
19
92

A
pJ

. 
. .

38
8.

 .
51

3C
 

The Astrophysical Journal, 388:513-520,1992 April 1 
© 1992. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

ROTATIONAL PROPERTIES OF STRANGE STARS 

M. Colpi1,3 and J. C. Miller2'3,4 

Received 1991 August 7; accepted 1991 September 20 

ABSTRACT 
In this paper, we present results from an investigation of the rotational properties of strange stars, using 

models with a canonical value of the bag constant. The changes in structure resulting from uniform rotation 
have been calculated within the slow rotation regime and the minimum rotation periods consistent with sta- 
bility to nonaxisymmetric perturbations have also been calculated. The minimum period is found to be set by 
the onset of instability in either the m = 2 or m = 3 mode. The first of these modes, which is probably inacces- 
sible to standard neutron stars, may be the critical one for old strange stars spun up by accretion and this 
could be of importance in giving an observational test for distinguishing between strange stars and standard 
neutron stars. 
Subject headings: dense matter — relativity — stars: rotation 

1. INTRODUCTION 

Following the suggestion by Witten (1984) that macroscopic 
strange quark matter might be absolutely stable and that 
neutron stars might rapidly convert into “ strange stars ” after 
formation, a number of authors have carried out investigations 
of the properties which these strange stars would have. (The 
term “strange quark matter” signifies a mixture of roughly 
equal numbers of up, down, and strange quarks together with a 
sufficient number of electrons to give electrical neutrality, and 
Witten conjectured that this might have lower energy per 
baryon than matter composed of ordinary nuclei even under 
conditions of low temperature and pressure.) From the studies 
by Witten (1984), Baym et al. (1985), Haensel, Zdunik, & 
Schaeffer (1986), and Alcock, Farhi, & Olinto (1986) a detailed 
picture has emerged of the structure and properties of non- 
rotating strange star models. The low-mass ones are essentially 
Newtonian objects with almost constant density and are held 
together mainly by the strong force rather than by gravity. 
(For these, the mass is roughly proportional to the cube of the 
radius, in sharp contrast with the situation for ordinary 
neutron stars where the mass is a decreasing function of 
radius.) However, for masses near to 1.4 M0 (which seems to 
be “ canonical ” for those pulsars whose mass has been directly 
determined) the radii of the strange star models are compara- 
ble with those for conventional neutron stars and it is neces- 
sary to use the general relativistic equations for calculating 
their structure. The mechanisms by which neutron stars could 
convert into strange stars have been discussed by Alcock, 
Farhi, & Olinto (1986) and Olinto (1987). 

Stimulated by the reported observation of a half-millisecond 
pulsar within the remnant of supernova SN 1987A (Kristian et 
al. 1989), interest later focused on the degree of rapid rotation 
which a strange star could support (Haensel & Zdunik 1989; 
Frieman & Olinto 1989; Glendenning 1989a, b; Lattimer et al. 
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1990). The subsequent withdrawal of the observational claim 
for the existence of this fast pulsar has now removed some of 
the urgent motivation for these studies but, nevertheless, the 
rotational properties of strange stars remain of interest if they 
are to be considered as serious models for pulsars. A persistent 
problem for the strange star picture (Alpar 1987; Caldwell & 
Friedman 1991) concerns the present lack of any model for 
explaining how strange stars could account for observed pulsar 
glitches. However, it is not clear how serious a difficulty this is 
(Alcock & Olinto 1988) and we take the view that strange star 
models are certainly worth further investigation. 

In the present paper we concentrate on two questions: (1) 
what are the overall rotational properties of strange star 
models and to what extent do they differ from those of ordi- 
nary neutron stars? (2) If a strange star were to rotate fast 
enough for nonaxisymmetric instability modes to become 
excited, does the onset of these differ from the situation for 
neutron stars? In considering the first of these questions, we 
note that for all pulsars so far observed, the rotation may be 
considered as slow in the sense that rotational perturbations 
away from the structure of a nonrotating comparison model 
are always quite small. This allows rotational properties to be 
calculated by means of a perturbation method (Hartle 1967) 
which is much easier than solving the full equations (Friedman, 
Ipser, & Parker 1986) and gives results which can be conve- 
niently scaled for different values of the rotational velocity. A 
sufficient requirement in order for the slow rotation approx- 
imation to be valid is that the ratio of centrifugal force to 
gravitational force should be small for all elements of the 
model. For a particle of unit mass moving with angular veloc- 
ity Q around a spherically symmetric nonrotating object of 
mass M0 and at distance r from its center, a general relativistic 
expression for the centrifugal force acting is given by 

Fc = m2 (1 - 3MJr) 
(1 - 2MJr - r2Q2) ’ (1) 

(Abramowicz & Prasanna 1990, Abramowicz & Miller 1990; 
throughout this paper, we use units for which c = G = 1 except 
where otherwise stated.) For our slow rotation condition, we 
will require that the value given by equation (1) for an equato- 
rial element of material (with r set equal to the radius of the 
model star R0) should be small compared with the correspond- 
ing gravitational force (as given by FG = MJR2 both in New- 
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tonian theory and in general relativity). Taking M0 = 1.4 M0 

and R0 = 11 km (appropriate for strange matter with bag con- 
stant B = (145 MeV)4 and vanishing mass for the strange 
quark—here the units used are ones for which c = h = 1) then 
gives FJFq — 0.08 for the fastest observed pulsars (with period 
P = 1.6 ms) indicating that a slow rotation approximation 
should give quite accurate results. (Note that for P = 0.5 ms, 
the ratio FC/FG obtained as above is 1.19, indicating that the 
slow rotation condition would be violated in that case as is 
already well known.) In a recent paper (Weber, Glendenning, 
& Weigel 1991), it has been shown that the slow rotation tech- 
nique can also be used to obtain quite accurate results for some 
quantities even outside its strict range of validity. We note this 
point but will not pursue it here. 

