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ABSTRACT 
We use the adhesion model to study the formation process of large-scale structures due to nonlinear gravi- 

tational growth of small initial fluctuations in the universe dominated by dark matter. First, we test the adhe- 
sion model against two-dimensional (512 x 512) iV-body simulations with initial power-law spectral indices 
n = — 2, 0, +2, and various cutoffs. We find that the adhesion model imitates the skeleton of the structure 
extremely well for all choices for the parameters of the initial spectra until the stage when the nonlinear scale 
reaches the correlation length R^, of the initial gravitational potential. The adhesion model naturally explains 
the origin of large-scale coherent structures such as superpancakes and superfilaments, as a result of coherent 
motion of clumps due to large-scale inhomogeneities in the initial gravitational potential. This can happen in 
all kinds of initial conditions, not just traditional “ pancake ” models. Coherent structures can form up to size 

and beyond R^, nonlinear evolution does not produce extended coherent objects. We find that clumps of 
mass identified in the AT-body simulations correspond to several knots in the adhesion model, which influences 
the way of calculating the mass distribution function. We also find that the distribution functions of velocities 
and masses of clumps and areas of cells in the adhesion model satisfy self-similar scaling laws of the n = 2 
model. 
Subject headings: dark matter — large-scale structure of the universe — videotapes 
Accompanying videotape: ApJ, 393, Part 1, No. 2, Videotape, Segment 1 

1. INTRODUCTION 

We discuss the formation of the large-scale structure (LSS) 
in the universe, assuming a global structure of the matter dis- 
tribution consisting primarily of clusters and superclusters of 
galaxies with giant voids between them. It is generally accepted 
that in the present universe most mass exists in the form of 
dark (nonluminous) matter. At the epoch of the LSS formation 
under consideration dark matter acts as collisionless dustlike 
particles without pressure and is governed by Newtonian 
gravitation only, assuming that the baryon fraction is negligi- 
ble and that radiative and gasdynamics effects are short-range. 
In our approach, the LSS is assumed to form from the growth 
of small primordial inhomogeneities by gravitational insta- 
bility. The universe is assumed to be flat (Q = 1), in agreement 
with the theory of cosmic inflation. Galaxies are idealized as 
structureless points, and the observed structure luminous 
matter is assumed to be a tracer of the dark matter distribu- 
tion. These assumptions are not absolutely necessary. Never- 
theless, they are minimal and enough to explain qualitatively 
how LSS arises. The mathematical problem is reduced to 
solving a well-known basic nonlinear system (with an evident 
generalization in multistream flow regions) comprising the 
continuity equation (Peebles 1980; Zel’dovich & Novikov 
1983), 

^ + 3Hp + -\- (pv) = 0 , (1) 
ot a 

1 On leave of absence from Institute of Astrophysics and Atmospheric 
Physics, Tartu, Estonia 202444. 

the Euler equation, 

^ + Hv= ~^\(p , (2) 
dt a 

and the Poisson equation, 

V2(p = 4nGa2(p - p), (3) 

where p, v, cp are the density, peculiar velocity, and peculiar 
gravitational potential of dustlike matter in the expanding 
uniform background, which has scale factor a{t) = i2/3 and 
mean density p cc a~3. For simplicity we assume zero cosmo- 
logical constant. The initial conditions are defined by the 
growing model of potential perturbations, for which the linear 
solution is given by 

ôp(x, t) 

P 
= Aa(tjV2q) , (4) 

where A = (f//2a3)-1 = constant for the flat dustlike dark 
matter-dominated universe. The spatial form of initial inho- 
mogeneities is defined by the initial peculiar gravitational 
potential (p(x). Its main properties are as follows: (p(x) does not 
change during the linear stage, and its random field contains 
all information about the particular cosmological model 
through both the initial spectrum of perturbations and the 
transfer function, which depends on the type of dark matter. 

A quantitative and convincing explanation of the origin of 
the LSS is still a challenge for theorists. This includes several 
components : formulation of a theory, developing methods for 
following the evolution of initial conditions into nonlinear 
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structures, comparison with observations, etc. In theories 
based on gravitational instability one of the major goals is to 
find a solution of the system of equations (l)-(3) in terms of the 
spatial mass distribution. Since most matter is condensed into 
gravitationally bound objects at the nonlinear stage, the 
problem is : Which type of objects have more density contrast 
and dominate during different epochs of evolution? One has to 
keep separately in mind the various types of nonlinear objects : 
spherical virialized clumps, asymmetric pancakes (sheets), and 
filaments. Voids, of course, are also assumed. The next problem 
is to find the mass and velocity multiplicity function of such 
objects. 

It is important to clarify that in this paper we are not trying 
to compare specific models with data, but rather to develop the 
theory of how small-amplitude fluctuations develop into non- 
linear structure. We now have various theoretical approaches 
to nonlinear gravitational clustering which elucidate different 
features of the problem. Let us examine each. 

Direct extrapolation of linear growth of density field peaks 
creates a picture in which structure evolves hierarchically (see, 
e.g., Peebles 1980). Here the smallest mass scales collapse first, 
forming roughly spherical objects, and they then merge to form 
similar objects on larger scales. According to the Press- 
Schechter prescription (Press & Schechter 1974), regions which 
are initially overdense by a fraction ô = ôp/p locally reverse 
the background cosmological expansion and form bounded 
virialized objects. This happens after the universe has expand- 
ed by a factor a = ö/öc, where the phenomenological critical 
level is <5C ~ 1. To obtain the mass distribution function of the 
objects, one should smooth the primeval density field with a 
filter (e.g., Gaussian) of width Rf corresponding to the nonlin- 
ear scale M ~ pR*. The Press-Schechter method is based on 
the variance of the density field smoothed with a window func- 
tion, WKRJcc exp (—k2Rf) for the Fourier components of 
Gaussian filtering. This model gives a multiplicity function 
/(M) for the fraction of mass in objects within mass range (M, 
M + dM) which is in good agreement with results of iV-body 
simulations (Efstathiou et al. 1988), except for very steep 
spectra (Williams et al. 1991). Variants of the Press-Schechter 
method have been applied to the cold dark matter (CDM) 
model, in which LSS formation has strong features of hierar- 
chical clustering. Treating clusters of galaxies as biased 
smoothed fluctuations (Kaiser 1984) and the more general 
treatment of biasing in cosmology (Bardeen et al. 1986) are 
closely related ideas. For recent developments see Peacock & 
Heavens (1990) and Bond et al. (1991). Unfortunately, the hier- 
archical prescription does not give us the location and 
dynamics of the LSS for cosmologically interesting initial 
spectra, since usually this type of theory does not study the 
displacement of mass. 

