figure 1.
The estimates 5, are shown as the solid curve, while the 1 o
standard deviations (square roots of eq. [9]) are shown as the
gray “snake.”

The estimates of NV and S that underly Figure 2 are obtained
as follows: [V is taken as diagonal, with components equal to
the square of the given error bars, n?. For the component S;; of
S we write

S;j= <Sisj> = <Yiy1'> - nizaij = <yi2>EiEj
- %<(J’i - J’j)2> - nizéij . (149
Here, as a notational convenience, we define a vector E with all
unit components, E; = 1. The trick embodied in equation (14)
is general, replacing expectation quantities of s (which is
unmeasurable) with corresponding quantities on y (which is

measurable), and replacing the correlation matrix (y;y;> by a
single population mean square, {y?>, and a structure function

<YiJ’j> =i - Vi 15)
Vij = %(()’i - yj)2> s (16)
which is frequently much easier to estimate from the data than
is (y;y;> directly. We then estimate the population mean
square by the sample mean square and the population struc-

ture function by a fitting method similar to that described in
Paper 1.

3. CONSTRUCTION OF AN UNBIASED ESTIMATOR

There is a quirk in equations (8) and (9) which can some-
times cause difficulties and which is easily remedied. The pre-
diction coefficients d,; produced by equation (7) do not in
general sum to 1, but to a value slightly less than 1. The dis-

~crepancy from 1 is greatest in gaps far from any data points.

This has the peculiar effect of making the minimum variance
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estimate “sag” slightly, toward the value zero, in the gaps. The
reason for this is that, in the absence of information from the
data, the value zero is a minimum variance estimate. In fact,
being constant, it has zero variance! Formally, the estimate
equation (8) is a biased estimator, as can be seen (e.g., in the
case of a stationary process) by

<§;> = <Z d*i.Vi> = (Z d*i><si> # s -

We know of three ways of modifying equation (8) so as to
obtain an unbiased estimator, all of which end up giving identi-
cal formulas for 5. The first way is to recall the conventional
wisdom that one should subtract off the mean of a data set
before fitting it (adding the mean back into the fitting predic-
tions at the end). The only question here is what mean, ie.,
which kind of weighted mean, since we have not only a noise
correlation matrix NV, but also a signal correlation matrix S at
our disposal.

A cute way to answer the question is to find that value y
that, when subtracted off, causes 2 (eq. [13]) to be minimized.
We seek to minimize with respect to y

17)

¥=0-E)[S+N '(y-Ej. (18)
The solution is
__ETS+MYy
YEEIS+ N E (19)

This is the generalization of the usual “inverse-variance
weighted mean ” formula. One sees that a data value y; gets a
small weight either because its variance is large, or because it is
highly correlated with other data values (in which case it adds
little new information).

In terms of this y, equation (8) is now replaced by

S5.=SIIS+NI'y—-JE)+7. (20)

That is, we subtract j from the data, and then add it back to
the estimate.
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FiG. 2—Results of applying egs. (9) and (10) to the data of Fig. 1. The minimum variance prediction for the underlying process is the solid curve. The “snake”
indicates 1 o error bars on the prediction. Notice that the snake narrows where the density of data is highest and widens (at a rate determined by the data’s

correlation function) in data gaps.
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The formula for 4, implied by equation (20) is

S + N]'EET _ S+ N]"'E
@1

One can show that Erﬁ*\= 1, so the estimator is unbiased.
With j given by equation (19), equation (18) can be shown
(again completing the square) to be equivalent to

[S + N]'EE"[S + N]"*
ETS+N'E

One here sees a projection operator that renders the value of y2
independent of any constant value added to all the components
of the data vector y. It is easy to find the expectation value of y2
given by equation (22). Defining Z = [S + N]~'E and using
equation (13), we have

= yT([S +N]7 - 22

T T
y'zZzZ% 1
P> =M~ tr< s >= M — ot (ZZyy™)
1
=M ——=tr (ZEN)=M—1. (23)
ETZ

A second, completely different, way of getting the same
result is often computationally more convenient, and also
addresses more directly the issue of low-frequency divergent
processes. In a low-frequency divergent (sometimes called
weakly nonstationary) process like a random walk, the popu-
lation mean square < y*>) may be infinite or undefined, while the
sample mean square is of course finite. In equation (15) the first
term on the right-hand side will thus not, in general, be esti-
matable, while the second term (structure function) remains
well-behaved. The solution is to substitute equation (15) into
equation (7) analytically, and then take the limit {(y*> —» o0
using the Sherman-Morrison formula (see, e.g., Press et al.
1986, § 2.10) and the fact that the infinite term is a matrix of
rank 1. One finds that equation (8) is now transformed exactly
to equation (20).