In discussing the second question, the instability modes 
which we will be concerned with are the Dedekind modes 
driven by gravitational radiation reaction and moderated by 
viscosity. The coefficient of bulk viscosity in strange matter is 
very large, and it has been suggested that this would lead to 
complete suppression of these instabilities for strange stars at 
all temperatures above 108 K (Sawyer 1989). We have now 
made detailed calculations (using a computer code constructed 
following the strategy of Lindblom and coworkers : Lindblom 
1986; Cutler & Lindblom 1987; Ipser & Lindblom 1991) and 
find that the effect of bulk viscosity does not turn out to be 
sufficiently large to give the suppression predicted. 

In this work, we consider models consisting only of strange 
matter and do not consider properties of a possible thin crust 
of ordinary material (for a discussion of this, see Alcock et al. 
1985). We note here only that such a crust would be very thin 
and that, while it would greatly affect the surface properties 
and thermal behavior of the strange star, it would not greatly 
affect the properties which we are concerned with here. The 
plan of the paper is as follows. In § 2 we briefly review the 
properties of strange quark matter which are relevant for the 
present calculations; § 3 reviews Hartle’s slow rotation tech- 
nique (Hartle 1967) for calculating equilibrium models; § 4 
describes the equilibrium properties of strange star models 
constructed in this way; §§ 5 and 6 are concerned with the 
onset of nonaxisymmetric instabilities, and § 7 contains dis- 
cussion and conclusions. 

2. EQUATION OF STATE OF STRANGE QUARK MATTER 

Strange quark matter would consist of nearly equal numbers 
of up (w), down (d), and strange (s) quarks together with elec- 
trons (e) which give overall charge neutrality. For the condi- 
tions of interest here, the matter can be treated as cold since the 
temperature is always much smaller than the chemical poten- 
tials of the particles present. The three flavors of quarks and 
the electrons maintain chemical equilibrium via the weak inter- 
action processes 

d-+u + e + ve , u + e -+ d + ve, s + e + ve, 

u + e s + ve , s + u<r+d + u , (2) 

and the equilibrium composition is determined by the condi- 
tions of chemical equilibrium and charge neutrality. In the 
MIT bag model for confinement (Chodos et al. 1974) which we 
will use here, confinement is represented by having a false 
vacuum within the quark region which contributes a constant 
negative pressure —B, reducing the total pressure p of the 
medium below that associated with the individual quarks and 
electrons. The quantity B (the “ bag constant ”) also appears as 

a positive contribution to the energy density p. There is a 
minimum value for the density of quark matter at which the 
pressure goes to zero. At densities very much greater than this, 
the quarks behave as free ultrarelativistic particles and the 
equation of state is soft (p -+ p/3) but as p tends towards its 
minimum value, the effect of confinement forces becomes sig- 
nificant and the equation of state becomes much stiffer. We 
here include perturbative corrections to first order in the 
strong interaction coupling constant ac and for the purposes of 
the equation of state we take zero mass of the strange quark 
(ms = 0; in which case there are equal numbers of up, down, 
and strange quarks and no electrons). This gives 

P = j(p- 4ß) for p>4B . (3) 
A more extensive description of quark matter can be found in 
the articles by Farhi & Jaffe (1984), Haensel et al. (1986), and 
Alcock et al. (1986). Some previous authors (e.g., Frieman & 
Olinto 1989; Haensel et al. 1986) have used equations of state 
including finite masses for the strange quark. We here 
restricted attention to the case ms -► 0 as far as the equation of 
state (eq. [3]) is concerned in order to simplify the presentation 
but take ms= 100 MeV when calculating the bulk viscosity 
(see below). 

In the following sections, we will use equation (3) as our 
microphysical model for the interior of strange stars, taking 
B = 1014 gem-3 [which is closely equivalent to (145 MeV)4 or 
56 MeV fm-3]. The baryon number density nB and the rela- 
tivistic adiabatic index F are given by 

r 
nB = \ 

4(1 - 2occ/n)1/3 

9n2l3h 

13/4 
(4) 

nB dp ^4 (p - B) 
p dnB 3 (p — 4B) ‘ 

At very high densities, F approaches the critical value 4/3 
but it increases dramatically at lower densities, due to confine- 
ment forces, and tends to infinity as p -+ 4B. In § 4 below, we 
give values of the pressure averaged adiabatic index F for the 
strange star models described, in order to indicate the effective 
stiffness of the material. 

For the studies of the onset of nonaxisymmetric instabilities 
which we will be discussing in § 6, it is necessary to consider the 
ways in which oscillations can be damped. Two of the relevant 
mechanisms are shear and bulk viscosity. An approximate 
expression for the shear viscosity of strange matter (to lowest 
order in ac) is given by (Haensel & Jerzak 1989) 

rj = 7.0 x 1015 
5/3 

g cm 

(6) 

where nB0 is the nuclear matter density (nB0 = 1.7 x 1038 

cm-3). By comparison with numerical computations of the full 
expression for rj presented by the same authors, it is found that 
expression (6) consistently underestimates rj by a. factor of 
about 2.5. In our calculations we have used expression (6) 
multiplied by this factor and have taken ac = 0.15. For strange 
matter rj has the same temperature dependence as for ordinary 
neutron star matter (ocT-2) but is typically larger for equiva- 
lent density and temperature. 