Another powerful model is the Zel’dovich solution 
(Zel’dovich 1970), which approximately describes the displace- 
ment of particles from the unperturbed Lagrangian position q 
to the Eulerian (comoving) position x, 

x(t, q) = q + a(t)V<Do(0), (5) 

due to initial potential perturbations specified by the random 
field of the velocity potential O0, which is related to the pecu- 
liar gravitational potential <p0 by 

(po = , 

where A is the constant in equation (4). The spatial structure of 
the nonlinear density field in the Zel’dovich approximation is 

defined by the inverse of the determinant of the deformation 
tensor <5^ + a d2Q>0/dqi dqj. At the moment ac, in the vicinity of 
point qc, where the leading eigenvalue of the deformation 
tensor is ¿i(#c) = l/ac, the density formally reaches infinity, 
and the first nonlinear object— a very asymmetric pancake— 
arises. The Zel’dovich approximation works quite well in the 
quasi-linear stage until pancake formation (Shandarin, Doro- 
shkevich, & Zel’dovich 1983). In the hot dark matter (HDM) 
model the pancakes are of the size of superclusters, because of 
the spectral cutoff of these scales. Ten years ago the success of 
this theory of LSS was based on pancakes. One might think 
that pancakes enlarge and form a connected network of sheets 
and filaments, which exists as an intermediate asymptotic and 
then decays into isolated, randomly distributed clumps. We 
will present evidence that for various initial spectra the clumps 
move coherently into new structures, and that this motion can 
also be regarded as pancake formation. 

Actually, in the basic equations (l)-(3) no intrinsic scale is 
present. In every model (assuming that the medium is dustlike 
and cp0 is nonfractal) the first nonlinear objects are very asym- 
metric pancakes, and the formation of structure begins with 
them. A sharp spectral cutoff is not required. From equation (5) 
we can write 

+ const] = A\q cp0(q), (6) 

since (p0= — A_1O0. This equation inspires a nice geometrical 
interpretation of the ZeFdovich solution; one can find the 
Eulerian coordinate x of the particle with initial Lagrangian 
coordinate q at the chosen time simply by projecting the apex 
of the paraboloid 

(x — 4/)2 

P = - + const (7) 
2a 

implied by equation (6). Condition (7) is for the osculation of P 
tangent to the hypersurface (p0(q) at point q by adjusting the 
free constant under the condition that P does not cross (p0 at 
any point (Fig. 1 of Kofman, Pogosyan, & Shandarin 1990). 
Any initial nonfractal gravitational potential, according to 
equation (7), leads to singularities—caustics. Pancakes inevita- 
bly arise in the CDM model, but they can form very early and 
have cosmologically negligible size. The direct application of 
the Zel’dovich approximation becomes invalid soon after the 
formation of the pancakes, so it has been widely believed that 
the advantages of the pancake scenario do not extend to 
models like the CDM. 

The hierarchical clustering and the pancaking models seem, 
at first glance, to be competing, and probably even mutually 
incompatible. However, the metamorphosis which has taken 
place with pancakes in the adhesion model provides compat- 
ibility with both scenarios. 

The adhesion model is the next step toward understanding 
of the nonlinear regime (Gurbatov, Saichev, & Shandarin 1985, 
1989; Kofman & Shandarin 1988; Shandarin 1988; Shandarin 
& Zel’dovich 1989). Numerical experiments show that the 
thickness of pancakes is considerably smaller than their sizes 
and the distances between them (Doroshkevich et al. 1980; 
Dekel 1983; Melott 1983). The idealization is therefore 
assumed that particles stick together inside pancakes, which 
become infinitely thin. Adhesion can be mimicked by the artifi- 
cial viscosity term in the oversimplified equation of motion 
used in the Zel’dovich solution. That leads to Burgers’s equa- 
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tion (Burgers 1974), admitting an analytical solution. This 
model based on Burgers’s equation with negligible (but 
nonzero]) viscosity deals with the skeleton of the structure, 
which at an arbitrary time is found directly without interme- 
diate steps by means of the geometrical construction (6) 
beyond the Zel’dovich approximation. This includes (but is not 
limited to) the pancakes found in the HDM model. The skele- 
ton of LSS in the model resembles the random packed cellular 
structure consisting of sheets (pancakes), filaments, and knots. 
The dynamics of the cellular structure looks like the growth of 
some cells and shrinking of others, and meanwhile knots merge 
to form knots of larger mass, corresponding to the hierarchical 
clustering of knots. Thus, the model includes both hierarchical 
clustering of the knots and their motion, which under certain 
conditions looks like pancaking. Kofman et al. (1990), Wein- 
berg & Gunn (1989,1990), and Nusser & Dekel (1990) demon- 
strate the ability of the adhesion model to reproduce the results 
of V-body simulations. However, the analytical calculations of 
the statistics of matter distribution and motion (Gurbatov et 
al. 1985,1989; Doroshkevich & Kotok 1990) were made under 
the oversimplified assumption of uncorrelated peaks of gravi- 
tational potential, as well as identifying a single knot of the 
cellular structure with the matter clump. The range of applica- 
bility of the model (in terms of initial spectra and stages) was 
not studied. 

In this paper we discuss the following questions : 

1. The restrictions of the applicability of the adhesion model 
in terms of the initial conditions. 

2. The explanation of the large-scale coherent structures 
observed in iV-body simulations and observational data, on 
the basis of the adhesion model. 

3. A qualitative unification of the pancake and hierarchical 
clustering models, using the adhesion model. 

In § 2 we test the adhesion model by comparing it with direct 
two-dimensional high-resolution iV-body simulations. We 
make the comparison for pure power-law initial spectra with 
several indices, n = — 2, 0, +2, and cutoffs, kc = 4, 32, 256 
(k= 1 corresponds to the fundamental mode and k = 256 to 
the Nyquist frequency in this case), at various stages [until 
(<5p/p)lin theor « 4000 in the most extreme case]. 

