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ABSTRACT 
The formation and equilibrium characteristics of systems formed through dissipationless collapse are 

studied. Initially, the systems are isolated, spherically symmetric top hats in solid body rotation and in Hubble 
flow. Small-scale power is added using the Zel’dovich approximation assuming a power-law slope and includ- 
ing velocities self-consistently. Simulations are run for two different values of the power-law slope: n = 0 and 
n = — 2.5. The initial conditions are more general than past simulations of isolated systems and are chosen to 
be more cosmologically relevant in an effort to connect simulations involving the collapse of isolated pertur- 
bations with those extracted from larger cosmological simulations. 

With these initial conditions collapses are clumpy and resemble multiple merger events. The final density 
profiles in projection approximately follow a de Vaucouleurs R1/4 law. The radial orbit instability does not 
appear important in determining the final shape of the systems. These shapes range from oblate to triaxial to 
prolate. With these more general initial conditions the initial T/W does not completely determine the final 
equilibrium state. The equilibrium systems are slowly rotating, with a measured flat rotation curve, and are 
supported by an anisotropic velocity dispersion. The final equilibria closely resemble elliptical galaxies with 
projected ellipticities ranging from El to E6. This lends support to the theory that elliptical galaxies formed 
through dissipationless collapse. These models could also represent formation of galactic halos and give new 
insights into the central structure of dark halos. 
Subject headings: cosmology — galaxies: clustering — galaxies: formation — galaxies: structure 

1. INTRODUCTION 

The study of dissipationless collapse has a long history 
(Hènon 1964; Peebles 1970; Bouvier & Janin 1970; Gott 1973). 
Traditionally, studies considered the collapse of isolated 
top-hat perturbations with Poisson initial conditions. Such 
simulations have recently been studied in more detail by many 
authors, e.g., van Albada (1982), McGlynn (1984), Aguilar, 
Merritt, & Duncan (1987), Aguilar & Merritt (1989). They are 
primarily interested in the formation of elliptical galaxies so 
they assume that the dissipationless material is stellar. The 
difficulty with these earlier simulations is that they adopt 
unrealistic initial conditions. Initial particle velocities in these 
calculations are selected from a Gaussian distribution without 
regard for the inhomogeneities present in the initial particle 
distribution. Such a velocity field would probably not have 
arisen in any cosmogony. Most likely, dumpiness in the mass 
distribution would gravitationally induce motions in the par- 
ticles correlated with the initial clump distribution. Further- 
more, since the particles are initially distributed in a Poisson 
manner with the possible ad hoc addition of clumps (e.g., van 
Albada 1982; McGlynn 1984), there is no control over the 
amplitude of the Poisson small-scale power, which consequent- 
ly depends only on the number of particles. This method also 
lacks a way to quantify the small-scale power when clumps are 
added. 

Other authors (Quinn, Salmon, & Zurek 1986, Frenk et al. 
1988; Barnes & Efstathiou 1987; Quinn & Zurek 1988; Zurek, 
Quinn, & Salmon 1988) have studied dissipationless collapses 
by examining subregions of larger cosmological simulations. 
These calculations address the formation of galactic halos, so 

1 Postal address: Steward Observatory, University of Arizona, Tucson, AZ 
85721. 

the dissipationless material represents some form of dark 
matter. Unfortunately, these results generally suffer from poor 
resolution since the halos are not well sampled. 

This paper considers the collapse of isolated top-hat pertur- 
bations, but with more general and cosmologically relevant 
initial conditions. The simulations are started in Hubble flow 
with varying amounts of solid body rotation and small-scale 
power that is added in a controlled manner, with different 
power-law slopes and amplitudes. Velocities are initialized 
under the assumption that they were acquired solely through 
gravitational interaction before the start of the simulation, in a 
manner consistent with the dumpiness of the particle distribu- 
tion. Eighteen collapses are studied in all. These models are an 
attempt to bridge the gap between the two classes of simula- 
tions mentioned above and will also be compared to future 
dissipative collapse simulations. 

These simulations have been made possible through the 
recent development of hierarchical tree codes—a new class of 
efficient JV-body techniques (Barnes & Hut 1986; Hernquist 
1987). The subclumps that form during collapse would not be 
adequately resolved with multipole codes used in past studies 
(e.g., van Albada 1982; McGlynn 1984, Aguilar & Merritt 
1989), and direct summation is too slow to allow the use of 
enough particles to give adequate resolution. The efficiency of 
the integrations has been further increased by the incorpo- 
ration of individual particle time steps. 

Section 2 discusses the code used in the present study, the 
method for generating initial conditions, the different sets of 
initial conditions which are evolved, and the method used to 
determine the shapes of the equilibrium systems. Section 3 
presents details of the collapses, while § 4 discusses their impli- 
cations. Section 5 gives a brief summary of the major conclu- 
sions. 
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2. METHODS 

2.1. N-Body Code 
The simulations are run with a hierarchical tree code based 

on the Barnes-Hut algorithm (Barnes & Hut 1986) including 
quadrupole terms. Unlike multipole expansion codes, tree algo- 
rithms do not impose any global geometry on the system. Fur- 
thermore, the present version of the Barnes-Hut algorithm 
dynamically resolves the formation and subsequent merger of 
subclumps that occur during the collapse, making it ideal for 
studying collapse problems. Direct summation codes also have 
this advantage, but with computation cost scaling as 0(n2) per 
time step as opposed to 0(n In n) for tree codes. The improved 
efficiency allows tree codes to run with larger numbers of par- 
ticles, and correspondingly higher resolution than direct sum- 
mation methods. 