Likewise we find that equation (22) follows directly from
equation (12) if the replacement S — S + (y?>EET is made and
{y*> - o0. (The Appendix discusses a generalization of this
result that is used in § 7). Armed with this knowledge of equiv-
alence, it is often computationally convenient not to calculate y
at all, but simply to use the unmodified equations (8) and (9),
however substituting for {y2)> in equation (14) a value suffi-
ciently big as to make the d, ;s (as determined by eq. [7]) sum
close enough to 1. In practice, it is adequate to choose {y?> to
be 10 or 100 times the sample variance. This simple trick
renders most of the rococo matrix formulas in this section
supernumerary, while guaranteeing equivalent results.

Third, finally, as Cressie (1991) notes, one can simply con-
strain the sum of the d,;’s to 1 by minimizing not equation (4)
but rather

(x3> =<y —5,0*> + 2UE™d, — 1), (24)

where 1 is a Lagrange multiplier that enforces the desired con-
straint. One gets straightforwardly

4, =[S+ NI"'[S, — E/], (25)
where
i E'[S+N]'S, — 1
ET[S + N 'E

(26)
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Not surprisingly, these equations are algebraically equivalent
to equation (21). This is the approach usually taken in defining
so-called Gauss-Markov estimators.

For the data shown in Figures 1 and 2, removal of the bias,
while important in principle, makes a negligible effect in prac-
tice. In the remainder of this paper, we will assume (cf. eq. [14])
that S always has the form of a rank-one matrix proportional
to EET minus a structure function V; (eq. [16]) whose
maximum absolute value is very much smaller than the rank-
one piece. If § does not start out having this form, it can be
forced into this form by the addition of a constant times EET,
as described above. In either case, S will now have one largest
eigenvalue whose eigenvector is close to E (corresponding to
adding a constant to the process) and the estimatorﬁ:will be
close to unbiased.

4. GAUSSIAN PROCESSES

There is something disconcerting about the reconstruction
shown in Figure 2: it is too smooth. While that reconstruction
is in fact “closest to true” in the minimum variance sense, one
has the impression that it is not, itself, a very plausible realiza-
tion of the process that gave the data points that are shown.

Merely thinking this thought involves, however, some addi-
tional assumptions about the process s. Up to now we have
assumed nothing about its full probability distribution, but
only knowledge of its second moments, in .S. To make further
statements about “likely ” or “unlikely ” realizations, we need
a full distribution. Absent any additional information, one gen-
erally makes the Gaussian (or normal) assumption, that the
probability that a vector s of values is generated is

P(s) oc exp [—1sTS 1s], 27

where the proportionality constant is determined by normal-
izing the total probability to unity, and similarly for the noise
process,

P(n) occexp [—3n"N"'n] . (28)

One must also make a stronger assumption about the uncor-
relatedness of s and n, not just the expectation (sn™) = 0, but
true independence of probabilities,

P(s and n) = P(s)P(n) . (29)

One now calculates the probability that the two processes
will generate a given set of observations y = s 4 n as

P(y) = | P(s)P(n)é[y — (s + n)]d™sdMn

= | P(s)P(y — s)dMs

oc | exp {—3[s"S s + (y — )TN Yy — s)]}dMs

o

oc exp {—3p"[S + N1~ 'y}

x Jexp {—36— T[S+ N 1I(s — $)}dMs, (30)

where § = S[.S + N]~'y. Changing to s — § as the variable of
integration, the integral is seen to be independent of y, so that
finally,

P(y) ocexp {—3y"[S+ N1 "'y} . €y
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Comparing equation (31) with equation (12), one sees explicitly
that, as one might expect, the combined process of signal plus
noise has a probability density oc exp [ —x?/2]. That s, it has a
classical y2 distribution, for which all of the usual probability
interpretations apply. As we shall see later, this implies that for
Gaussian processes the minimum square discrepancy results of
the preceding sections are equivalent to maximum likelihood
estimation.

5. UNCONSTRAINED REALIZATIONS OF THE
UNDERLYING PROCESS

Having made the Gaussian assumption, we may now gener-
ate random realizations of the process y. This is most easily
done by first diagonalizing the “covariance” matrix S+ N
appearing in equation (31). The resulting “normal modes ” are
then statistically independent, and the problem is reduced to
choosing M independent Gaussian random deviates.