Bulk viscosity in strange matter arises as a consequence of 
the slowness of weak interactions in changing the concentra- 
tions of the w, d, and s quarks as matter is successively com- 
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pressed and rarefied. Calculations of bulk viscosity have been 
carried out by Sawyer (1989) and a convenient analytic fit to 
his numerical results is given by 

Ç = 1.20 X 1027( — - 0.18 
V ft BO 

+ 4.9| — 
ho 

IO10 K 

T 
IO10 K 

104 rad s 1 

-i 
g cm" , (7) 

where <j0 is the oscillation frequency as measured in the local 
mean rest frame of an element of stellar fluid. This expression 
(which is appropriate for ms = 100 MeV) follows the one given 
by Cutler, Lindblom, & Splinter (1990), The temperature 
dependence of ( is quite different from that for neutron star 
matter (for which Ç oc T6), and the values of ( are very much 
larger in the case of strange matter. It does not necessarily 
follow, however, that the effects of bulk viscosity in strange 
matter will be overwhelming. These effects depend both on the 
value of Ç and on the degree of compressibility of the material 
and strange matter can be extremely stiff at the densities of 
interest particularly when p is near to the minimum value (4B). 

3. EQUATIONS OF STRUCTURE 

In this section, we give a brief introduction to Hartle’s tech- 
nique for constructing general relativistic models of stars in 
slow uniform rotation, which we will then use in § 4 to calcu- 
late the structure of slowly rotating strange stars. More details 
of the method can be found in the papers by Hartle (1967), 
Hartle & Thorne (1968), Chandrasekhar & Miller (1974), and 
Miller (1977). 

For nonrotating spherical stars, the relativistic structure 
equations are the Tolman-Oppenheimer-Volkoff (TOY) equa- 
tions which, for any given value of the central density pc, can 
be solved to give the total radius, R0, and gravitational mass, 
M0, of the configuration. The structure equations for a slowly 
rotating relativistic star are derived by expanding the fluid and 
field equations about the nonrotating solutions, in powers of 
the angular velocity Q, retaining only first and second-order 
terms. At first order in Q, the only change from the nonrotating 
solution is the appearance of a term co which represents drag- 
ging of the inertial frames. The centrifugal deformations enter 
at second order in Q. 

For slow rotation, the stationary axisymmetric line element 

ds2 = — e2vdt2 + e^idij) — co dt)2 + ¿2m2 dr2 4- e2**3 dQ2 , (8) 

can be written (correct to order Q2) as 

ds2 = — e2v°[l + 2h0(r) + 2h2(r)P2(cos 6)]dt2 

Í ^2Ao 1 _l_ e2x0) i _|_ __ [2m0(r) + 2m2(r)P2(cos 0)] Mr2 

+ r2[l + 2/c2(r)P2(cos 0)]{d02 + sin2 0[# - co(r)df]2} , (9) 

where P2(cos 0) is the second order Legendre polynomial, v0 

and À0 are metric functions for a nonrotating, spherical con- 
figuration having the same central density as the rotating one 
and the functions h0, m0, h2, m2, and k2 are all of order Q2. 
Only spherical and quadrupole deformations are generated at 
this order. 

For calulating hQ, m0, h2,m2, and k2, the field equations are 
solved together with the equation of hydrodynamic equi- 
librium. For a perfect fluid (which we assume in this section) 
the hydrodynamic equilibrium equation can be written in the 

form 

v + ! log (1 — t?2) + ^ = constant, (10) 

where v = e^-v(Q — co) is the fluid velocity as measured by 
a local zero-angular-momentum observer and the function 
^(r, 0) is defined by the relation (p + p)d^ = dp. We write 
^(r, 0) to second-order in Q as ^(r, 0) = ^0(r) + ô^0(r) + 
^2(r)P2(cos 0). 

The quantities describing the rotational perturbations are all 
proportional to either Q or Q2 and, for any fixed value of pc, 
equilibrium configurations for different values of Q can be 
obtained by scaling the results from a single calculation. The 
field equations together with the hydrodynamic equilibrium 
condition give rise to a set of ordinary differential equations 
which are integrated out from r = 0 to the stellar surface 
(where p = 0). The requirement that the metric functions 
should join continuously to the known analytic exterior solu- 
tions then enables one to calculate globally defined quantities 
(the perturbed mass M, the total angular momentum J, and the 
quadrupole moment Q) as well as completing the calculation 
for the frame dragging and for the shapes and mean radii of the 
isobaric surfaces. 

Another quantity of interest for our discussion is the 
Keplerian angular velocity of a free test particle moving on a 
circular geodesic orbit in the equatorial plane just outside the 
surface of the star : 

Qk = co -j- i?, h: e<2v-2*) 
2\I/'J _ 

1/2 
(H) 

where the prime indicates a derivative with respect to r. For a 
slowly rotating star 

fiK _ , (12) 

where = (M0/.R2)1/2 is the Keplerian angular velocity for 
the corresponding nonrotating spherical configuration. (Note 
that the second term on the right-hand side of eq. [12] acts so 
as to reduce QK below Q^}.) In the next section will be used 
as a scale for Q. 