Unlike previous implementations of the Barnes-Hut algo- 
rithm, the particles in the simulations here are advanced with 
individual time-steps. Each particle is advanced with a time 
step that is a power of two subdivision of the fixed system time 
step. Particles can always move to a smaller time step, but may 
move to a larger time step only if it is synchronized with their 
own time step. This ensures that the system will be time syn- 
chronized at the end of every system time step. Care must be 
taken to maintain the second-order accuracy of the leapfrog 
integrator when particles change time step. Details of this pro- 
cedure are presented in Hernquist & Katz (1989, hereafter 
HK). The use of individual particle time steps allows the 
system to be integrated more accurately in a given amount of 
CPU time than for fixed time steps. During a typical simula- 
tion, particles are distributed nearly uniformly in time steps 
ranging from the largest system time step to a time step one- 
sixteenth this size. 

Each particle’s time step is chosen using an energy criterion. 
A particle’s time step, Ath is adjusted such that 

OiViAti < etol Et, (1) 

where a{ is the acceleration, i;f is the velocity, and eiol is a 
parameter that determines the fractional accuracy of the inte- 
grations (Ewell 1988). In the simulations presented here, etol = 
0.1. The energy, £, used in the time-step adjustment criterion, is 
usually taken to be the binding energy per unit mass of the 
individual particle. This choice can fail with realistic cosmo- 
logical initial conditions, since many particles near the edge of 
a perturbation have nearly zero binding energy and would be 
given small time steps even though the potential is varying 
slowly there. To remedy this problem, E, is chosen to be max 
(£fc, Ep/6) for all the particles, where Ek and Ep are the mean 
kinetic energy per unit mass and the mean potential energy per 
unit mass of the system (Ewell 1988). 

Unlike most V-body codes that soften gravitational inter- 
actions using a Plummer density profile, the tree code used in 
these simulations softens particles using a spline kernel (HK). 
This form of softening is attractive since the density profile has 
compact support, and the acceleration is identical to the 
Kepler form for r > 2e, where e is the softening length. These 
properties are particularly advantageous for hierarchical tree 
codes, since the multipole expansions used to represent the 
potentials of distant cells in the tree structure assume that the 
bodies are point particles of finite size. In the simulations here, 
the gravitational softening length is € = 0.06, which is about 
the mean interparticle separation at the half mass radius in the 

equilibrium systems. This choice reduces the effects of two- 
body relaxation. 

The present code vectorizes fully on most supercomputers 
(HK; Hernquist 1990). The simulations use of order 4000 par- 
ticles and require ~45 CPU minutes to run on a CRAY YMP 
for 700 system time steps, corresponding to about seven col- 
lapse times. The energy is conserved to better than 0.3% in all 
the runs except for the coldest one, in which energy is con- 
served to only 0.5%. All computations here are performed at 
the Pittsburgh Supercomputing Center. 

2.2. Initial Conditions 
The purpose of the current simulations is to model the dissi- 

pationless collapse of an isolated object with cosmologically 
relevant initial conditions. Since it is not possible to represent a 
large volume of the universe and still resolve subgalactic scales 
with only 4000 particles, several compromises have to be made. 
The objects are taken to be perturbed homogeneous spheres 
expanding with the Hubble flow with vacuum boundary condi- 
tions. Since tidal interactions are not included, the systems are 
started in solid body rotation to give them some angular 
momentum. Finally, small-scale noise is added to the homoge- 
neous spheres, in accord with cosmologically relevant power 
spectra. 

The systems are set up in the following manner. First, par- 
ticles are placed on a cubic lattice with periodic boundaries. 
The particles are then perturbed from the lattice and assigned 
self-consistent peculiar velocities using the Zel’dovich approx- 
imation (Zel’dovich 1970) assuming a power spectrum with 
spectral index n. In addition, a cosine cutoff is applied to the 
power-law spectrum at the Nyquist frequency. Particles within 
a sphere of unit radius are then extracted for the simulations. 
The original lattice is constructed so that this sphere contains 
~4000 particles. Particles are assigned equal masses, normal- 
ized so that the total system mass is 0.9091, the mass fraction of 
dark matter in a galaxy if the dark to gaseous matter ratio is 10 
to 1. Velocities are added such that the system is in Hubble 
flow with unit Hubble constant and in solid body rotation. 
Velocities and positions are then adjusted to center-of-mass 
coordinates. 

There are three important differences between these initial 
conditions and those used in previous studies involving the 
collapse of isolated top-hat perturbations. First, the simula- 
tions here are started in an expanding Hubble flow rather than 
in a stationary configuration, allowing more time for substruc- 
ture to develop. Second, both the amplitude and the type of 
small-scale noise are fully controlled, unlike other simulations 
that distribute the particles within the initial perturbation in an 
ad hoc manner. Some simply place the particles at random 
(van Albada 1982; Aguilar & Merritt 1989), introducing noise 
that is approximated by an n = 0 power law but with an ampli- 
tude determined solely by the number of particles. Other 
authors (van Albada 1982; McGlynn 1984) put in small-scale 
power by arbitrarily adding clumps to the system without any 
knowledge of the shape or amplitude of the power spectrum on 
small scales. Finally, all previous simulations add the velocities 
randomly, ignoring inhomogeneities in the initial density field. 
This has the undesirable effect of reducing the growth rate of 
initial density perturbations and inhibiting the collapse of 
masses below a scale set by the magnitude of the initial velocity 
dispersion. This is similar to adding a Jeans mass cutoff to the 
power spectrum. Since smaller mass scales collapse first in 
n = 0 (also in n = —2.5) power spectra, mass scales slightly 
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larger than this Jeans mass dominate during the large-scale 
collapse of the system. If, on the other hand, velocities are 
included in a self-consistent manner, as they are here, all mass 
scales can collapse as the system evolves. Also, when self- 
consistent velocities are used, clumpier collapses are actually 
warmer than the smoother collapses. 