We proceed as follows: First, find the eigenvalues 4,, ..., Ay
and eigenvectors vy, ..., vy, of the positive definite, symmetric
matrix S + N, equivalent to the factorization

[S + N] = V diag (Ay, ..., V", (32)

where V is the orthogonal matrix formed out of the eigen-
vectors by columns,

V=0, vy). (33)

Second, identify the large eigenvalue whose eigenvector is close
to E and set it to zero. Third, let r be a vector of M independent
Gaussian random deviates of zero mean and unit variance.
Then a realization of y is

y = Vdiag (4}3, ..., (34)

where 7 is any mean value that you wish to give to the
realization.

Alternatively, though less efficiently, we could find the eigen-
values &,, ..., &y, and eigenvectors U, of S alone, and find the

A+,

~ eigenvalues {, ..., {y, and eigenvectors Z, of N alone (these

are trivial when N is diagonal). Setting the large eigenvalue
whose eigenvector is close to E to zero, we could then con-
struct

y=s+n=Udiag (£} ..., &P
+ Z diag V3, ..., 0P, (39)

where r and ¥ are independent random vectors. The equiva-
lence of procedures (34) and (35) is guaranteed by equation
(30).

Figure 3 shows two independent realizations of the process
underlying Figures 1 and 2, on a set of M = 250 equally spaced
points and with y = 140. For clarity, we have set the noise to
zero in these realizations. Adding nonzero noise would simply
“fuzz” the curves, independently randomly at each point, by a
Gaussian of standard deviation equal to the error bars of
Figures 1 or 2. We have not here plotted the data from Figure
1, because these realizations are unconditioned by that data.
Such unconditioned realizations are frequently useful in Monte
Carlo experiments that address questions of how probable are
particular features of an observed data set (see, e.g., Papers I
and II).

6. REALIZATIONS CONSTRAINED BY THE MEASURED DATA

Section 2 (and Fig. 2) constructed minimum variance predic-
tions for values of a process s. If we take the step of making the
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Fi6. 3—Two different unconstrained realizations of the process s(t) under-
lying the data shown in Figs. 1 and 2. Note that these “typical ” realizations do
not resemble the minimum variance prediction of Fig. 2, which is “too
smooth.”

Gaussian assumption, equations (27) and (28), then the
minimum variance prediction is also the maximum likelihood
prediction. However, the maximum likelihood process is not
itself a very typical realization of the process. Section 4 (and
Fig. 3) generated realizations that were typical, but were not
constrained by the measured data. In this section we show how
to combine these techniques and generate an ensemble of reali-
zations, each of which is typical of the underlying process, but
also consistent with the measured data. Such an ensemble
characterizes ones full knowledge of the actual instance of the
process that took place.

Although we could disguise the fact in various ways, our
treatment becomes slightly Bayesian at this point (see, e.g.,
Loredo 1992): “Bayesian,” because we are going to assign
probabilities (not likelihoods) to different hypotheses about
unmeasured quantities; “slightly,” because, in making the
Gaussian assumption, we have already postulated a set of mea-
surements drawn from a stochastic process with a well-defined
probability measure.

Bayes theorem gives the probability of an underlying
process s given a set of measurements y,

P(s)P(y|s) _P (s)P(n)
P(y) P(y)
ocexp {—3[s"TS s+ (y— )N '(y—9]}. (36)

Here the second equality follows from the fact that y =s +n,
so the probability of y conditioned on s is just the probability
of n. The proportionality uses equations (27) and (28), and the
fact that P(y) is merely a normalization factor. Once again
completing a square, equation (36) can be shown to imply

P(s|y) ocexp {—3[(s — SIN + 17 ') LS~ + N7']
x (s — SIN + 817 '»)1}
oc exp {—3[u"Q " 'u]}

P(s|y) =

@37
where
u=s—S[N+S]"y (38)
Q=[S '+ N ] '=S[S+N]"'N=NS+N]"'S
(39)
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This derivation assumes square matrices, that is, the same set
of M locations for the vectors s and y. If (in the usual case) the
set of measured y;s is sparser than the desired set of s;’s, then
equation (37) still holds on the combined set of points, but one
must let N;; — oo for any value j where there is no measured y;,
signifying infinite uncertainty as to the “measured” value
there. Then, the “asterisk ” component of equation (38) can be
rewritten using equations (5) and (8) as

S*Zu*+S:[N+S]_1y=u* +§;’ (40)
where, by equation (37), u,, is a Gaussian process with corre-
lation matrix Q (eq. [38]).