4. PROPERTIES OF SLOWLY ROTATING STRANGE STARS 

Following closely the procedure described in the papers 
cited at the beginning of the previous section, we have numeri- 
cally integrated the set of slow-rotation structure equations 
using the pressure/density relation given by equation (3) with 
B = 1014 g cm-3. A standard fourth-order Runge-Kutta 
scheme with adjustable step size was used for the integration. A 
sequence of slowly rotating configurations was generated from 
the sequence of nonrotating models with central densities pc 
ranging from AB (for which M0 = 0) up to /?™ax = 1.92 x 1015 g 
cm-3 (for which M0 = = 2.03 M©). Nonrotating models 
with pc > /?™ax would be unstable to radial perturbations. 

Figures 1 and 2 show the M against pc and M against R 
relations obtained in this way both for zero rotation and also 
for Q set equal to Q^. The latter is an approximation to the 
condition for material to be shed at the equator and the slow- 
rotation approximation is not formally valid under these cir- 
cumstances (see, however, Weber et al. 1991). We here use this 
value of Q simply as a scale and to give an indication of the size 
of changes which could be produced by rotation (following 
Hartle & Thorne 1968). For smaller Q, the deformation of the 
curves is smaller by a factor (Q/Q^)2. In Figure 2, the solid 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



516 COLPI & MILLER Vol. 388 

Fig. 1.—Gravitational mass M vs. central density pc (in units of gem-3) for 
strange stars. The solid line shows the M0 vs pc relation for nonrotating spher- 
ical configurations; the dashed line shows the M vs. pc relation obtained using 
the slow rotation method, with Q set equal to 

log Pc 
Fig. 3.—Fractional increase of mass (fM) and of radius (/Ä) for strange 

stars, obtained using the slow rotation method with Í! set equal to The 
quantities are plotted as functions of central density pc (measured in units of g 
cm-3). 

curve represents the mass versus radius relation for non- 
rotating models and the dashed curve shows the corresponding 
relation for Q set equal to (in this case R refers to the mean 
radius). The straight lines between the two curves connect 
models having equal central density. It is of interest to 
compare these results with those for neutron star models 
shown in Figure 1 of the paper by Hartle & Thorne (1968). 
Despite the difference in shape of the curves, in both cases the 
orientation of the linking straight lines changes smoothly from 
being horizontal to nearly vertical as one moves upwards in 
mass through the range of stable models. 

Figure 3 shows the fractional change of mean radius R 
lfR = (R- R0)/Ro] and of mass M [/M = (M - M0)/MJ 

log R 

Fig. 2.—Gravitational mass M vs. radius R (in units of cm) for strange 
stars. The solid line denotes the M0 vs. R0 relation for nonrotating spherical 
configurations. The dashed line denotes the M vs. R relation obtained using the 
slow rotation method, with Q set equal to Qj^. 

when Q is raised from zero, while keeping the central density 
constant; the values of M correspond to Q = Q^. For very 
low-mass strange star models (M M0), rotation produces 
only small increases in the equilibrium mass (/M~2 x 10“2) 
but there are larger changes in radius (fR ~ 0.3). Along the 
sequence fR is a monotonically decreasing function of M0, 
reaching its lowest value (0.07) at M™ax while fM initially 
increases but then becomes almost constant (~0.2) beyond 
M0 ~ 1.4 M0. In general,/M turns out to be smaller for our 
strange star models than for the standard neutron star models 
constructed by Ray & Datta (1984) and Datta (1988), also 
using Hartle’s formalism and the curve of /M against M is 
significantly different. Lattimer et al. (1990) have reported 
results for a consistent general relativistic model of a rapidly 
rotating strange star having maximum mass and rotation 
speed, for which they found that the mass is 30% greater than 
the maximum for zero rotation (but note that the models being 
compared do not have the same central density). 

The values of various key quantities, for a selection of slowly 
rotating models, are presented in Table 1. 

5. THE T/\W\ RATIO 

The ratio t = T/\W\ [where T is the rotational kinetic 
energy ( = QJ/2) and W is the gravitational potential energy] is 
a quantity which measures “strength of rotation” and is 
important for considerations of stability. For uniformly rotat- 
ing, centrally condensed objects, the range of allowed values 
for t is severely limited by the condition of no equatorial mass 
shedding (Q < QK). Uniformly rotating Newtonian polytropes 
with F = 4/3, for example, have i(QK) = 0.0074 which is much 
smaller than the value for constant density objects, t(QK) = 0.5 
(see Shapiro & Teukolsky 1983). The uniformly rotating 
neutron star models with standard equations of state studied 
by Friedman et al. (1986) all have í(üK) < 0.14, the value near 
which the m = 2 bar mode is expected to go unstable in the 
absence of viscosity. (These calculations were general rela- 
tivistic and allowed consistently for rapid rotation.) For 
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TABLE 1 
Key Quantities for a Selection of Strange Star Models 

pc fi(o) 

(1014gcm-3) MJMq RJR* r /m fR €b I/MqR2
0
c œ(R0)/Q

d (rads'1) 

4.10  3.8 x 10~2 31.6 102.2 1.57 x HT2 0.317 0.118 0.404 0.99 10626. 
5.66   1.0 3.42 8.17 0.134 0.187 0.701 0.442 0.87 11321. 
6.84   1.4 2.68 5.68 0.163 0.149 0.757 0.466 0.83 11727. 
19.18   2.03 1.85 2.63 0.194 0.068 0.727 0.480 0.74 14073. 

a Rs EE IGMJc2. 
b Ellipticity in units of [cJ/(GM2)]2. 
c Moment of inertia in units of M0 Rj. 
d cb(R0) = Q — cu(K0) in units of Q. 

models with M ~ 1.4 M0, their values of t(QK) all cluster 
around 0.1 with the maximum being 0.120. 