In this paper two suites of models are considered: one has 
power-law slope n = 0, equivalent to Poisson noise, and the 
other has slope n = — 2.5, similar to cold dark matter spectra if 
the system mass is close to that of galaxies (Peebles 1982). Runs 
are performed with initial angular rotation velocities, co, of 0.1, 
0.2, and 0.4. These correspond to 2’s of 0.02, 0.04, and 0.08, 
respectively, where 

_J\E\1/2 

= GM512 (2) 

is the dimensionless spin parameter used to characterize the 
amount of angular momentum in bound systems (Peebles 
1971). Here J is the total angular momentum of the system, E 
the binding energy, M the total mass, and following standard 
convention, the gravitational constant, G is set equal to 1 
throughout. Three different amplitudes for the small-scale 
power are used, separated by factors of 2 making a total of nine 
different initial conditions for each n. Amplitudes are normal- 
ized to the /c = 1 mode of the system, and phases are chosen to 
be identical for all the simulations. Scaling to a system of units 
with mass unit 7 x 1011 M0, implying a system mass of 
6.4 x 1011 M0, and length unit 62.5 kpc, and assuming that 
H0 = 50 km s-1 Mpc and D = 1, allows the three amplitudes 
of small-scale power to be compared with equivalent cold dark 
matter amplitudes. In the cold dark matter model, the ampli- 
tude of the spectrum is characterized by the bias parameter, b, 
defined as the ratio between fluctuations in the galaxy distribu- 
tion and the density distribution (Frenk et al. 1990). When 
normalized to the observed galaxy correlation length, the 
amplitude scales as 1/b. The model with lowest amplitude cor- 
responds to a b = 4 amplitude, when normalized to the /c = 1 
mode. The next highest corresponds to a h = 2 amplitude and 
the highest corresponds to an unbiased amplitude (i.e., b = 1). 
Using the same normalization for the radius and mass as 
above and assuming the same values for H0 and Q, the initial 
over-density of the system is 0.32. This corresponds to a 
(1.34h)<7 peak in the CDM spectrum when filtered with a top 
hat of mass 6.4 x 1011 M0. Details of the initial conditions are 
given in Table 1, top, forn = 0 models and in Table 1, bottom, 
for n = —2.5 models. In the tables, Trand refers to the kinetic 
energy introduced by dumpiness and 7^ot refers to kinetic 
energy introduced by the solid body rotation. Since the simula- 
tions are initially expanding, the potential energy, W, is the 
formal value at maximum expansion, i.e., the initial W plus the 
initial expansion energy. Note that Trand/W is smaller for the 
same amplitude of small-scale power in the n = —2.5 models 
than in the n = 0 models, since the amount of power decreases 
rapidly at small scales when n = —2.5. With n = 0, however, 
the amount of power remains constant at smaller mass scales. 

2.3. Determining Shapes 

Determining the shape of a three-dimensional distribution of 
particles is a difficult task. Ideally, one would like to find the 
shapes of isodensity surfaces, but with ~4000 particles, only 
the axis ratios can be measured accurately. The ratios b/a and 
c/a are computed from the principal moments of inertia, and 

TABLE 1 
Initial Conditions 

Run (û b TJW Tt&JW T/W 

n = 0 

la   0.1 4 8.16 x 10"3 7.49 x 10"4 8.91 x 10"3 

2a   0.1 2 8.28 x 10"3 3.02 x KT3 1.13 x 10"2 

3a   0.1 1 8.21 x 10“3 1.18 x 10“2 2.00 x 10~2 

4a   0.2 4 3.26 x 10“2 7.49 x KT4 3.33 x 10~2 

5a   0.2 2 3.32 x KT2 3.02 x KT3 3.62 x KT2 

6a   0.2 1 3.28 x KT2 1.18 x KT2 4.46 x KT2 

la   0.4 4 1.30 x 10"1 7.49 x 10"4 1.31 x 10"1 

8a   0.4 2 1.33 x 1o-1 3.02 x 10“3 1.36 x 10"1 

9a   0.4 1 1.31 x 10_1 1.18 x 10“2 1.43 x KT1 

n= -2.5 

\b   0.1 4 8.12 x KT3 1.04 x HT4 8.22 x KT3 

2b   0.1 2 8.16 x 10-3 4.17 x 10-4 8.58 x 10'3 

3b   0.1 1 8.36 x HT3 1.69 x KT3 1.00 x KT2 

4b   0.2 4 3.24 x KT2 1.04 x HT4 3.25 x 10"2 

5b   0.2 2 3.26 x 10-2 4.17 x 10-4 3.30 x 10-2 

6b   0.2 1 3.35 x KT2 1.69 x 10-3 3.52 x 10"2 

lb   0.4 4 1.30 x 10"1 1.04 x 10“4 1.30 x 10"1 

86   0.4 2 1.30 x 10“1 4.17 x 10"4 1.31 x 10"1 

9b   0.4 1 1.34 x KT1 1.69 x HT3 1.36 x 10"1 

are defined by 

b~. /p2, (3a) 

£= /.latL (3b) 
a VE»*;*? 