To combine hierarchical clustering and pancaking, we need 
a new qualitative concept reflecting the development of struc- 
ture. We base this on large-scale deformation of the developed 
cellular structure due to long-wave perturbations of the pecu- 
liar gravitational potential. We show (§ 3) why knots tend to 
form large-scale coherent structures as a result of large-scale 
coherent motion of matter. These large-scale, asymmetric, 
coherent structures made of smaller clumps we call 
“superpancakes” and “superfilaments,” as structures of the 
next generations. This is in contrast to pancakes and filaments, 
which form from a continuous medium and are bounded by 
caustics. 

Superpancakes are the main issue of this paper. We demon- 
strate that the visual alignment of clumps in iV-body simula- 
tions corresponds to proper pancakes, whose positions can be 
derived by the geometrical technique of inserting a paraboloid 
in the smoothed initial gravitational potential. The matter dis- 
tribution in clumps in iV-body simulations (Melott & Shan- 
darin 1990) has been shown to be strongly correlated with 
pancakes on the scale of nonlinearity of the field by explicitly 
measuring the cross-correlation amplitude (Beacom et al. 1991, 
hereafter BDMPS), in agreement with our geometrical result. 

We urge the reader to examine the accompanying videotape 
(ApJ, 393, Part 1, No. 2, Videotape, Segment 1) to see the 
process of formation of superpancakes in various models. 

The pancaking continues until approximately the epoch 
when the sizes of structures (the scale of nonlinearity) reach the 
typical correlation scale of the initial gravitational potential, 
which we denote (we formally define and discuss it in § 3). 
This simple picture leads to an important conclusion : in every 
cosmological model, including those where structure evolves 
hierarchically coherent structures can be constructed until the 
epoch ty. Their position is reproduced by inserting paraboloids 
in the smoothed field of gravitational potential. The intensity 
of superpancaking is governed by the amplitude of large-scale 
metric perturbations, while small-scale details are dynamically 
forgotten. It is important that the superpancaking (coherent 
motion of clumps) can be observed even until as deforma- 
tion of density contours toward superpancakes. That could be 
detected, for instance, by the percolation test (Dominik & 
Shandarin 1992) or in the probability distribution function of 
smoothed density field (Kofman 1991). It is interesting in con- 
nection with the observations demonstrating the existence of 
large-scale coherent structures like anisotropic superclusters 
(Oort 1983) and filaments (Giovanelli & Haynes 1982; Chin- 
carini, Rood, & Thompson 1981; Tago, Einasto, & Saar 1986). 
Especially notable here is the recent discovery of the Great 
Wall (Geller & Huchra 1989). 

Finally, in § 4 we discuss the equation of the mass of bound 
objects, estimating the volume (area) of the corresponding 
Lagrangian regions. We show that the clumps of mass identi- 
fied in AT-body simulations correspond to several knots in the 
adhesion model. This fact, together with the restrictions on 
applicability obtained in § 2, can significantly change the way 
of making analytical calculations of the mass distribution func- 
tion in the adhesion model. 

2. THE COMPARISON OF THE ADHESION MODEL WITH 
iV-BODY SIMULATIONS 

We now briefly describe the adhesion model, present the 
numerical code for this model, and compare adhesion calcu- 
lations to the results of direct AT-body simulations for the same 
initial conditions. Let us use a new time variable a(t) instead of 
i, and introduce a comoving velocity u — dx/da = v/aà. Then 
equation (2) has the form (Kofman 1991) 

~ + (u-V)u= - ^ + AV<P) ■ (8) 

In the Lagrangian approach, the right-hand side has the 
meaning of a force acting on the particle. In a Zel’dovich 
approximation it is set to zero, corresponding to the free 
streaming of particles in comoving coordinates. To go beyond 
the Zel’dovich solution, a viscosity term is added to mimic the 
gravitational adhesion, 

du . 
— + (i# • V)ii = vV2ii. (9) 
oa 

We consider the case when the viscosity coefficient v -► 0 (but 
v # 0 !), so that the viscosity term does not affect the motion of 
the matter outside the mass concentrations but is very impor- 
tant inside. 

Equation (9) is the well-known Burgers equation (Burgers 
1974). For the potential problem under consideration it has an 
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exact analytical solution, which in the limit of v -► 0 reads as 

»<*..) = S (^>. exP ( - |)/l “P ( -1). 00) 

where are the Lagrangian points which minimize the action 

EE S(x, a; qj = <D0(iJ + ^ = min , (11) 

Joe = det (ôtr 
d2<S>0 

dqidqj. 

-1/2 
(12) 

considered as a function of q for fixed x. Physically, mini- 
mizing S means that at the moment a(t) the particle qa is at 
the Eulerian point x. The minimizing points qa are those that 
satisfy the Zel’dovich solution, x{q0L, a) = + a\q and 
S(x, a; q) > S(x, a ; qa) for q ^ qa. 

Solution (10) can be interpreted in terms of a simple geo- 
metrical construction. The paraboloid P is tangent to the 
random hypersurface <I>0 at the point qa. The Lagrangian point 
qa is where the particle came from, and the projection of the 
apex x is its Eulerian position. At early stages, the curvature of 
the paraboloid is greater than that of the hypersurface d>0, and 
there is a one-to-one correspondence between points in 
Lagrangian and Eulerian spaces when the Zel’dovich solution 
is valid. Later the pancakes form, which mean that some x- 
points have two ^-originals. Intersection of pancakes forms the 
filaments, whose x-points have three ^-originals in terms of 
solution (10), and intersection of filaments forms knots with 
four ^-originals (see Fig. 1 in Kofman et al. 1990). 

Thus, in the adhesion model the problem of nonlinear gravi- 
tational evolution is reduced to geometrical analysis by insert- 
ing paraboloids into the random field of the initial linear 
gravitational potential (p0. The artificial viscosity coefficient 
disappears from the answer (10) in the limit v -> 0, and time is 
involved in the result only as a parameter a(t) determining the 
curvature of the paraboloid. The advantage of this model is 
that the skeleton of the LSS can be found at an arbitrary time 
with no consideration of previous evolution. 

For now, our operating hypothesis is that the solution of the 
basic equations (l)-(3) can be approximately described by 
solution (10) of the adhesion model. The way to check this is to 
compare the matter distribution in numerical simulations of 
both cases. 