Strange stars with masses of ~ 1.4 M0 would have radii very 
similar to those of ordinary neutron stars of the same mass but 
there is a striking difference between the density profiles. The 
quantity F can be much larger for strange star models ( = 5.68 
for 1.4 M0 in our calculations) than for the standard neutron 
star models (~2-3) and their density profiles are rather flat 
right out to the surface at which there is then a discontinuity. 
In view of this, we expect that í(Qk) for uniformly rotating 
strange stars with M ~ 1.4 M0 would be intermediate between 
the values for standard neutron stars and those for constant 
density configurations, possibly being closer to the latter. Note, 
however, that relativistic corrections considerably reduce the 
maximum values for constant density objects below the New- 
tonian limit of 0.5 (Butterworth & Ipser 1976; for R æ 2RS, 
they found 0.31.) The calculations by Lattimer et al. (1990) for a 
strange star model having maximum mass and rotation speed, 
give 0.18; for a 1.4 M0 model the value would be higher than 
this. The occurrence of such high values of t for uniformly 
rotating strange stars opens the possibility for operation of the 
m = 2 bar mode instability. 

6. INSTABILITIES OF STRANGE STARS 

and of the order of the mode for which Qm is a minimum. At 
some temperatures, viscosity can be sufficiently large that none 
of the modes become unstable for rotation speeds below the 
Keplerian limit. 

We have calculated the critical values of Q at the points of 
onset of secular instability for models of strange stars, using the 
same equation of state as in the previous sections and follow- 
ing the approach described by Lindblom (1986) with modifi- 
cations contained in the papers by Cutler & Lindblom (1987) 
and Ipser & Lindblom (1991). 

For any m, the value of Q at the instability point can be 
determined by a linear perturbation calculation, starting from 
an analysis of the normal modes el{(0mt+nup). The eigen- 
frequency œm can be written as rnm = (rm + i/Tm where am and 
Tm are the oscillation frequency and characteristic damping 
time, respectively, of the mth mode. Instability corresponds to 
Tm being negative and sets in when 1/tto = 0. This condition 
gives rise to an expression for the critical values of Q : 

a, = ^ iajfij + ym(ßm)\ 
m 

Mf)r 

Jl/(2m+l) 

1 
- (QJîÎk)4] 

l/(2m+ 1) 
(13) 

In this section we examine the stability of rotating strange 
stars and calculate the minimum rotation periods consistent 
with stability to nonaxisymmetric perturbations with azi- 
muthal dependence eim<t>. 

6.1. Secular Instabilities to Nonaxisymmetric Modes 
Both gravitational radiation reaction (GRR) and viscosity 

can cause initially axisymmetric stars to become secularly 
unstable to nonaxisymmetric perturbations (Chandrasekhar 
1970; Friedman & Schutz 1978; Comins 1979) and this is 
important in setting upper limits on the angular velocity. 
Studies by Lindblom & Detweiler (1977), Comins (1979 a, b), 
and Lindblom & Hiscock (1983) have demonstrated that the 
two mechanisms tend to cancel each other out when the dissi- 
pation due to viscosity is comparable with that due to gravita- 
tional radiation and this causes an increase in the values of the 
critical angular velocities Qm above those which would result if 
only one of the sources of dissipation were present. For a given 
model, the size of the increase varies depending on the order of 
the mode. The interplay between GRR and viscosity deter- 
mines the value of m for which Qm is a minimum (corresponding 
to the period P being a maximum) and hence which mode 
would be the first to go unstable with increasing Q. 

The temperature dependence of the viscosity coefficients 
leads also to a temperature dependence of the values of the Qm 

(Ipser & Lindblom 1991) where dJO), t£rr, tJ,, and are the 
frequency and the dissipation time scales (due to GRR, shear 
viscosity and bulk viscosity, respectively) for the mth mode of a 
corresponding nonrotating model and the corrections for rota- 
tion are contained in the functions am(Q), ym(Q), and em(Q). 
Cutler & Lindblom (1987) used for (7m(0), t£rr and values 
obtained from fully general relativistic numerical calculations 
with the appropriate equation of state (see also Lindblom & 
Detweiler 1983; Detweiler & Lindblom 1985), but used Newto- 
nian Maclaurian spheroid expressions for otm and ym which can 
be derived from formulae given by Comins (1979a, b). They did 
not include bulk viscosity. Recently, Ipser & Lindblom (1990, 
1991) have computed am, ym, and em for Newtonian poly tropic 
models and Cutler & Lindblom (1991) have made an investiga- 
tion in the post-Newtonian regime. 

For calculating <7m(0), t^rr, t^, and xQ
m we have constructed a 

general relativistic computer code using broadly the same 
strategy as Detweiler & Lindblom (1985), but with slightly 
different numerical techniques and using the formulae for the 
viscous dissipation times given by Cutler et al. (1990). Our code 
has been tested against previous results for standard neutron 
star equations of state. We here present results for strange star 
models with the canonical mass M0 = 1.4 M0 and the 
maximum mass M^ax = 2.03 M0. In each case we have used 
the Newtonian Maclaurin spheroid expressions for <xm and ym. 
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The 1.4 M0 model has a very flat density profile and so the use 
of these expressions is quite appropriate; the 2.03 M0 model 
has a less flat density profile and so the use of these expressions 
is less good there but nevertheless our method is equivalent to 
that followed previously for the standard neutron star equa- 
tions of state. 