Equation (40) is a powerful and perhaps surprising result. It
says that “typical ” realizations, in the correct relative prob-
abilities, are obtained by starting with the minimum variance
estimator 5,>and adding to it a Gaussian process with zero
mean and correlation matrix Q given by equation (39). Com-
putationally, one generates the vector u by finding the eigen-
vectors and eigenvalues of @, and proceeding exactly
analogously to the equations (32)—(34).

It is useful to note how this works in the limiting case
N - oo: thens,"— 0 by equation (8), @ — S, and we obtain an
unconstrained realization drawn from the probability distribu-
tion of equation (27). When (in the typical case) only certain
diagonal elements N;;— co (those that have no measured
values), then the realization becomes, at these points, con-
strained only by the information propagated through S. Con-
versely, if a row and column of N go to zero, then the
realization is forced to exactly the measured value y at that
point.

Figure 4 shows several independent realizations conditioned
on the data of Figure 1, generated by the procedure just
described. If we generate a large number of such realizations,
they will, at each abscissa ¢t have a Gaussian distribution of
ordinates, centered on the minimum variance reconstruction
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FiG. 4—Five random realizations conditioned on the measured data
points and error bars, generated by eq. (38). Each realization has the statistics
of the true underlying process, is consistent with the measurements, and can be
viewed as a plausible reconstruction of the actual process that transpired. The
ensemble of such realizations can be used for Monte Carlo exploration of
additional statistical questions.
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(eq. [8]) and with a standard deviation matching the width of
the “snake” in Figure 2 (square root of eq. [9]). However,
there is much more information in such an ensemble than there
is in Figure 2, since, for each realization, the correlations
between different abcissas t are correctly realized. One can thus
make use of the ensemble of realizations to answer, via Monte
Carlo experiments, many otherwise unaccessible statistical
questions. One might ask, for example, “ Given the measured
data, how often will s be below an upper limit F = 143 at time
t = 25 and below an upper limit F = 145 at time t = 30?” (see
Fig. 4).

7. SIMULTANEOUS RECONSTRUCTION AND DETERMINATION
OF LINEAR FITTING PARAMETERS

In the derivations of § 2 we relegated 2 to a secondary role,
since we did not want its Gaussian connotations to be con-
fusing. Now, however, it is safe to point out that equation (8)
could have been derived simply as a x? minimization, as
follows: Let y be the “augmented ” vector

~ y
= , 41
y (s*) (41)
whose correlation matrix is
S+N S
C= * 42
( ST <si>> .
so that the augmented y? is
P=yCy. 43)

Then, one can readily verify (using the formula for the matrix
inverse of a partitioned matrix) that minimizing y2 with respect
to the value s, gives exactly equation (8). This is much more
than simply an interesting alternative derivation, however,
since exp (—3x?) is the probability of a realization of a
Gaussian process, we now see that the preceding results using
minimum square discrepancy are completely equivalent to
maximum likelihood estimation for Gaussian processes. More-
over, well-known statistical machinery may be applied to the
resulting values of x2, leading to confidence limits on the recon-
structed signal values, for example.

This notion of generalizing 2, and then minimizing it, also
yields useful results when applied to the problem of simulta-
neously reconstructing a process s and fitting for some number
N, of unknown fitting parameters. Suppose that instead of
y =5+ nwehave

(44)

where ¢ is a vector of unknown parameters (length N ) and L is
an M x N, matrix of known coefficients. From the measured
values y we desire to reconstruct a best estimate of s and,
simultaneously, best values for the parameters q.

The generalized %2 is

=0—-Lg'Cl(y—Lg,

where C = § + Nis now a convenient abbreviation.
A few examples will clarify equations (44) and (45):

y=s+Lg+n,

(45)

1. If L is the vector E (viewed as a M x 1 matrix), and q is
the value y (viewed as a 1 x 1 matrix), then equation (45) is
exactly equation (18), which we used to produce an unbiased
estimator for s.
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2. If L and q are of the form
1 0
1 0 V1
L = = s
o 1| ¢ ()72) (49
0 1

then the data consist of two subsets having different (unknown)
means. Minimization of equation (45) will, in effect, adjust the
subsets to a common offset before determining the best recon-
struction of the underlying process s. This is precisely what we
did in Papers I and II to reduce the two gravitational lens
images (which had different, unknown, magnifications) to a
common basis.
3. If L and q are of the form

1 t, £
o
1 t, £ °
L=|.  * 7 g=|o/, (47)
1ty & 2

then minimization of equation (45) has the effect of removing a
quadratic trend o + a;t + «,t?> from the measured data y
before reconstructing a model with correlation matrix S.