Our numerical code for the adhesion model is based on the 
geometrical interpretation of the solution of the Burgers equa- 
tion (eq. [10]); see Kofman et al. (1990) and Pogosyan (1989). 
The initial velocity potential <D0 and its derivatives are calcu- 
lated on a square grid of size 512 x 512. The initial potential is 
a Gaussian random field consisting of the superposition of 
plane waves with random phases, under periodic boundary 
conditions. We have chosen initial fluctuations of density with 
power-law power spectra P(k) oc kn. 

The aim of our two-dimensional code is the construction of 
the paraboloids simultaneously tangent to d)0 at two or three 
points at an arbitrary moment of time. The calculation consists 
of two steps. At the first step the grid points in the Lagrangian 
plane are sorted into two classes : (a) “ free ” particles which do 
not yet belong to any elements of structure (filaments or knots), 
and (b) “stuck” particles which by this time have stuck into 
the skeleton of the structure. The second step is correction of 
the position of the skeleton by mapping to Eulerian space (for 
details see Kofman et al. 1990). 

Our numerical method of V-body simulation is a particle- 
mesh (PM) code of 5122 particles on an equal mesh, with 
periodic boundary condition (for details see BDMPS). Both 
the adhesion and the iV-body simulations use the same initial 
conditions. The V-body simulations have already been studied 
in many ways (Scherrer, Melott, & Shandarin 1991; Fry, 
Melott, & Shandarin 1992; Kauffmann & Melott 1992; 
Dominik & Shandarin 1992; BDMPS). 

We use several different series to compare the results of 
V-body simulations with the adhesion model. We call them the 
Q series (n = 2), the J series (n = 0), and the N series (n = — 2). 
These two-dimensional simulations are analogs of three- 
dimensional cases with P(k) oc kn~1. Thus the Q series are 
analogs of the three-dimensional pure Zel’dovich spectrum 
P(k) = k [for the spectrum of the potential A(k) = /c-3]. The N 
series are analogs (up to logarithmic correction) of the short- 
wave limit of the CDM spectrum. Each series Q, J, N is divided 
into three variants using a sharp cutoff of the power spectra at 
the harmonics k = 4kf, k = 32kf9 and k = 256kf, where kf is 
the fundamental mode of the simulation square. Thus we have 
a set of series Q4, Q32, Q256; 14, J32, J256; and N4, N32, 
N256 respectively, which cover a very wide range of interesting 
possibilities. Additionally, we use the same realizations of 
phases for common harmonics in all of the simulations. The 
output time for each simulation has been chosen so as to 
compare them at the epoch when a specified mode /cNL enters 
the nonlinear regime, 

r 
d2k P(k)a2 = 1 . 

In Figures 1-3 the moment when kNL = 4kf is chosen. 
We compare the results of the À-body simulation and the 

adhesion model of the given series by displaying the particle 
positions and the skeleton of the structure for the same initial 
conditions and the same value of kNL in the same figure. At the 
moment shown, the linearized density variance in all of the 
simulations with = 4 is close to unity. Since in these cases 
the Zel’dovich approximation is known to be very good, it is 
not surprising that the adhesion model is also very good. 
Therefore we do not show them. All of Figures 1-3 correspond 
to the same kNL = 4, but the rms density fluctuations calcu- 
lated from linear theory, a = (<<5p/p)2)1/2 are very different 
and can be estimated from simple relations ap = (256//cNL)2, 
(256//cnl), and [ln(256/kNL)]1/2 in the n = 2, n = 0, and n = —2 
cases, respectively. 

Obviously Figures 1 and 2 for the n = —2 and n = 0 simula- 
tions show very good visual agreement between the skeleton 
and the particle distribution in iV-body simulations. Good 
agreement for these simulations was found for the all moments 
studied, not only for the chosen moments of Figures 1 and 2. 
However, at the stage most of the mass is in clumps and the 
discreteness of the system can be clearly seen in voids. This 
explains the absence of A-body counterparts for small 
branches of the skeleton. There is not such good agreement for 
the n = 2 simulation for the moment shown in Figure 3 when 
/cnl = 4. We have checked the agreement for that series at 
other moments, and found good agreement between iV-body 
simulations and the adhesion model of earlier moments of 
time. As an illustration, we plot in Figure 4 results of the n = 2 
simulation, kc = 32, at the moment when kNL = 16 and <7 « 4 
(which is obviously beyond the applicability of the Zel’dovich 
approximation). 
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Fig. 1.—(a) Composite picture of the results of the JV-body simulation and the adhesion model in the n = — 2, fcc — 32 model. Dots show the distribution of 
particles in the JV-body simulation. (Not all particles can be shown, but this is a fair sample.) Solid lines and circles represent the skeleton of the structure constructed 
in the adhesion model, with the same initial conditions, at the moment a = 1.65. Solid lines show the positions of the paraboloid apices at double touching 
(filaments), and circles those at triple touching (knots). The radii of circles are proportional to the mass of knots, (b) Same as (a), but for n= —2,kc — 256 senes at the 
epoch <7 = 1.87. 

To find the reason why the adhesion model does not work so 
well beginning from some critical moment, as happens in the 
n = 2 simulation, we need to better understand structure for- 
mation. We will address the question in the next section. 
However, we would like to make one brief comment. At late 
times, when the skeleton of the structure is determined by the 
large-scale part of the potential <p, it can be represented by the 
sum of the initial potential (p0 and an additional part Sep due to 
nonlinear evolution. This extra part of the potential is gener- 
ated by the local gravity of nonlinear clumps. If the typical 

scale of Sep is smaller than the scale of significant correlation of 
the initial potential then we expect that coherent initial 
motion is disturbed only a little by the local gravity. At still 
later times, the characteristic scale of the structure exceeds the 
scale Ry, and local gravity dominates the motion. For the 
n = 2 simulation at the moment of Figure 3, the scale of the 
structure is larger than R^ (Fig. 5; filled hexagons), and we do 
not expect the adhesion model to work accurately at this stage. 
This practically never happens in the n = 0 and n = —2 simu- 
lations, since the characteristic scale of the initial potential 

Fig. 2a Fig. 2b 

Fig. 2.—Same as Fig. 1, but for the following series and epochs, respectively : (a) n = 0, /cc = 32, <7 æ 8; (b) n = 0, kc = 256, <7 « 64 
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roughly equals the size of the box (Fig. 5; two solid and dashed 
lines at the top). As a result, one observes good agreement 
between the adhesion model and the AT-body simulations until 
the last stage, when very few clumps are left. 