Dissipation due to bulk viscosity vanishes in the limit of 
incompressibility and so there is no Maclaurin spheroid 
expression for em. In view of this, we have used (in tabulated 
form) the values of em given by Ipser & Lindblom (1991) for the 
stiffest equation of state which they considered (F = 7/3), 
taking D/Qk as the independent variable. For consistency with 
the treatment for am and ym, we then set QK equal to the value 
for the comparison Maclaurin sequence in our calculations. 
This procedure will give an upper limit on the effect of bulk 
viscosity in determining the critical angular velocities. 

6.2. Minimum Values of Qm 

In the absence of viscosity and as long as the Keplerian limit 
does not intervene, is a monotonically decreasing function 
of m and so the highest m modes are the first to become 
unstable with increasing Q. However, the growth time is a 
monotonically increasing function of m and the upper limit on 
Í2 is set by comparing the growth time of the mode with the 
lifetime of the star. The presence of viscosity acts to increase Qm 
with the increase factor being largest for large m. Qm is then a 
decreasing function of m for small m but becomes an increasing 
function for higher order modes with the minimum critical 
value coming at some intermediate order. It is this mode which 
sets the limit for the rotation velocity as long as its growth time 
is less than the lifetime of the star. 

Table 2 contains results from our calculations for two repre- 
sentative central temperatures (T = 108 and IO10 K). At the 
lower temperature, the effects of shear viscosity dominate over 
those of bulk viscosity while the reverse is true at the higher 
temperature. The asterisks (*) in Table 2 indicate that the mode 
remains stable up to the angular velocity at which the relevant 
comparison sequence (involved in calculating am, ym, and em) 
terminates due to mass shedding. The quantity of greatest 
physical interest is the minimum value of Qm (corresponding to 
the maximum P). For each of the two masses, when T = 108 K, 

shear viscosity causes the minimum to occur for m = 3 and so 
it is this mode which becomes unstable first with increasing Q. 
The corresponding periods are P = 0.994 and 0.843 ms for 1.4 
and 2.03 M0, respectively. At T = IO10 K, the minimum again 
comes at m = 3 with the corresponding periods being 
P = 0.989 and 0.800 ms. From the results of Lattimer et al. 
(1990) we know that the shedding limit for 2.03 M0 comes at 
Qk = 0.650^ ( = 9217 rad s-1) and so, using this, we see that 
the minimum Qm is equal to 0.81 QK when T = 108 K and 
0.85 Qk when T = 1010 K. Ray & Datta (1984) use as their 
rotation limit an estimate of the Q at which the m = 2 mode 
would become unstable based on the comparison with 
Maclaurin spheroids [Qs = (0.27)1/2Q(k)]. For our models this 
corresponds to Qs = 6094 rad s_ 1 for 1.4 M0 and to Qs = 7313 
rad s_ 1 for 2.03 M0 which can be seen to agree quite well with 
our results for the minimum Qm. 

Figure 4 shows the critical periods P, as a function of tem- 
perature T, for strange star models of 1.4 M0 (upper curves) 
and 2.03 M0 (lower curves). For each mass, any point above 
the corresponding continuous curve lies in the allowed range 
of rotation speeds compatible with stability while the region 
beneath the curve is forbidden. The solid lines represent results 
of the full calculation, while the dashed ones are for 
calculations in the absence of bulk viscosity. At T = 107 K, 
shear viscosity is completely dominant over bulk viscosity and 
the critical periods are those for the m = 2 mode. At slightly 
higher temperatures the critical mode shifts to m = 3 (the dis- 
continuities in the gradients of the curves correspond to 
changes in the order of the critical mode). Between 108 and 109 

K, bulk viscosity first starts to become important and then 
rapidly dominates. This change produces a maximum in the P 
versus T relation which would not appear in the presence only 
of shear viscosity. At very high temperatures, P again becomes 
an increasing function of T on account of the rising contribu- 
tion of the second term in the denominator of equation (7) with 
increasing temperature. 

It is interesting to compare Figure 4 of this paper with 
Figures 17-19 of the paper by Ipser & Lindblom (1991) which 
are for Newtonian polytropic models having expressions for 
the shear and bulk viscosities appropriate for standard neutron 
star matter. The contribution of bulk viscosity becomes impor- 
tant at a higher temperature for these “standard” models 

TABLE 2 
Time Scales and Critical Angular Velocities for Strange Star Models 

M0 
(M0) 

T 
(K) 

aoRR 

(rad s ^ (rad s- Pm = 2n/Qm (1(T3 s) (s) (s) 
¿m 
(s) 

1.40 

1.40 

2.03 

2.03 

108 

101' 

108 

1010 

6334 
5476 
4865 
4417 
6334 
5476 
4865 
4417 
7828 
6589 
5751 
5165 
7828 
6589 
5751 
5165 

6477 
6324 
6578 

* 

6496 
6352 
6638 

* 

7779 
7455 
7722 

* 

7927 
7855 

0.970 
0.994 
0.955 

* 

0.967 
0.989 
0.946 

* 

0.808 
0.843 
0.814 

* 

0.793 
0.800 

2.39 x 10“' 
1.96 x 101 

1.60 x 103 

1.45 x 105 

2.39 x 10“1 

1.96 x 101 

1.60 x 103 

1.45 x 105 

1.40 x 10“1 

1.22 x 101 

1.02 x 103 

9.29 x 10“ 
1.40 x 10_) 