In these expressions x, y, and z refer to a coordinate system in 
which the moment of inertia tensor is diagonal (x is the long 
axis, y is the intermediate axis, and z is the short axis). 

The major difficulty in determining the axis ratios is deciding 
which particles to include in the summations in equations (3a) 
and (3b). Of course, unbound particles are excluded, but one 
would like to know the shape of the system at various radii. 
Selecting particles within a spherical volume biases the shape 
unless the particle distribution is nearly spherical. Other 
authors (e.g., Aguilar 8c Merritt 1989) use a fixed percentage of 
the most tightly bound particles. This can also bias the com- 
puted shape, since equipotential surfaces are rounder than iso- 
density surfaces. Also, particles contained within collapsed 
subclumps in the outer parts of the system may be included in 
the summations and give spurious results. 

To avoid some of these difficulties the following iterative 
procedure is used. Assume that one would like to determine the 
axis ratios of all particles within a distance d of the center. 
First, axis ratios are determined for the particles enclosed 
within a sphere of radius d centered on the system’s center of 
mass using equations (3a), and (3b). Then new axis ratios are 
computed using just the particles contained within the ellip- 
soidal volume with these axis ratios and centered on the center 
of mass of the spherical volume. Thus, particle i is included in 
the summation if < d, where 
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The procedure is then repeated for the new ellipsoidal volume 
(using the old ellipsoidal volume in the place of the spherical 
volume), and iterated until convergence is reached. Usually, 
convergence is reached after ~ 5-10 iterations to an accuracy 
of ~0.01% in most cases and ~ 1% in the worst cases. 

3. RESULTS 
3.1. Collapses 

Figure la shows the collapse of a system with the lowest 
value for the amplitude of the small-scale power considered 
here, and Figure Ih shows a collapse with the highest value. In 
both cases the angular rotation speed, co, is 0.2 and the slope of 
the power spectrum is 0. Times are shown in natural system 
units, and the figures measure four radius units across. To 
convert to physical time, i, choose a radius unit, R, and a mass 
unit, M, then t = (R3/GM)112. Figures 2a and 2b show the 
collapse of initially identical systems except for the slope of the 
power spectrum, which is now —2.5. Note that the collapses 
are always clumpy and resemble multiple merger events. The 
clumps that merge together are much denser in collapses with 
high rather than low amplitudes, and they retain their individ- 
ual identities through several dynamical times. In the low- 
amplitude runs (Figs, lb and 2b\ the clumps are loosely bound 
puffy clouds and quickly lose their individual identities when 
merging. In the collapses with power-law slope n= —2.5 (Figs. 
2a and 2b), the objects which merge have nearly the same mass 
as the entire system, while in the n = 0 runs (Figs, la and lb), 
all mass scales are represented. 

3.2. Density Profiles 
Density profiles for the 18 simulations are determined by 

binning the particles in concentric ellipsoidal shells with con- 
stant axis ratios computed as above, logarithmically spaced in 
£. The axis ratios are determined at Ç = 2, beyond which the 
density in the simulations declines rapidly. These density pro- 
files are then fitted to a modified Jaffe density profile (Jaffe 
1983) 

P(0 = 
CM 1  

4n(b/a\c/a) (Ç2 + afXC + a2)2 ’ 
(5a) 

where M is the total mass of the system, ¿q and a2 are con- 
stants, and 

C = (af -H a2)] a2 + <h aí 
a\ + a| 

a| na ¿al - af)~[ 1 

n aj 2(a2 + a2) J • (5b) 

The fits are determined by the least squares method, weighting 
all points Ç < 2 equally and excluding all other points. The 
results are shown in Table 2, top, for the n = 0 models and in 
Table 2, bottom, for the n = —2.5 models. The fits are gener- 
ally good, as suggested by their chi-squared estimates. Most of 
the larger chi-square values are the result of noise in the inner- 
most, undersampled regions. The density profiles and their 
best-fit models are shown in Figure 3a for the n = 0 runs and in 
Figure 3b for the n = —2.5 runs. Generally, the density profiles 
for the n = 0 and n= —2.5 runs are quite similar. Fits 
attempted using a Jaffe model with a1 =0 are found to be 
worse than fits with a nonzero at when comparing chi-square 
values and taking into account the use of one fewer parameter. 
It is also apparent that no single power law can fit the density 
profiles. Also shown in Table 2 are the formal half-mass radii 
calculated from the fitted density profiles and the estimated 

TABLE 2 
Model Fits 

Half-Mass Core 
Run Mass a1 a2 x2 Radius Radius 

To n = 0 Runs 

la   0.95 0.40 0.09 1.86 0.67 0.08 
2a   1.06 0.65 0.08 1.05 0.93 0.07 
3a   1.11 0.86 0.07 1.32 1.14 0.07 
4a   0.98 0.44 0.11 0.85 0.76 0.09 
5a   1.04 0.60 0.12 1.30 0.97 0.11 
6a   1.28 0.16 1.27 1.58 1.68 0.13 
7a   1.04 0.33 0.40 2.39 1.04 0.17 
8a   1.20 1.08 0.10 3.27 1.47 0.10 
9a   1.99 0.05 4.03 1.87 4.18 0.05 

To n = —2.5 Runs 

lb   0.92 0.29 0.13 2.08 0.60 0.09 
2b   1.02 0.54 0.07 1.05 0.79 0.07 
3b   1.27 0.13 0.89 1.03 1.22 0.10 
4b   0.91 0.29 0.14 1.65 0.62 0.10 
5b   1.10 0.67 0.08 1.35 0.96 0.07 
6b   1.26 0.15 0.84 1.32 1.21 0.12 
76   0.93 0.40 0.14 1.37 0.76 0.11 
86   1.13 0.77 0.12 3.14 1.17 0.11 
96   1.20 0.23 1.20 2.64 1.76 0.18 

core-radii of the systems. The core radius is defined to be the 
radius where the logarithmic slope of the model density profile 
is equal to — 1 (see below). 

