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ABSTRACT 
We present a straightforward method for the construction of constrained realizations of Gaussian fields. 

Consider a Gaussian random field and its ensemble mean field given a set of constraints. The residual of the 
field from its mean is statistically independent of the actual numerical value of the constraints. The algorithm 
is based on a simple construction of this residual field, which is then added to the analytically calculated mean 
field. This algorithm is exact and involves no iterations. The computational effort involves only setting one 
random realization in the inverse /c-space, its EFT to real space, and the calculation of the mean field (given 
the set of constraints) over all grid points. Furthermore, it can be applied to a large number of constraints of 
arbitrary amplitudes and positions. The algorithm facilitates the generation of the initial conditions for 
iV-body simulations which obey a few hundreds of constraints imposed by the observable universe. 
Subject headings: cosmology — galaxies: clustering 

1. INTRODUCTION 

The canonical cosmological model assumes that structure in 
the universe has emerged from a primordial density pertur- 
bation field. It further assumes that this is a random Gaussian 
field (cf. Kolb & Turner 1990), which is defined by its power 
spectrum and a normalization constant. The power spectrum 
is determined by general theoretical considerations concerning 
the cosmological model, the physical properties of the early 
universe, and the nature of the dark matter. For example, in 
the popular “ standard ” cold dark matter model (Blumenthal 
et al. 1984) the power spectrum obeys the Harrison (1970)- 
Zel’dovich (1972) spectrum on the very large scales and goes 
asymptotically to k~3 on small scale (where k is the 
wavenumber). The theory specifies only the statistical proper- 
ties of the amplitudes and phases in the plane waves represen- 
tation. Thus, for Gaussian fields the real and imaginary parts 
are independently normally distributed around zero with a 
variance given by half the power spectrum, which implies that 
the phases are uniformly distributed. This is being used in 
setting up the initial conditions for large iV-body numerical 
simulations, which have proved to be a major tool in studying 
the large-scale structure of the universe (cf. Efstathiou et al. 
1985). Yet, in many interesting cosmological problems one is 
interested in generating special-purpose initial conditions, 
which are designed to obey some given constraints. One then 
needs an efficient algorithm for generating such realizations. 

The aim here is to present the optimal algorithm for con- 
structing constrained realizations of Gaussian fields. In the 
cosmological context its main advantage is to enable gener- 
ating initial conditions for numerical simulations. These simu- 
lations are designed to include a priori many of the observed 
features of the observed universe. Such features are the dipole 
velocity relative to the microwave background (Lubin & 
Villela 1986), the local density field as derived by the POTENT 
algorithm (Bertschinger & Dekel 1989), the bulk velocity 
(Lynden-Bell et al. 1988), and the projected (two-dimensional) 
IRAS galaxy distribution (Scharf et al. 1991). 
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Bertschinger (1987) was the first to pose the problem of the 
constrained realizations and to develop an algorithm for their 
construction. It is based on an iterative simulated annealing 
technique which requires 0[(M2 + 1)AT] operations to gener- 
ate one independent realization, where N is the number of 
degrees of freedom and M is the number of constraints. The 
number of degrees of freedom is essentially the number of grid 
elements required for the field in the computer memory. This 
method can be naively described as relaxing a system with 
constraints on the field and on its power spectrum into a plaus- 
ible position in phase space. As the grid density grows and as 
the number of constraints increases to more than a few, the 
system converges so slowly that this algorithm becomes pro- 
hibitively expansive and impractical. A simple variant of this 
method was suggested by Binney & Quinn (1990), in which the 
random field is expanded in spherical harmonics rather than 
plane wave basis. For a localized set of constraints, such as a 
single local maximum which can be described by a few spher- 
ical harmonics, the construction simplifies dramatically and 
can be solved exactly with no iterations at all. The drawback of 
the latter algorithm is that it can be applied only in the case 
where the constraints are quite localized and define and 
obvious center of symmetry. 

A different approach has been used by us recently (Hoffman 
& Ribak 1992, hereafter Paper I). In this approach we devised 
an approximate iterative algorithm in which only the Fourier 
phases are subjected to the imposed constraints. The rationale 
behind this approach is that random phases are essentially all 
that is required to make a random field Gaussian (in the 
random field the power spectrum amplitudes are %2 distributed 
with 2 degrees of freedom). It follows from the central limit 
theorem that in the case where the number of constraints is 
much smaller than the number of degrees of freedom, the sub- 
ensemble of constrained-phase realizations properly samples 
the whole ensemble of constrained realizations. This algorithm 
converges rather rapidly and is very efficient and easy to con- 
struct. It is somewhat limited by the requirement of two 
Fourier transforms for each iteration (to impose the power 
spectrum and the field constraints alternatively). Also, as in the 
Bertschinger (1987) method it is formulated in terms of con- 
straints imposed upon the field itself, rather than its linear 
functionals such as derivatives or integrals. Here we introduce 
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a much improved method which is noniterative and involves 
only the calculation of the correlation matrix and its inverse. 
This method can be used for any kind of constraints where the 
field and its linear functionals are imposed to have a specific 
numerical value. The method is very efficient and can be used 
to set a very large number of constraints. 