1.22 x 101 

1.02 x 103 

9.29 x 10“ 

2.09 x 105 

7.47 x 10“ 
3.89 x 10“ 
2.40 x 10“ 
2.09 x 109 

7.47 x 108 

3.89 x 108 

2.40 x 108 

1.33 x 105 

4.83 x 10“ 
2.55 x 10“ 
1.59 x 10“ 
1.33 x 109 

4.83 x 108 

2.55 x 108 

1.59 x 108 

3.16 x 108 

3.76 x 108 

5.30 x 108 

7.54 x 108 

2.11 x 105 

1.42 x 105 

1.47 x 105 

1.71 x 105 

2.14 x 107 

3.37 x 107 

5.71 x 107 

9.22 x 107 

6.43 x 103 

6.55 x 103 

8.93 x 103 

1.27 x 10“ 
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Fig. 4.—Critical periods P (in units of ms) for the onset of nonaxisymmetric 
instability as a function of temperature T (in units of K). The upper curves 
correspond to M0 = 1.4 M0 and the lower curves to M™ax = 2.03 M0. For 
each mass, the solid line represents the result of the full calculation, the dashed 
line is for calculations neglecting bulk viscosity. 

(~4 x 109 K) but is then more dramatic as a result of the 
continuing sharp temperature dependence of Ç (ocT6) even up 
to the highest temperatures. From our calculation, the smallest 
critical periods for the two masses occur at T = 107 K and are 
P = 0.95 ms (for 1.4 M0) and P = 0.79 ms (for 2.03 M0) both 
of which correspond to rotation speeds well below the respec- 
tive shedding limits. 

The critical periods for the canonical mass strange star 
model (between 0.946 and 1.036 ms for the temperature range 
of Fig. 4) are considerably shorter than the periods of the 
fastest known millisecond pulsars PS 1937 + 214 (P = 1.558 
ms) PS 1957 + 20 (P = 1.607 ms). The existence of these two 
pulsars has led to the necessity for discarding some of the 
stiffest equations of state proposed for neutron star matter on 
the grounds that they would give minimum allowed periods 
longer than the observed ones (Lindblom 1986). Here, the 1.4 
Mq model is composed of very stiff matter indeed but it cannot 
be ruled out in this way. 

In Table 3, we show the ratios of aw(0), t^rr and tJJ,, as 
calculated from the general relativistic computer code, to the 
corresponding quantities calculated for Newtonian Maclaurin 
spheres having the same mass, radius and viscosity law as the 

TABLE 3 
Frequency and Damping Time Ratios 

for Strange Star Models 

M0 
(M0) 

1.40 2 1.035 2.172 0.489 
3 0.971 4.473 0.489 
4 0.946 8.484 0.491 
5 0.933 15.69 0.494 

2.03 2 1.059 3.757 0.365 
3 0.954 11.86 0.371 
4 0.913 32.91 0.378 
5 0.892 88.28 0.384 

relativistic models. Expressions for the latter are given in the 
papers by Lindblom (1986) and Cutler & Lindblom (1987). We 
follow the notation of these previous papers with com being the 
Gm ratio, the ratio of t^rr and Ym the ratio of t^. The 
numerical values of these correction factors (which include 
both general relativistic an density profile related 
contributions) are of interest in assessing the level of accuracy 
to be expected from approximate estimates based on the analy- 
tic Newtonian formulae for constant density models. As men- 
tioned above, there is no corresponding ratio for em. 

As for standard neutron star models, the values of com are all 
rather close to unity. On the other hand, the GRR time-scale 
correction factors deviate considerably from unity, increasing 
with increasing m (as also is the case for neutron stars). The 
differences between neutron star and strange star models are 
most apparent in the viscous time-scale correction factor. For 
our 1.4 M0 model, with its very flat density profile, the values 
of Ym are much higher than those for neutron stars at low m 
but they then vary less with increasing m. The 2.03 M 0 model 
is intermediate between the 1.4 M0 strange star and the 
neutron stars. 

7. DISCUSSION AND CONCLUSION 

In this paper, we have investigated first the properties of 
uniformly rotating strange star models using Hartle’s slow 
rotation technique. As far as rotational deformations are con- 
cerned, there are a number of detailed differences between the 
strange star models and standard neutron stars, but on the 
whole the similarities are more striking than the differences as 
also was the case for the properties of the nonrotating models. 

We have noted that uniformly rotating strange stars would 
be able to support large amounts of rotational kinetic energy 
before reaching the mass shedding limit. For the 1.4 M© 
model, the maximum value of T/\W\ before mass shedding 
will certainly be well in excess of the value 0.14 near which the 
m = 2 bar mode is likely to become unstable in the absence of 
viscosity, thus permitting the growth of this mode which 
appears to be forbidden for standard neutron stars (Friedman 
et al. 1986). 

As far as instability to nonaxisymmetric modes is concerned, 
we have shown that, for the choice of parameters used here, 
these instabilities would limit the rotational periods of strange 
stars in the range of temperature considered (as also is the case 
for neutron stars). There are two different contexts within 
which these instabilities can operate. (1) The case of young (hot) 
strange stars born rapidly rotating for which the relevant tem- 
peratures are initially ~ 1010 K with subsequent rapid cooling 
to ~108 K: here, for the higher temperatures, bulk viscosity 
moderates (but does not suppress) the GRR instability and the 
m = 3 mode is preferred throughout the range. The effect of 
bulk viscosity for strange stars does not appear to be as dra- 
matic as previously predicted (Sawyer 1989), and this can be 
traced to the very low compressibility of strange matter particu- 
larly near the surface where the dissipation integral peaks. In 
order for it to suppress the instabilities at any part of the 
temperature range, £ would need to be larger by about five 
orders of magnitude for the 1.4 M0 model and four orders of 
magnitude for the 2.03 M© model. (2) The case of old (cooler) 
strange stars spun up by accretion, for which the relevant tem- 
peratures are probably ~107 K or slightly more (Miralda- 
Escudé, Haensel, & Paczynski 1990): here, shear viscosity 
moderates the GRR instability and the preferred mode will be 
either m = 2 or m = 3. This point is worth emphasizing. For 
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old pulsars spun up by accretion, it is possible that the limiting 
rotation speed may be set by the m = 2 bar mode if the pulsar 
is a strange star similar to the models considered here, whereas 
it seems probable that no standard neutron star equation of 
state would allow instability to set in by this mode. 