Several things should be noted about the results in Table 2. 
The first concerns the fits themselves and the roles assumed by 
the parameters and a2 in the different runs. In the standard 
Jaffe model, is less than a2. In that case, 64 defines the 
core-radius of the system and a2, the radius where the logarith- 
mic slope of the density profile changes from —2 to —4, is 
related to the effective radius of an jR1/4 law fit. Remember that 
when a Jaffe model is viewed in projection it roughly follow^ a 
de Vaucouleurs R1/4 law. In many of the fits here, however, ax 
is greater than a2, motivating the above definition of the core 
radius, and the decision to compare models at multiples of the 
half-mass radius. Only in the runs with the highest amplitude 
small-scale power and with large rotation (runs 6a, 9a, and 9b) 
do the models take the standard Jaffe form. 

Other trends of interest in Table 2 are the tendency of the 
half-mass radius to increase with increasing small-scale power 
and also with increasing rotational energy. Figure 4a shows the 
correlation of half-mass radius with the amplitude of the small- 
scale power for both n = 0 models and n = — 2.5 models. 
Figure 4b shows the half-mass radius plotted against the initial 
T/W. Contrary to previous results (McGlynn 1984; May & 
van Albada 1984; Aguilar & Merritt 1989), the density profiles 
seem to be influenced by the initial amplitude of the small-scale 
power not just by the initial T/W. Furthermore, by comparing 
n = 0 models with n = —2.5 models in Figure 4a, the initial 
TranJW is not as important in determining the density profiles 
as the amplitude of the small-scale power at the k = 1 mode. In 
addition, the fit parameters in Table 2 seem to depend mostly 
on the initial small-scale power amplitude and initial rotation 
velocity and not on the slope of the power spectrum. 

Finally, there does not appear to be any clear correlation 
between the core radius and any of the initial parameters. 
Recalling that the gravitational softening length is e = 0.06 
and that the gravitational force law is Newtonian only beyond 
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Fig. lb 

Fig. 1.—(a) Collapse of a system in Hubble flow with initial rotation œ = 0.2. Power spectrum has slope n = 0. This is the lowest amplitude run. Time is shown in 
the upper right corner of each frame and is measured in units of the natural system time. Frames are four units across, (b) Same as (<z) but for the highest amplitude 
run. 
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Fig. 2.—(a) Same as Fig. la but for « = — 2.5. (b) Same as (a) but for the highest amplitude run. 
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-s i radius radius 
Fig. 3a Fig. 3b 

Fig. 3.—(a) Density plotted vs. radius for the n = 0 runs. Short-dashed lines refer to the lowest amplitude runs, long-dashed lines to the intermediate amplitude 
runs, dot-dashed lines to the highest amplitude runs, and solid lines to the best-fit Jaffe model. The a/s refer to initial rotation, (b) Same as (a) but for n = — 2.5. 

two smoothing lengths, it is unclear if any of the density pro- 
files have a core radius at all. The only runs where a reasonable 
case could be made for a core-radius are runs la and 9b. 

Figures 5a and 5b show the dynamical circular velocity 
[(M(r)/r)1/2] plotted as a function of radius for the n = 0 and 
n = —2.5 models, respectively. All the rotation curves rise 
rapidly to their peak velocity at a radius of ~0.3, beyond 

which they start to drop slowly. Most remain flat out to a 
radius of 0.7 and some are almost flat out to 1.3 radius units. 
For runs with a smaller initial rotation and a smaller initial 
amplitude of small-scale fluctuations the rotation curves tend 
to fall off more quickly, without as much of a flat portion. The 
only notable difference between the rc = 0 and n = —2.5 runs is 
that the low-amplitude runs have rotation curves which are 

T/W 
Fig. 4b 

Fig. 4.—(a) Correlation between the half mass radius and the amplitude of small-scale power. Open circles represent n = 0 runs and stars represent n = —2.5 
runs. Solid lines refer to co = 0.1, short-dashed lines to a> = 0.2, and long-dashed lines to co = 0.4. (b) Correlation between the half mass radius and the initial T/W. 
Open circles represent n = 0 runs and stars represent n = — 2.5 runs. 
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0. .5 1. 1.5 2. 0. .5 1. 1.5 2. 
radius 

Fig. 5a 
radius 

Fig 5b 

Fig. 5.—(a) Circular velocity plotted vs. radius for the n = 0 runs. Short-dashed lines refer to the lowest amplitude runs, long-dashed lines to the intermediate 
amplitude runs, and dot-dashed lines to the highest amplitude runs. The a/s refer to initial rotation, (b) Same as (a) but forn = — 2.5. 

more sharply peaked in the n = —2.5 models and have almost 
no flat portion at all. 