2. CONSTRAINED GAUSSIAN FIELDS 

We start with a short review of the properties of constrained 
Gaussian fields (for a more rigorous review see Adler 1981; 
Bardeen et al. 1986; see also Paper I for other aspects). Con- 
sider a random homogeneous and isotropic Gaussian field f(r) 
with zero mean which is defined by its power spectrum, P(k). 
This field is subjected to a set of M constraints, F = {Ct(r) |r. = 
c,; i = 1,..., M}. The ith constraint C, can be imposed on the 
field itself, that is,/(rt) = ch or any linear functional of it such 
as its derivative, (d/dx)f (r) |r. = ch or a convolution over /(r) 
with some function g(r\ J d3rg(r — r,)/^) = Ci. The conditional 
probability distribution function of the field/(r) is 

nm\n = ^j^p. (i) 

Here, ^[...] is the multivariate Gaussian of the appropriate 
variables. The conditional probability distribution function 
can be described as a shifted Gaussian around the ensemble 
mean field,/(r), defined as 

/(r) = </('■) I r> = £;(*■)£,7 1Cj ■ (2) 

Summation over repeated indices is assumed throughout this 
paper, and <...) denotes an ensemble average. Here ^{r) = 
(/(rjCi) is the cross-correlation between the field and the ith 
constraint, = ÍCíC¡) is the constraints’ correlation matrix, 
and Ci is evaluated at r,. In the case where the constraints 
involve only the field itself, the correlation matrix is written in 
terms of the two-point autocorrelation function ^(r), that is, 
^• = ^lri-rjl)and^|,) = 

The residual field has some unique properties which we will 
utilize. It is defined as the difference between the Gaussian field 
and the mean field (under constraints): F(r) = f(r) The 
variance of the residual field (Paper I) is 

<F2(r)|r> = <72-¿i(r)^
1^r), (3) 

where a2 = £(0). Note that the residual F(r) is a random Gauss- 
ian field which is not homogenous nor isotropic whose 
variance is independent of the numerical value of the imposed 
constraints. In terms of the residual field F(r) the constraint 
points are expressed as {Ffo) = 0; i = 1, ..., M} (in the case 
where only the field itself is constrained). Any particular con- 
strained realization can be written as_ the sum of the analyti- 
cally calculated mean field given F,/(r) = </(r)|F), and the 
random residual field, F(r). The key point in the present algo- 
rithm is that the statistical properties of the residual field are all 
independent of the numerical values of the constraints ch and 
for any particular choice of the constraints a realization of the 
residual can be easily constructed. 

We proceed now to the construction of a constrained reali- 
zation of the field/(r). This is done in five stages : (1) create a 
random realization; (2) find the values of the realization corre- 
sponding to the constraints ; (3) calculate the mean of the reali- 
zation; (4) evaluate the residual of the realization; (5) combine 
the residual with the required, constrained mean. 

In step 1 we start with the production of an unconstrained 
realization of the field,/(r), determined by the power spectrum 
only. For the particular realization we calculate in step 2 the 
actual values of the variables which are to be constrained. 
These variables can be looked upon as defining another set of 
constraints, T = {cj. This a posteriori set of constraints is 
evaluated at the positions of the original constraints and has 
the values of this specific realization. For this “random” selec- 
ted T, we calculate in step 3 the corresponding mean field 
expected as if the set was chosen initially,/(r) = </(r)|r>. 
From the given particular realization and the calculated mean 
field given F, the residual is easily written as F(r) =f(r) —f(r) 
(step 4). The residual field thus generated is a particular realiza- 
tion subject to the desired constraints, F. In step 5 we evaluate 
the mean field (given F), according to equation 2, and add it to 
the residual F(r) to yield 

f(r)=f(r) + Ur)tij\cj-cJ). (4) 

Fig. 1.—A single constraint,/(0) = 3 ct, is imposed on a Gaussian field 
which is defined by its power spectrum, P{k) oc /c-1 exp { — k2), and is evalu- 
ated on a 323 grid. Upper panel: A cut in the field through the constraint point 
{thin line) is compared with the theoretically calculated mean {heavy line), given 
the actual value at the origin, and the mean plus and minus one standard 
deviation {dashed lines). Central Panel: Residual of field from the mean {thin 
line) is compared with the (plus and minus) theoretical one standard deviation 
{dashed lines). Lower panel: Residual is added to the true mean {heavy line) to 
create the desired field {thin line). The bracket of one standard deviation is 
shown again. 
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In the particular case where only /(r) itself is constrained equa- 
tion 4 reads 