Now properly oriented, we can manipulate equation (45),
once again completing its square, to get

=[g-41"L"C'D)qg — 4]
+y"[C™' -~ CT'LILTC'L) " 'L"C ']y, (48)
where
§=L"C Ly 'L"C y. (49)

From equations (45) and (48), we can now read off the
answers to the simultaneous reconstruction of s and ¢q: The
parameters g are estimated by §, which clearly minimizes 2
given in equation (48). The covariance matrix of this estimate
(whose diagonal elements, e.g., are the standard errors for the
fitted parameters) is (L"C~*L)™", which is indeed an N, x N,
matrix. Once § is calculated, the vector s is estimated by (cf.

eq. [8])

§=SC"'(y—Lg), (50)
while s, at any other point is estimated by
S =SiCTv—Lj). (51)

The variance of s, about this estimate is

sy =57 = (52>
—SHC™'—CT'LILTC L)~ LTCT ]S, . (52)

In practice, it is often easier to simply use the formulas for the

case of no g parameter fitting, but add to S a large scalar

multiple of the product LL”. (The validity of this procedure is

proved in the Appendix.) This is a generalization of the analo-

gous technique used in preceding sections for subtracting the
mean of the process.

8. DISCUSSION FOR BAYESIANS ONLY

The Bayesian reader may be squirming with displeasure at
the procedure just discussed, since the estimated parameters §
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are seemingly treated quite differently from the estimated
signal §: The former are estimated by maximum likelihood.
These maximum likelihood values are then frozen during the
estimation of 5. From a frequentist viewpoint, this is the only
way to proceed; we have made the Gaussian assumption that s
has a well-defined probability, but we have not made such an
assumption about the parameters ¢. In a spirit of statistical
ecumenism, however, we can happily report that, for this par-
ticular problem, a straightforward Bayesian calculation, treat-
ing s and ¢ democratically, gives identical results:

We write the condition probability of s and ¢ given y, by
Bayes theorem, as

P(s, y | @P(q)
Py

where the conditional probability P(s, y | q) is clearly given by
P(s,ylq) ocexp {—3[s"S s+ (y —s — Lg)"
x N Y y—s—Lgl}. (549

To use equation (53) to find the most probable estimates of s
and ¢, we must first consider the factors P(g) and P(y).
Actually, P(y) is irrelevant, since it is merely a constant (recall y
is given). However, the quantity P(g) poses a more serious
problem, since this refers to the probability distribution of the
parameters g, which is, in almost all cases, unknown to us. We
resolve this Bayesian dilemma, as is usual in such cases, by
making the assumption that P(g) is sufficiently broad that it
can be considered constant for the purposes of finding the
maximum of the probability function P(s, ¢|y). Then, the most
probable estimates of s and ¢ can be found by minimizing the
quadratic expression

sTS s+ (y—s—Lg'N " (y —s— Lg),

P(s, q1y) = (53)

(55)

with respect to s and q. Differentiating with respect to s and ¢
and setting the results equal to zero yields the simultaneous
equations for the minimizing values § and ¢,

(S"'+ N Y+ NLj= Nl

(56)
L'™N"%$ + LN 'L§=L"N y.

The solution of these equations for § and § can be found

straightforwardly, yielding precisely the results of equations

(49) and (50), showing that this simultaneous procedure is

equivalent to our previous separate minimizations.

9. DISCUSSION

Linear estimation is an old subject, and it is perhaps sur-
prising that the principal practical results of this paper
(consisting of the progressively more general cases of egs. [8]-
[91; [191-[20]; [34]1; [39]1-[40]; and [49]-[52]) are not stan-
dard textbook fare. It seems likely that the reason is one of
technology, not mathematics: To use the results of this paper
you must be able to solve (and possibly diagonalize) linear
systems whose size is the larger of the size of your data set and
the size of the set on which you want to make estimates. For
data sets of any interesting size (hundreds or thousands of
points), this capability has only recently become readily avail-
able in fast desktop workstations. While there may be little in
this paper that could not have been written down in the 1940s
(if not 40 years earlier!), it is also true that there is little in this
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paper which could have been calculated before the 1980s—and
routinely calculated only in the 1990s.