3.3. The Shapes 
The axis ratios of each run are determined at the half-mass 

radius. The axis ratios b/a and c/a are shown in Table 3, top, 
for the n = 0 models and in Table 3, bottom, for the n= —2.5 
models. Depending on projection, these models have ellip- 
ticities ranging from 0.07 to 0.57 for the n = 0 runs and from 
0.04 to 0.54 for the n = — 2.5 runs. Also shown in these tables is 
the quantity t which is defined to be (b — c)/(a — c). Objects 
with prolate shapes have t « 0, oblate objects have t « 1, and 
objects with intermediate values of t are triaxial. Runs 2a, 3a, 
5a, and 6a are nearly prolate, runs la, 5b, and 6b are nearly 
oblate, and the rest of the runs are triaxial. The shapes do not 
appear to have any monotonie correlation with any of the 
initial parameters, but a qualitative trend should be noted: if 
the energy in the small-scale power is more important than the 
rotation energy prolate shapes result, and if the energy in the 
small-scale power is less important, oblate or triaxial shapes 
result. 

3.4. Kinematic Properties 
Since it is not possible to determine the individual com- 

ponents of the kinetic energy tensor accurately with only 4000 
particles the following approach was developed. First, the par- 
ticles are placed in concentric cylindrical bins, logarithmically 
spaced in radius, oriented with the axes of the cylinders parallel 
to the angular momentum axis of the system, and centered on 
the system’s center of mass. All particles with Ç ^ 2 are 

included and the shape of the ellipsoid is determined at ( = 2. 
As mentioned above, the density is found to rapidly decrease 
beyond a C of two in most runs. In each bin, the mass-weighted 
average rotational velocity is determined and subtracted from 
each particle. Once this net rotation is removed the velocity 
dispersion is calculated along the x, y, and z axes in a coordi- 

TABLE 3 
Axis Ratios 

Run b/a c/a t 

n = 0 Runs 

\a   0.93 0.70 0.77 
2a   0.63 0.58 0.12 
3a   0.80 0.71 0.31 
4a   0.87 0.65 0.63 
5a   0.55 0.48 0.13 
6a   0.58 0.53 0.11 
7a   0.79 0.52 0.56 
8a   0.68 0.43 0.44 
9a   0.84 0.56 0.64 

n= —2.5 Runs 

\b   0.84 0.69 0.48 
2b   0.89 0.74 0.58 
36   0.85 0.67 0.55 
46   0.78 0.63 0.41 
56   0.96 0.70 0.87 
66   0.96 0.72 0.86 
76   0.69 0.52 0.35 
86   0.64 0.46 0.33 
96   0.72 0.48 0.46 
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TABLE 4 
Kinematic Properties 

Run b/a c/a Vx Vy Vz ax ay oz Angle 

n = 0 Runs 

\a   0.93 0.76 -0.003 -0.039 0.039 0.22 0.25 0.18 12 
2a   0.82 0.70 0.024 -0.029 00.041 0.23 0.19 0.16 26 
3a   0.73 0.67 0.028 0.033 0.055 0.21 0.17 00.16 18 
4a   0.89 0.72 0.002 0.059 0.061 0.21 0.22 0.18 0 
5a   0.78 0.61 0.032 -0.051 0.052 0.23 0.18 0.16 27 
6a   0.63 0.59 0.010 0.059 0.075 0.22 0.16 0.15 7 
7a   0.84 0.57 -0.029 0.047 0.11 0.22 0.18 0.14 17 
8a   0.73 0.53 -0.014 0.079 0.078 0.20 0.17 0.12 5 
9a   0.80 0.54 0.025 0.050 0.10 0.15 0.18 0.13 10 

n = —2.5 Runs 

\b   0.90 0.72 0.037 0.014 0.050 0.27 0.25 0.21 25 
2b   0.90 0.72 0.019 -0.042 0.062 0.22 0.21 0.18 16 
36   0.95 0.73 0.036 0.031 0.059 0.17 0.22 0.16 25 
46   0.91 0.71 0.040 -0.056 0.051 0.25 0.25 0.21 26 
56   0.93 0.66 -0.004 0.059 0.055 0.20 0.21 0.15 3 
66   0.93 0.72 0.041 0.047 0.063 0.20 0.21 0.16 25 
76   0.88 0.61 -0.003 0.038 0.12 0.20 0.25 0.16 4 
86   0.81 0.57 0.024 -0.009 0.090 0.22 0.17 0.14 14 
96   0.72 0.48 -0.017 0.011 0.082 0.20 0.16 0.12 11 

nate system where the moment of inertia tensor is diagonal. 
Additionally, the mass-weighted rotation is calculated around 
these same axes without the net rotation removed. The results 
of these calculations are presented in Table 4, top, for the n = 0 
models and in Table 4, bottom, for the n = —2.5 models. Also 
shown in this table are the axis ratios b/a and c/a for the 
particles within Ç = 2. 

Although the largest rotational motion is around the short 
axis of the system, there is also substantial rotation around the 
other axes. This may imply that, in addition to net streaming 
within the system, the ellipsoidal systems are tumbling in 
space. Additionally, if a galaxy actually rotated on cylinders, 
and one were to place a “slit” along the projected major axis 

to determine the rotational velocity, a smaller velocity would 
be obtained than if the slit were oriented at an angle to the 
major axis. The angle between the major axis and a slit orient- 
ed to obtain the maximum value of the rotational velocity is 
also shown in Table 4, assuming that the projection is along 
the intermediate axis of the system. 