/W = /(»•) + ZiirKij 1 lCj - /(»•;)] . (5) 

The method is illustrated in Figure 1 where a single con- 
straint is imposed on a three-dimensional field, out of which 
only a one-dimensional cut through one of the main axes is 
shown. The field is constrained at ^ = 0 by ^ = 3 cr, and the 
power spectrum is the one defined in § 3. In the top panel the 
unconstrained realization is presented together with the mean 
field, given its actual value at r1? which is given by f(r) = 
f(0)Ç(r)/G2. This mean profile is bracketed by the mean plus 
and minus one standard deviation. The central panel shows the 
residual constructed by subtracting the theoretical mean value 
from the actual one. This residual is then added to the mean 
field, given the actual constraint,/(r) = C^^/o-2, as shown in 
the lower panel. 

The constructed field/(r) obeys the imposed constraints, and 
we substitute it for the unconstrained/(r). Note that there is a 
one-to-one correspondence between the trial field f(r) and the 

-1 0 - 5 0 5 1 0 

r 
Fig. 2.—Upper panel: Constrained field profiles along the three major axes 

through the peak (thin broken lines) are compared with the theoretically calcu- 
lated mean (heavy line) and the mean plus and minus one standard deviation 
(upper and lower heavy dashed lines) profiles. Lower panel: Residual of/(#*) from 
the mean f(r) (thin broken lines) are compared with the theoretical plus and 
minus one standard deviation (heavy lines). 

constructed one. Furthermore, the ensemble of realizations 
produced by the algorithm presented here properly samples 
the subensemble of all realizations constrained by F. The algo- 
rithm is an optimal one because it is exact and involves only 
one realization of an unconstrained random field and the cal- 
culation of the mean field under the given constraints. The 
desired field is then evaluated by performing 2M2 + 1 oper- 
ations at each grid point (eq. 4), far less than what is required 
by all other methods mentioned above. 

3. APPLICATION 

To illustrate the present method we present here the follow- 
ing example. A Gaussian field whose power spectrum is P(k) oc 
k~l exp [ —(kRs)2] is constrained to have a 3 <7 peak (local 
maximum) at the origin. For simplicity the peak constraints 
are formulated by (spatially) expanding the mean field around 
the origin to second-order terms, and by constraining the six 
nearest neighbors. The peak parameters are taken from 
Bardeen et al. (1986). For this particular example a peak with 
the mean curvature (for 3 a) and of equal second derivatives 
along the axes has been chosen. The realization is performed 
on a 323 grid with a smoothing length of Rs = 1 (grid units). 
This is shown in Figure 2, where the field f(r) along the three 
axes is compared with the mean field, and a bracket of the 
mean field plus and minus one standard deviation, that is, 
f(r) ± <F2(r)| F)1/2. One sees that the deviation of f(r) from 
the mean f(r) is of the order of the standard deviation, 
<F2(r))1/2 as expected. An ensemble of = 100 such realiza- 
tions has been constructed, and its mean and standard devi- 
ation are compared with their theoretically calculated values. 
The agreement between the simulations is within the Jf-112 

expected scatter. Figure 3 compares the theoretical standard 
deviation with the numerical one (along the three axes). The 

Fig. 3.—Standard deviation of an ensemble of 100 numerical constrained 
realizations is compared with its theoretical expected value. Simulated field is 
subjected to a 3 <r local maximum imposed at the origin. The numerical stan- 
dard deviation is evaluated along the axes (broken lines) and is compared with 
the value calculated based on the analytical relation of eq. 3 (continuous line). 
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L8 HOFFMAN 

agreement is very good, and no systematic deviations have 
been found for different realizations, power spectra, or cutoffs. 

4. SUMMARY 
The algorithm suggested here provides an optimal solution 

to the problem of the construction of constrained realizations 
of Gaussian fields. The computational effort consists only of 
the creation of one random unconstrained realization and the 
calculation of the mean field (given the set of constraints) over 
all grid points. The number of constraints can be very large, 

& RIBAK 

and they can be imposed on the field itself or on any linear 
functional of it. The proposed method can be used to construct 
initial conditions for N-body simulations which are con- 
strained to include some of the observed features of the locally 
observed universe. 

The hospitality of the Institute of Astronomy (Cambridge 
University) and the Space Research Institute (Technion) where 
part of this work was done is gratefully acknowledged (Y. H.). 
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