3. SUPERPANCAKES 

One can easily see the prominent pancakes when the nonlin- 
ear stage begins in models with spectra having a sharp cutoff 
(Klypin & Shandarin 1983). In the CDM model (which has no 
sharp cutoff), the first V-body simulations (Melott et al. 1983) 
demonstrated the presence of highly connected, easily perco- 
lating structures, interpreted then as a filamentary distribution. 
Later simulations (e.g., Davis et al. 1985) confirmed the perco- 

lation result but did not emphasize the formation of pancakes 
or filaments. In later numerical simulations with higher mass 
resolution (Gelb & Bertschinger 1989; Park 1990) one can find 
coherent objects reminiscent of filaments. However, statements 
about the formation of the structural network in CDM-type 
models are strongly author-dependent. In two-dimensional 
high-resolution simulations one has enough particles to 
resolve the fine structures of matter distribution (Melott & 
Shandarin 1989). The more resolution, the more easily a 
prominent network structure is discovered, the interest in 
large-scale coherent structures has been “heated up” by ob- 
servers, who noted the significant anisotropic structures 
already mentioned in § 1. By analogy, these also have become 

Fig. 4a Fig. 4b 

Fig. 4.—(a) Result of the N-body simulation in the n = 2, /cc = 32 series at the moment a = 4. (b) Composite picture of the N-body simulation and the skeleton of 
the structure in the adhesion model in the n = 2, /cc = 32 series at the moment <7 « 4. Same notation as in Figs. 1-3. 
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Fig. 5.—Relation of intrinsic scales to the scale of nonlinearity. The 
inclined line shows . Horizontal lines show the scales of potential, velocity, 
and density fields for kc = 256 (solid lines) and kc = 32 (dashed lines). The three 
top lines in each series show RJn = —2), RJji = 0) = Rv(n = —2), and 
R^n = 2) = Rv(n = 0) = Rp(n = — 2), respectively, from the top. The two 
bottom lines are Rv(n = 2) = Rp(n = 0) and Rp(n = 2), respectively, shown for 
comparison. Open triangles correspond to Figs, la and lb; open squares to 
Figs. 2a and 2b and 6a and 66; filled hexagons to Figs. 3a and 36; and an open 
hexagon to Figs. 4a and 46. 

more prominent with more resolution (i.e., more complete 
surveys). We expect that in the future very larger surveys will 
make them of higher contrast relative to the background. 

The adhesion model reveals what is behind large-scale 
coherent structures in simulations (and probably the universe 
as well), and provides a way to explain them. Let us recall, 
however, the hierarchical model based on the linear approx- 
imation. To linear order, density contrasts of the smoothed 
initial density field, 

Sp(x, R) 

P 
W(\x-x'\;R), (13) 

grow independently from perturbations on larger scales, for 
spectral index n> — 3 in three dimensions or n> — 2 in two 
dimensions. This result can be derived from timing arguments 
(Peebles 1980). If p(r) is the initial (linear) velocity autocorrela- 
tion function, then t(r) = r/v(r) roughly gives the epoch of the 
collapse of the objects of scale r. For power-law spectra 
v(r) oc r~(n+1)/2 and therefore t(r) oc r(3+n)/2,/which says that for 
n> — 3 (in three dimensions) t(r) is a monotonically growing 
function. This line of argument implies that the motion of 
smaller clumps is uncorrelated on the scale of larger clumps, 
which form later mostly by means of two-clump merging. 
Obviously the greater the power on large scales, n — 3 in 
three dimensions or n — 2 in two dimensions, the less time 
between epochs of nonlinearity on small and large scales. In 
other words, the evolution proceeds faster as n decreases. 

In our simulations the small-scale distributions in the 
n = —2 simulation (at the same /cNL) experience changes of two 
types when kc increases from 4 to 256. The most dense regions 
become more clumpy, and the regions intermediate between 
high- and low-density regions become more filamentary. The 
whole distribution comes to look fractal. However, comparing 
the kc — A (not shown), kc = 32, and kc = 256 cases, one can see 
that the large-scale structures are very similar, despite the fact 
that there is more power in the range 4 <k < 256 than in the 

range 1 < k < 4. Since computing power is finite, one can only 
speculate about distributions at kc -► oo. In particular, we 
believe that with increasing kc the dumpiness of the structure 
will grow but the coherence of the large-scale structure will 
remain substantial. We believe that when fluctuations become 
quasi-linear the Zel’dovich approximation describes the dis- 
tribution better than the direct extrapolation of the linear 
theory. 

To a very restricted extent, one can think about this process 
as a superposition of pancakes of different scales, since in the 
n = —2 case all pancakes form nearly simultaneously. 
However, this interpretation has a very serious disadvantage. 
On the basis of such an interpretation one can argue that the 
superposition of random pancakes of various sizes produces an 
incoherent distribution. This argument is false because the 
Zel’dovich transformation of the initial perturbations to pan- 
cakes is not a linear procedure. Therefore, the linear com- 
bination of the initial perturbations at different scales does not 
produce a linear combination of random pancakes related to 
different parts of the initial spectrum. 

In the more general case of arbitrary spectral index n> —2 
(or n > — 3 in three dimensions) the pancaking does not 
happen simultaneously on all scales. It is possible that on small 
scales one has an overdeveloped cellular structure and that on 
large scales the degree of nonlinearity corresponds to the first 
large-scale pancakes. These large-scale pancakes are con- 
structed not only from free particles which were not stuck in the 
structure before, but also from elements of cellular structure 
(knots and filaments) which formed earlier. 

For illustration let us follow the further time evolution of 
LSS in the n = 0, kc = 32 simulation. In Figure 6a it is shown 
at the moment when kNL = 2 or ap = 16. The skeleton of the 
adhesion model coincides closely with the particle positions 
from the AT-body simulation. It is easy to recognize high- 
contrast coherent structures in addition to the network of fila- 
ments, many of them remaining from the stretched pancakes of 
the first generation. The structure we refer to consists of align- 
ment of clumps of particles, and it can be explained as a result 
of the coherent motion not only of free particles but also of 
knots of cellular structure, on which large-scale coherent 
motion is impressed. 

A visual check of these ideas provides strong support. The 
reader is urged to examine the process of evolution particularly 
in all of the kc = 256 series, whose time dependence is shown in 
the accompanying videotape, Segment 1. One can see here the 
coherent motion of the knots to form superpancakes, as well as 
the disruption of this process in the n = 2 case. 