Our principal conclusion is not an equation but an orienta-
tion: One now has the capability to solve many significant
problems in “classical ” data analysis by global manipulation
of the full data set. Doing so (particularly in conjunction with
Monte Carlo methods) can provide unambiguous answers

(as in Papers I and II) to otherwise problematic statistical
questions.

We thank Jacqueline Hewitt for introducing us to this
subject, and for observational insights. This work was sup-
ported in part by the US National Science Foundation, grant
PHY-91-06678.

APPENDIX

We show here how the minimization of the y2 given in equation (45) can be expressed as a limit of a certain related x? expression
as a parameter approaches infinity. Suppose C, L, ¢, and y are defined as in § 7, and that 4 is a real parameter. Our result is then

min (y — Lg)TC '(y — Lq) =

To prove this, we first note from equation (48) that

min (y — Lg)"C~(y — Lg) = yT[C~! — C"'L(LTC~'L)"'LTC ']y .
q

Next, from the well-known Woodbury formula (see, e.g., Press et al. 1986) we have

(C+ ALLT) ™' = C~' — C'L(A~! + LTC™'L) 'LC™* .

Thus

lim y’(C + ALLT) 'y = yT[C~! — C"'L(LTC L)~ 'L"C ']y .

A= ©

lim p7(C + 2LLY) "y (57)
(58)
(59)
(60)

Comparison of equations (58) and (60) proves the result. Note that this result also applies in the case where ¢ is the scalar y and
where L = E (see § 3). In that case the parameter 1 may be interpreted as the variance {y*) of the data, as explained in the text.

From the interpretation of equation (57) as a fitting of parameters, it seems evident that the result should depend only on the
N -dimensional subspace spanned by the columns of L and not on the particular columns themselves. This can be proved by
making the replacement L — LR, where R is an arbitrary, nonsingular N, x N, matrix, which changes the columns of L, but
maintains the subspace spanned by them. Then

C'LILTC'L)"'L™C~' - C~'LR(RTL'C'LR) 'R"L"C"*

= C 'LR(R)"(L"C L) }(R") 'RTL'C*

= C'LILTC L) LTC!

(61)

showing that both results (58) and (60) are invariant under this replacement.

REFERENCES

Cressie, N. 1991, Statistics for Spatial Data (New York: Wiley)

Drygas, H. 1970, The Coordinate-Free Approach to Gauss-Markov Estima-
tion (Lecture Notes in Operations Research and Mathematical Systems 40)
(Berlin: Springer)

Edelson, R. A., & Krolik, J. H. 1988, ApJ, 333, 646

Hjellming, R. M., & Narayan, R. 1986, ApJ, 310, 768

Lehar, J., Hewitt, J. N., Roberts, D. H., & Burke, B. F. 1992, ApJ, 384, 453

Lewis, T. O., & Odell, P. L. 1971, Estimation in Linear Models (Engelwood
Cliffs: Prentice-Hall)

Loredo, T. J. 1992, in Statistical Challenges in Modern Astronomy, ed. E. D.
Feigelson & G. J. Babu (New York: Springer)

Malley, J. D. 1986, Optimal Unbiased Estimation of Variance Components
(Lecture Notes in Statistics 39) (Berlin: Springer)

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1986,
Numerical Recipes: The Art of Scientific Computing (New York: Cam-
bridge Univ. Press)

Press, W. H., Rybicki, G. B., & Hewitt, J. N. 1992a, ApJ, 385, 404 (Paper I)

. 1982b, ApJ, 385, 416 (Paper II)

Rao, C. R. 1973, Linear Statistical Inference and its Applications (2d ed.; New
York: Wiley)

Scargle, J. D. 1989, ApJ, 343, 874

. 1990, ApJ, 359, 469

Stuart, A., & Ord, J. K. 1987, Kendall’s Advanced Theory of Statistics, Vol. 1
(5th ed.; New York: Griffin); previous editions published as Kendall, M., &
Stuart, A., The Advanced Theory of Statistics

Vanderriest, C., Schneider, J., Herpe, G., Chevreton, M., Moles, M., & Wlerick,
G. 1989, A&A, 215, 1

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1992ApJ...398..169R