There seem then to be three important ways in which 
strange stars might be positively distinguished from standard 
neutron stars. First, strange stars should cool more quickly 
than neutron stars (see Pizzochero 1991). Second, there is no 
minimum mass for strange stars. Third, strange stars can 
become unstable to the m = 2 bar mode. If future observations 
of gravitational waves were to reveal the signature of a bar 

mode from an old pulsar spun up by accretion, then this would 
be quite strong evidence in favor of it being a strange star, and 
hence would also be in support of Witten’s hypothesis that 
strange quark matter is the true ground state of hadronic 
matter. 

We gratefully acknowledge helpful discussions with P. Cud- 
deford, P. Haensel, A. Lanza, O. Pantano, and J. L. Zdunik. 
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Italian Ministero delFUniversità e della Ricerca Scientifica e 
Tecnológica. 

REFERENCES 
Abramowicz, M. A., & Miller, J. C. 1990, MNRAS, 245,729 
Abramowicz, M. A., & Prasanna, A. R. 1990, MNRAS, 245,720 
Alcock, C, Farhi, E., & Olinto, A. V. 1986, ApJ, 310,261 
Alcock, C, & Olinto, A. V. 1988, Ann. Rev. Nucl. Part. Sei., 38,161 
Alpar, M. A. 1987, Phys. Rev. Lett., 58,2151 
Baym, G., Kolb, E. W., McLerran, L., Walker, T. P., & Jaffe, R. 1985, Phys. 

Lett. B, 160,181 
Butterworth, E. M., & Ipser, J. R. 1976, ApJ, 204,200 
Caldwell, R. R., & Friedman, J. L. 1991, Phys. Lett. B, 264,143 
Chandrasekhar, S. 1970, ApJ, 161, 561 
Chandrasekhar, S., & Miller, J. C. 1974, MNRAS, 167,63 
Chodos, A., Jaffe, R. L, Johnson, K., Thom, C. B., & Weiskopf, V. F. 1974, 

Phys. Rev. D., 9,3471 
Comins, N. 1979a, MNRAS, 189,233 
 . 1979b, MNRAS, 189,255 
Cutler, C., & Lindblom, L. 1987, ApJ, 314,234 
 . 1992, in Ann. NY Acad. Sei., submitted 
Cutler, C, Lindblom, L., & Splinter, R. J. 1990, ApJ, 363,603 
Datta, B. 1988, Fund. Cosmic Phys., 12,151 
Detweiler, S. L., & Lindblom, L. 1985, ApJ, 292,12 
Farhi, E., & Jaffe, R. L. 1984, Phys. Rev. D, 30,2379 
Friedman, J. L., Ipser, J. R., & Parker, L. 1986, ApJ, 304,115 
Friedman, J. L., & Schutz, B. F. 1978, ApJ, 222,281 
Frieman, J. A., & Olinto, A. V. 1989, Nature, 341,633 
Glendenning, N. K. 1989a, Phys. Rev. Lett., 63,2629 

Glendenning, N. K. 1989b, J. Phys. G, 15, L255 
Hartle, J. B. 1967, ApJ, 150,1005 
Hartle, J. B., & Thome, K. S. 1968, ApJ, 153,807 
Haensel, P., & Jerzak, A. J. 1989, Acta Phys. Polonica, B20,141 
Haensel, P., & Zdunik, J. L. 1989, Nature, 340,617 
Haensel, P., Zdunik, J. L., & Schaeffer, R. 1986, A&A, 160,121 
Ipser, J. R., & Lindblom, L. 1990, ApJ, 355,226 
 .1991, ApJ, 373,213 
Kristian, J., et al. 1989, Nature, 338,234 
Lattimer, J. M., Prakash, M., Masak, D., & Yahil, A. 1990, ApJ, 355,241 
Lindblom, L. 1986, ApJ, 303,146 
Lindblom, L., & Detweiler, S. L. 1977, ApJ, 211, 565 
 . 1983, ApJS, 53,73 
Lindblom, L., & Hiscock, W. A. 1983, ApJ, 267, 384 
Miller, J. C. 1977, MNRAS, 179,483 
Miralda-Escudé, J., Haensel, P., & Paczyñski, B. 1990, ApJ, 362, 572 
Olinto, A. V. 1987, Phys. Lett., B, 192,71 
Pizzochero, P. M. 1991, Phys. Rev. Lett., 66,2425 
Ray, A., & Datta, B. 1984, ApJ, 282,542 
Sawyer, R. F. 1989, Phys. Lett., B, 233,412 
Shapiro, S. L., & Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and 

Neutron Stars (New York: Wiley) 
Weber, F., Glendenning, N. K., & Weigel, M. K. 1991, ApJ, 373, 579 
Witten, E. 1984, Phys. Rev. D, 30,272 

© American Astronomical Society Provided by the NASA Astrophysics Data System 


	Record in ADS