As a further check of the assumption about successive pan- 
caking over various scales at various times (as a model of 
escalating nonlinearity), let us not filter the initial fluctuations 
of the gravitational potential on scale R, 

q>(x, Æ) = J d3x'<p(x)W( \x-x'\;R) . (14) 

Our filter is a step function in k-space: W(k) = 0(k — kR); kR = 
4. The skeleton in the adhesion model after such filtering is 
shown in Figure 6b (for the n = 0, kc = 32 simulation). We see 
good agreement between filaments in the adhesion model with 
smoothing and the largest coherent structures in the A-body 
simulation with no smoothing. We call the large-scale, aniso- 
tropic, coherent structures, formed as a result of long wave 
perturbations which just have entered the nonlinear regime, 
“ superpancakes ” and “ superfilaments,” in order to distinguish 
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up to the four lowest harmonics and with the same phases as in (a). 

them from those which arise on smaller scales in the first gener- 
ation. We conclude that these structures are not visual artifacts 
but results of coherent motion on corresponding scales. 
(Additional experimental support for these ideas can be found 
in the cross-correlation studies presented in BDMPS.) 

As in hierarchical clustering, the successive pancaking on 
larger scales washes out smaller structures to some extent. At 
the given moment i, when the typical size of the structure is l(t) 
(which is close to kN¿\ the initial potential on small scales 
k'1 < is almost irrelevant. In particular, it means that two 
series with differences only on small scales (say, one of them 
has a sharp cutoff onk> k0) have nearly the same evolution at 
late times [t > t(k0)]. More specifically, it means that the 
largest structures are similar but the smallest ones can be dif- 
ferent (compare Figs. 2a and 2b or Figs. 6a and 6b). Gurbatov 
& Saichev (1981) pointed out that in the case of one- 
dimensional Burgers turbulence, large-scale structures at late 
times depend only on the large-scale asymptote of initial fluc- 
tuations. In this connection, let us comment on the results of 
Weinberg & Gunn (1989, 1990), where a different numerical 
technique to solve the Burgers equation (9) was used, based on 
the convolution integral in the analytical solution with finite 
viscosity. This actually corresponds to an effective smoothing 
of initial fluctuations. The agreement shown there between the 
large-scale matter distribution in V-body simulations of the 
CDM model and that in the adhesion model with an effective 
smoothing just means that the same-scale details of structure 
are dynamically forgotten and unimportant at large scales on 
late stages (see also Little Weinberg, & Park 1991). Another 
result which corresponds to effective similarity between nonlin- 
ear clustering and smoothing is the reduction in amplitude of 
the topological genus with dynamical evolution in hierarchical 
clustering models found by Melott, Weinberg, & Gott (1988). 

We believe that the major feature of superpancaking—the 
coherent motion of mass clumps—can be traced using the 
adhesion model until the scale of nonlinearity kN¿ reaches the 
characteristic scale of the initial potential R^. The escalation of 

superpancaking also finishes on the maximal scale R^. This 
scale is the length of significant correlation of the random field 
of (p0. For a Gaussian field R^ can be defined from the expan- 
sion of the correlation function <^(r) = <^(0X1 — r2/2R^ + • • ): 

R(p = {2Dr2^, (15) 

where D is the dimension and <j0 and o’! are dispersions of the 
potential and its gradient, respectively. Since we deal with finite 
ranges in this work, R^, exists in all our models. There are of 
course cases when R^ formally does not exist. In such cases one 
has to use a more sophisticated approach and use a different 
characteristic of (p, such as the structure function, for example. 
We do not discuss it here. After the characteristic scale of 
nonlinearity k^¿ exceeds R^, then most of the filaments pre- 
dicted by the adhesion model correspond to one or two clumps 
(Figs. 3a and 3b). This, of course, means that one cannot talk 
about filamentary structure at all. The evolution becomes 
“pure” hierarchical clustering. For instance, the Q (n = 2) 
series with kc = 256 lives in this limit most of the time. Figure 5 
demonstrates the evolution of structure in terms of kÑi! against 

Rp calculated according to equation (15) for all our series. 
The relation between the hierarchical clustering theory (and 

the closely related Press-Schechter formalism) and continuous 
pancaking can be seen in terms of the distribution of eigen- 
values of the deformation tensor of the smoothed field. Accord- 
ing to the pancake model, the superpancakes will form 
approximately in the Lagrangian regions where the largest of 
the eigenvalues of the smoothed field has a maximum 
(ZeFdovich 1970). On the other hand, the hierarchical clus- 
tering theory predicts the formation of mass concentrations in 
regions where dp/p is proportional to (^ + 22 + 

80 both 
predictions should correlate to some extent. According to 
Shandarin & Klypin (1984), a somewhat more accurate predic- 
tion of the positions of the clumps can be made by relating 
them to the positions of maxima of the third eigenvalue 23 (the 
second in 2D). 
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4. statistical properties OF structure from V-body simulation. We picked the three most massive 

The skeleton of the matter distribution found in the adhe- 
sion model corresponds reasonably well to the structure from 
N-body simulations until the epoch when » R^. Let us 
recall that in two dimensions a filament in the Eulerian space is 
a set of the projections of the apices of paraboloids, each of 
which has two points of contact with the <p0-surface in 
Lagrangian space. A knot in the projection of a paraboloid 
which has three points of contact. At quite late times, a 
Lagrangian region which has been included in a knot evolves 
to a triangle (asymptotic shape), whose vertices are these three 
points of contact. Then the whole Lagrangian space is divided 
into triangles, corresponding to knots of the cellular structure. 
The remaining gaps between triangles in Lagrangian space 
correspond to the Lagrangian images of filaments which 
connect knots. At late times there is a very small fraction of free 
particles (not stuck into structure). 

Thus one can operate with well-defined values : the area S of 
triangles, corresponding to knots of the mass, is m = pS; the 
area of cells is A ; and the comoving velocity of knots is U. The 
velocity of a knot is determined by a geometrical condition 
(Gurbatov et al. 1989; Kofman et al. 1990) and can be found by 
solving the following system of algebraic equations : 

h) = ®o(i2) - ®o(?i), 

U-(q1-q3) = <S>o(93)-<S>o(9i), 

where 42 > 43 are the three points of contact. It is easy to see 
that from the geometrical point of view the velocity of knot is a 
vector in a three-dimensional space (d>0, q), with direction 
normal to the triangle constructed on the points of contact 
with the O0-surface in this space and magnitude proportional 
to its area. 