One can use this kinematic information to determine if the 
shapes of the systems can be maintained through rotation. In 
Figure 6a values of v/a are plotted against projected ellipticity 
Each run is represented by three points: one for each projec- 
tion along the three principal axes. The velocity that is used is 
the one that would be obtained by placing a slit along the 
major axis of the projected system. Figure 6b shows the same 

e e 
Fig. 6a Fig. 66 

Fig. 6.—(a) K0/cr0 plotted vs. projected ellipticity. V0 is the projected velocity along the major axis. Solid line is the theoretically predicted curve for an oblate 
rotator. Open circles represent n = 0 runs and stars represent n = — 2.5 runs. (6) Same as (a) except V0 is now the projected velocity along a “ slit ” oriented to obtain 
the maximum projected velocity. 
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radius radius 
Fig. la Fig. 1b 

Fig. 7.—{a) Actual rotation velocity plotted vs. radius for the n = 0 runs. Short-dashed lines refer to the lowest amplitude runs, long-dashed lines to the 
intermediate amplitude runs, and dot-dashed lines to the highest amplitude runs. The co’s refer to initial rotation, (h) Same as {a) but for n = — 2.5. 

information but the velocity used is the one that would be 
obtained by orienting the slit at the angle maximizing the rota- 
tional velocity. In both figures the open circles refer to n = 0 
models and the stars refer to n = —2.5 models. The solid line 
shows the value of v/a that would be required for a given 
ellipticity if the shape were supported through rotation alone 
(Binney 1978). It is immediately apparent that the shapes 
cannot be maintained by rotation alone and must be sup- 
ported through an anisotropic velocity dispersion. From Table 
4, the velocity dispersion is anisotropic, with the smallest dis- 
persion along the shortest axis. There is also no significant 
segregation of the n = 0 models and the n = —2.5 models in 
Figures 6. 

Figures la and lb show rotation curves for the n = 0 and 
n = —2.5 models, respectively. These curves are obtained by 
binning the particles in concentric cylinders logarithmically 
spaced in radius and then determining the mass-weighted rota- 
tion velocity in each bin. The rotation curves are flat and there 
is a slight trend toward increasing rotational velocity in 
systems with larger initial rotation. The rotation velocities are 
much less than the dynamically determined circular velocities 
at these radii. 

4. DISCUSSION 

Several things have been learned from these simulations. 
Some of the most interesting concern the form of the density 
profiles. Jaffe density profiles are produced for a wide range of 
initial conditions, with differing amounts of small-scale inho- 
mogeneities and initial rotations. When viewed in projection 
these profiles roughly follow a de Vaucouleurs Æ1/4 surface 

density profile. The detailed structure of the density profiles for 
a given initial rotation is determined by the amplitude of the 
small-scale power in the fc = 1 mode and does not appear to be 
much affected by power at smaller scales. This implies that it is 
only the largest subclumps that are important in the violent 
relaxation that ensues when the system collapses and virializes. 
In retrospect, this behavior should have been anticipated, since 
the largest subclumps will be the most important in producing 
the rapidly varying potential that is responsible for violent 
relaxation. 

Two other interesting phenomena are also seen. Some of the 
final equilibrium states have a prolate shape while others are 
either oblate or triaxial. In the systems where rotation is more 
important than the small-scale power, oblate or triaxial 
systems result, while in systems where small-scale power is 
more important than rotation, the final systems are prolate. 
Other authors (e.g., Aguilar & Merritt 1989) have argued that 
in their collapse simulations the radial orbit instability deter- 
mines the final shape of the system. Systems with cool initial 
conditions {T/W < 0.05) tend to be prolate while warmer 
systems tend to be oblate. No such trends are found here. This 
is probably because the collapses resulting from the self- 
consistent initial conditions used in this study resemble multi- 
ple merger events, while nearly spherical homogeneous 
collapse is necessary for the radial orbit instability to be impor- 
tant. 

The final equilibrium states are also found to be rotating 
with flat rotation curves which have amplitudes that are 
almost independent of the initial rotational velocity. Other 
authors (e.g., Zurek, Quinn, & Salmon 1988) find that in 
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Fig. 8.—(a) Specific angular momentum plotted vs. M(j) for the n = 0 runs. Short-dashed lines refer to the lowest amplitude runs, long-dashed lines to the 
intermediate amplitude runs, and dot-dashed lines to the highest amplitude runs. The solid line refers to the initial conditions and the a/s refer to initial rotation, {b) 
Same as (a) but for n = — 2.5. 

merger events angular momentum is transported quite effi- 
ciently. It could be possible, therefore, that these flat rotation 
curves are the result of angular momentum transport that 
acted during the collapse. Figures 8 show the specific angular 
momentum,;, plotted versus the mass that has specific angular 
momentum less than j, M(j), for the final equilibrium systems 
when binned on concentric cylinders. Ignoring the central 
areas where the gravitational potential is softened, the M(/)’s 
do not differ markedly from their original distributions, rep- 
resented by solid lines in the figures, except in the highest initial 
rotation collapses with n — —2.5. Angular momentum trans- 
port, therefore, is not important in the majority of these col- 
lapses. The isolated nature of the perturbations studied here 
naturally prevents outer regions from transporting angular 
momentum outward, but it may have also affected angular 
momentum transport in the inner regions. It is nevertheless 
remarkable that angular momentum transport is negligible for 
over 70% of the mass, when the collapses are so violent and 
inhomogeneous. 

There are two obvious physical applications for these simu- 
lations. On the one hand, they could represent the collapse and 
formation of dark matter halos in a hierarchical clustering 
cosmogony with a unit mass of 7 x 1011 M0, implying a 
system mass of 6.4 x 1011 M0, and unit length of 62.5 kpc. 
Values of X that range from 0.02 to 0.1 are found for galactic 
halos in larger cosmological simulations (Barnes & Efstathiou 
1987; Zurek, Quinn, & Salmon 1988). This is just the range 
covered in these simulations. 