Let us illustrate how triangulation of the Lagrangian space 
corresponds to the Lagrangian regions of clusters obtained 

clusters from the n = 0, kc = 32 simulation at the late moment 
kNL = 2 or <7p = 16 (see Fig. 6). The corresponding Lagrangian 
regions are shown in Figure 7. In Figure la we also plot the 
triangles of knots from the adhesion model corresponding to 
these clusters. In Figure lb we show for comparison the same 
Lagrangian regions of the largest clumps together with initial 
density contours after filtering on the scale corresponding to 
the mass of the selected clumps. It turns out that clusters from 
iV-body simulations correspond not to one knot but rather to 
several knots of an auxiliary skeleton structure, contrary to the 
simple assumption of previous papers on the adhesion model.2 

Physically this is connected with the fact that the adhesion 
model is based on the Zel’dovich approximation, which does 
not take into account purely local gravitational forces and 
which therefore does not describe the merging of clusters accu- 
rately enough. Also, pointlike knots merge later than the 
clumps of finite size. One can get a rough idea about the 
advantages and disadvantages of both approximations by 
comparing Figures la and lb. 

We therefore must develop some technique to model the 
clustering of knots. One way is to do the triangulation of the 
Lagrangian space using a smoothed potential field. In this pro- 
cedure a large triangle of the smoothed field plays only a role 
of indicator for combining original triangles constructed in the 
unsmoothed field into a clump. We leave this question for 
another paper, but for now we note that there is a way to 
cluster knots to get a mass multiplicity function which is in 
good agreement with that from iV-body simulations. 

In early papers on the statistics of the solution of the one- 

2 Scherrer & Melott (1987) encountered the same problem when they found 
that there was not a one-to-one correspondence between cosmic string loops 
and collapsed objects, so that cluster-cluster correlations in the cosmic string 
model did not obey the expectations of earlier, simple, analytic calculations. 

Fig. la Fig. lb 
Fig. 7.—(a) Bold lines show the borders of the Lagrangian regions of the three most massive clusters from the N-body simulation in Fig. 6 for n = 0, kc = 32, 

a « 16. Solid-line triangles correspond to the Lagrangian regions of knots of the skeleton in Fig. 6a, which are adjusted to these clusters, (b) Bold lines as in (a). Solid 
lines show the contours of the initial density field of the N-body simulation of the n = 0, /cc = 32 series in Fig. 6, filtered up to the four lowest harmonics. This filtering 
scale approximately corresponds to the masses of clusters of (a). 
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dimensional Burgers equation (outside the cosmological 
context; Kida 1979; Gurbatov & Saichev 1981) and on the 
adhesion model in cosmology (Gurbatov, Saichev & Shan- 
darin 1989; Doroshkevich & Kotok 1990), analytical calcu- 
lations have been made under the following assumptions: (1) a 
single knot is associated with a single matter clump and (2) at 
the latest times only high peaks of the initial potential are 
important, and they are assumed to be uncorrelated. 

The main result of these calculations is the self-similarity of 
the velocity and mass distribution functions of knots. The dis- 
tribution function of sizes of cells was found only in the one- 
dimensional case under these conditions (Kida 1979). 

As we have seen, the first assumption is not very good for 
two-dimensional systems, except probably for knots of very 
small mass. We believe that this is also true in three dimen- 
sions, and we will test it soon. 

The second assumption corresponds to the stages of evolu- 
tion (kÑi! > R<p) when we expect that neither the two- nor the 
three-dimensional adhesion models predicts the skeleton of the 
matter distribution very accurately (see, e.g., Figs. 3a and 3b). 
Here we consider the distribution functions of velocities and 
masses of knots and areas of cells from our two-dimensional 
numerical calculations of the skeleton of structure in the adhe- 
sion model. We focus on checking the scaling properties of the 
structure, as a test for the adhesion model. 

For statistical study we use the series n = 0 and n = 2 (both 
with kc = 256) at early times because the larger numbers of 
cells provide better statistics. In Figures 8a and 8h we plot the 
mass multiplicity function for bare knots of the skeleton 
obtained in the adhesion model, for both series and for differ- 
ent moments of time corresponding to /cNL = 32, 16, and 18. 
We can see the self-similar evolution of this function, using 
mass scaling in units of the characteristic mass M*, as is 
usually done for the multiplicity function (see, for example, 
Efstathiou et al. 1988). We find M* oc a2 for the n = 0 series 
and M* oc a for the n = 2 series, in agreement with the scaling 
laws derived from the simple linear theory. 

In Figure 9 we present the distribution F(\U\) of the veloc- 
ities of knots U. The time evolution of the velocity distribution 
function of knots is remarkably self-similar. The characteristic 
velocity scales are ~ (lnkNL)1/2 for the n = 0 series (/cNL ~ 
a-1), and U* ~ kNL for the n = 2 series (/cNL ~ a-1/2), which 
are also consistent with the linear theory. In addition, the dis- 
tribution function of the velocity components is fitted well by 
the Gaussian law. The Gaussian character of the knots’ veloc- 
ity distribution function was found analytically by Gurbatov et 
al. (1989), but under the assumption of uncorrelated peaks at 
late times. The present result was obtained without that 
assumption and suggests that it can be more general. 

In Figure 10 we show the distribution function of areas of 
cells A (the two dimensional analog of volumes of voids). We 
find the self-similarity of the distribution function with respect 
to A/A*, where A* is a characteristic area. We find A* oc aa, 
where a ^ 1 for the n = 2 series and a « 1.6 for the n = 0 
series. The former is in agreement with the assumption that 
M* ocA*, but the latter is not. Taking into account that the 
scaling was checked only for three values of /cNL, one can easily 
interpret that as an indication of change in slope from A* oc a2 

related to the finite size of the box. This departure from the 
slope expected in the linear theory has been studied more thor- 
oughly by Kauffmann & Melott (1992). Both results are in 
qualitative agreement despite the different definitions of voids. 
The tail of the distribution at large A is fitted well by an expo- 
nential law 

N(A) oc exp ( — A/A*) . (17) 

A similar asymptote in the one-dimensional case was found 
by Kida, but again under the assumption of uncorrelated 
peaks. The fact that a matter clump corresponds to a few knots 
of cellular structure leads to the conclusion that some cells of 
small areas are artificial and are not associated with voids in 
the matter distribution. However, we expect a good correspon- 
dence between large cells in the adhesion model and voids in 

Fig. 8.—(a) Mass-of-knots multiplicity function F(M) in the adhesion model in the Q256 (n = 2, kc = 256) series for moments kNL = 32, a & 64 (circles), 16, 256 
(triangles) and 8,1024 (squares). Mass is given in units of characteristic mass M+. The dashed line corresponds to the Press-Schechter formula, (b) Same as (a), but for 
the J256 (n = 0,kc = 256) series for moments /cNL = 32, <7 « 8 (circles), 16,16 (triangles) and 8,32 (squares). 
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Fig. 9.—(a) Velocity-of-knots U distribution function F(\U\) in the adhesion model for n = 2, kc — 256; same moments of time. Velocity is given in units of the 
characteristic scale U*. (b) Same as (a) but for the series n = 0,kc = 256. 

V-body simulations, including the cases following the law in 
equation (17). Kauffmann & Melott (1992) show the self- 
similarity of cell areas A in iV-body simulations and discuss 
under what conditions this may break down because of the 
finite size of the simulations. They find that iV-body methods 
work best in models like n = 2, where adhesion fails earlier. 
Thus, the two approaches are complementary. Adhesion works 
best in those cases where iV-body methods have the greatest 
difficulty, and it offers a tool for analytical estimation. In the 
next natural step, we will compare statistics of voids in both 
methods, in two and three dimensions. 

5. DISCUSSION 
We tested the adhesion model against two-dimensionsal 

iV-body simulations of power-law models P(k) oc kn, (n = +2, 
0, —2) with three different cutoffs, kc = 256kf (Nyquist 
frequency), 32kf, and 4kf, with kf corresponding to the funda- 
mental mode. Our results confirm previous tests of the adhe- 
sion model (Kofman et al. 1990; Weinberg & Gunn 1989,1990; 
Nusser & Dekel 1990) and demonstrate good agreement 
between the matter distribution in iV-body simulations and the 
skeleton from the adhesion model for a wide range of initial 
conditions. The new results are as follows. 

Fig. 10.—(a) Area-of-cells distribution function N(A) in the adhesion model for the Q256 series for the same moments. The area is given in the units of 
characteristic area A* (b) Same as («), but for the J256 series at the same moments. 
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The restrictions on the model can be formulated in terms of 
the characteristic scale of the initial gravitational potential, 
corresponding to the length of substantial positive correlation. 
The adhesion model demonstrates good agreement with 
iV-body simulations until the scale of nonlinearity reaches 
(see Figs. 1, 2, 4, and 6, and see Fig. 5 [open symbols]). At later 
stages it loses good one-to-one correspondence (see Figs. 3a 
and 3b and Fig. 5 [filled symbols^ though it may be correct in 
a statistical sense, similar to the Press-Schecter model 
(Williams et al. 1991; Bond et al. 1990). We can suggest the 
following explanation for this limitation. Nonlinear gravita- 
tional instability can be described as the motion of clumps and 
their merging into larger clumps. The motion can be roughly 
divided into two components, one corresponding to the initial 
velocity perturbation and the other generated locally by 
nearby nonlinear clumps. The adhesion model describes the 
motion due to initial velocity perturbations very well, but the 
local part is described much more poorly. The immediate 
result of this is that the process of merging may be incorrect in 
the adhesion model. While the scale of nonlinearity is small 
compared to R^, the initial component of the velocities of the 
clumps is large enough and the adhesion model works well. At 
later stages, a substantial part of clump velocities is determined 
by local gravity, which is poorly represented in the adhesion 
model, explaining the disagreement. 

The component of motion of clumps related to the initial 
velocity field causes the pancaking of clumps on scales smaller 
than Ry (for illustration see the accompanying videotape, 
Segment 1). This interpretation is actually similar to the idea of 
applying an ensemble of filtered linear density fields to the 
hierarchical clustering model, except that we suggest taking the 
ensemble of the filtered linear potential fields and applying the 
Zel’dovich approximation to describe the evolution of the fil- 
tered field. As a result, the coherent motion of the clumps 
produces structures similar to pancakes or filaments. However, 
they are not as sharp as the caustics corresponding to the 
first-generation pancakes. Instead, they are clumpy, and 
because of that we call them superpancakes or superfilaments. 
Their typical scale increases with time until it reaches the 
biggest superpancake scale, which is about R^. Smoothed with 
the appropriate scale, one can see non-Gaussian distribution 
of density contours, though the amplitude dp/p is less than 
unity. Applying these results to cosmology, we get in the stan- 

dard CDM model ä 50 /i-1 Mpc, where 
h = H/100 km s-1 Mpc-1 as usual, and a long-wave cutoff at 
the horizon scale was applied. According to our criterion 
Rv > kñ¿ ^ 5 h~1 Mpc, the adhesion model could be applied 
to the CDM cosmological model until the present epoch, 
which is in good agreement with the results of Weinberg & 
Gunn (1989,1990). 

We have compared the Lagrangian regions of clusters in 
iV-body simulations with those in the adhesion model. It turns 
out that the largest clumps of matter generally are associated 
with several knots of cellular structure. One has to use an 
additional procedure of clustering of knots in the adhesion 
model. 

In the previous papers on the adhesion model, analytical 
calculations were done based on oversimplified assumptions of 
uncorrelated high peaks of gravitational potential at late times, 
and one-to-one correspondence between clumps and knots of 
skeleton. The result of those calculations was a self-similarity 
of evolution of structure. In this paper we found that both 
assumptions are inapplicable to gravitational systems. The 
adhesion model also works in the opposite case of correlated 
peaks of gravitational potential sitting on the same slope of the 
initial potential hypersurface. In numerical simulations of the 
adhesion model, we studied the scaling properties of the evolu- 
tion of the distribution function for the masses of knots, and we 
found the mass function F(M), the distribution function of 
velocities of knots F(\U\), and the distribution function of 
areas of cells N(A) for the n = 2 spectrum. A challenge is to 
calculate these functions analytically in the adhesion model. In 
addition, we found that the velocity distribution function 
closely fits a Gaussian law. The tail of the distribution function 
of the areas of cells (voids) is exponential. 
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