Simulations of dark halo formation with a bias of 2.5 are 
calculated by Frenk et al. (1988). The mass resolution in their 

models is limited to 6 x 109 M0, while in the simulations here 
the mass resolution limit is 1.6 x 108 M0. The typical halo in 
their simulations, therefore, contains only ~100 particles. 
Because of this poor resolution not much can be learned about 
the halos at radii where their dynamical effects are really 
observed. They find that rotation curves become flat at ~40 
kpc for systems of this mass and remain flat out to ~ 200 kpc. 
This should be contrasted with the simulations in this paper 
where the rotation curves peak at 20 kpc but then remain flat 
only for the bias 2 and bias 1 models. Even then, they remain 
flat only out to ~ 45-60 kpc. The drop at larger radii is prob- 
ably the result of using an isolated top-hat perturbation with 
no secondary infall. In fact, over 60% of the total bound simu- 
lation mass is typically within the radius where the rotation 
curves begin to fall, indicating that the simulation is “ running 
out of mass.” The models in this paper, therefore, probably 
should not be trusted beyond ~ 50 kpc. 

Quinn, Salmon, & Zurek (1988) run simulations similar to 
those of Frenk et al. for various power-law slopes. They have 
slightly better resolution (~ 100-1000 particles per halo) than 
Frenk et al. but the circular velocities of their systems are less 
than 50 km s_1 for n = —2.75 models; far less than the ~ 180 
km s ~1 in the models here. The circular velocities of their n = 0 
models are comparable to the current simulations, however. 
They find that the density profiles, and therefore the calculated 
circular velocity rotation curves, are dependent on the power- 
law slope of the density perturbations. For larger values of n 
(including n = 0), the rotation curves do not remain flat but fall 
off gradually, whereas for lower values of n the rotation curves 
remain flat. Quinn et al. find similar trends in the actual mea- 
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sured rotation of their systems: trends that are absent in the 
current simulations. In addition, the current simulations find 
no major differences between the density profiles of the n = 0 
models and the n = —2.5 models, and only slight differences 
are found in the rotation curves. 

There are four possible explanations for these differences. 
First, the current simulations assume an isolated top-hat 
density profile and have no secondary infall. Although infall 
may affect only the outer parts of the systems, there is a possi- 
bility that even the innermost parts are affected. Second, 
because of the way that Quinn et al. normalize their spectrum 
there is a trend of maximum system circular velocity with n. 
The trends that they find may result from comparing inher- 
ently different systems, while in the current simulations the 
circular velocities are approximately independent of n. Third, 
in the current simulations angular momentum is added 
through solid body rotation, while in the Quinn et al. simula- 
tions the angular momentum is acquired naturally from tidal 
torquing which could change the results. Finally, there is the 
question of the differing resolution between the simulations. 
When considering the merger of clumps and their subsequent 
exchange of angular momentum, resolution could be very 
important. This would especially affect the measured rotation 
curves. Higher resolution allows one to study the central part 
of the halos. For example, in most of the current simulations, 
no core radius is found down to the simulation resolution of 
~ 7 kpc. 

The other obvious application for the simulations in this 
paper is the dissipationless formation of elliptical galaxies. In 
this case the dissipationless material is stars that formed early 
in the collapse. The final virialized objects found here are 
similar to observed elliptical galaxies. They have surface 
density profiles that roughly follow a de Vaucouleurs R1/4 law, 
projected ellipticities comparable to those that are observed, 
and have kinematic properties similar to those of elliptical 
galaxies. These kinematic properties include the observed v/g 
relation (Binney 1978), the observed flat rotation curves 
(Davies & Birkinshaw 1988), and the angles between the rota- 
tion axes and the projected minor axes (Davies & Birkinshaw 
1988). The main difficulty with forming elliptical galaxies in 
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this manner is finding a way to efficiently turn the baryons into 
stars at an early epoch. Perhaps if stars form efficiently in the 
centers of the clumps, the final virialized objects would be 
similar. Such investigations will have to be done with com- 
puter codes that include gas dynamics (e.g., HK). 

5. CONCLUSIONS 
Dissipationless collapse with cosmologically realistic initial 

conditions more closely resembles a multiple merger event 
than the smooth collapse of a spherical top hat. The resulting 
density profiles are well described by a modified Jaffe model, 
which resembles a de Vaucouleurs R1/4 profile in projection. 
The quantitative shape of the density profile is most dependent 
on the amplitude of the small-scale power with almost no 
dependence on the power-law slope. This implies that it is the 
largest subclumps that dominate the violent relaxation 
process. The radial orbit instability appears unimportant in 
these collapses and the final shapes range from oblate to tri- 
axial to prolate. The final shape seems to be related to the 
relative importance of the small-scale power and the solid 
body rotation in the initial conditions. With these more 
general initial conditions the initial T/W does not completely 
determine the final equilibrium state. The equilibrium systems 
are slowly rotating, with flat rotation curves (i.e., the actual 
rotation of the particles), and their shapes are supported 
through an anisotropic velocity dispersion. 

The final equilibrium states closely resemble elliptical gal- 
axies with projected ellipticities ranging from El to E6, lending 
support to the idea that elliptical galaxies formed through dis- 
sipationless collapse. The collapses could also represent galac- 
tic halo formation, but they probably cannot be trusted to very 
large radius due to the lack of secondary infall. This type of 
information will have to wait for even more realistic collapses 
of nonisolated perturbations. 
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