1
a1
Q1
)
2,
[=h

L

&SS 178 "Z61B.

RADIATING SPHERES IN GENERAL RELATIVITY WITH A
MIXED TRANSPORT ENERGY FLOW

W. BARRETO
International Centre for Theoretical Physics, Trieste, Italy
and

Laboratorio de Fisica Teorica, Departamento de Fisica, Escuela de Ciencias,
Niicleo Sucre, Universidad de Oriente Cumana, Venezuela

and

L. A. NUNEZ*
International Centre for Theoretical Physics, Trieste, Italy
and

Laboratorio de Fisica Tedrica, Departamento de Fisica, Facultad de Ciencias,
Universidad de Los Andes, Mérida, Venezuela

(Received 4 June, 1990)

Abstract. A semi-numerical method by Herrera et al. (1980) is extended to handle the evolution of general
relativistic spheres where diffusion and free streaming radiation processes coexist. It is shown when
mixed-mode radiation is present a very different hydrodynamic picture emerges from the models previously
considered in both radiation limit. Characteristic times for free streaming, hydrodynamics, and diffusion
processes are considered comparable. Hydrodynamics and radiation are strongly coupled and the particular
equation of state of the model emerges as a very important element in the dynamic of the matter distribution.

1. Introduction

General relativity has proven to have very important influences on the hydrodynamics
of the gravitational collapse leading to a supernova explosion (Takahara and Sato, 1984;
Baron et al., 1985). In a supernova scenario virtually all the gravitational binding energy
of the collapsing configuration is radiated away in a form of neutrinos. The coupling of
this neutrino radiation to the material hydrodynamics is most likely crucial to deliver
a supernova explosion (Burrows and Lattimer, 1986; Copperstein, 1988; Giovanoni
et al., 1989).

The two possible limits for the escaping radiation are free streaming out and diffusion.
In the free free-streaming out limit the radiation field is slightly coupled to the matter
hydrodynamics; therefore, typical radiation times are much shorter than the corre-
sponding hydrodynamic ones. But in the diffusion limit approximation, because the
matter is highly opaque to the radiation, the opposite inequality is valid —i.e., radiation
times are larger than hydrodynamic characteristic intervals.

Free streaming out is associated to the early epoch of the collapse, while the diffusion
limit approximation is though to be valid at late stages. During the free-streaming
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phase, at most, 19, of the total amount o radiated binding energy is released in 10 ~*
of the total characteristic time for a supernova processes (Cooperstein, 1988). Between
these two limits radiation and hydrodynamics are strongly coupled and have important
mutual influences.

Some years ago there have been reported a semi-numerical method to follow the
collapse of a general relativistic radiating matter configuration in a free-streaming limit
approximation (Herrera et al., 1980; Herrera and Nufiez, 1990, for a review). This
method, extended to follow the collapse in the diffusion limit approximation (Herrera
et al., 1987a), has recently been used to study the influence of diffusion processes in
radiating general relativistic spheres (Barreto et al., 1989; Herrera et al., 1990). From
this two opposite limits there have emerged qualitatively different hydrodynamicpictures
for a gravitational collapse of a matter configuration having the same equation of state.
In fact, Herrera et al. (1980, hereafter abbreviated to HIR), had found in Tolman VI-like
radiating sphere, in the free-streaming limit approximation, outer matter shells bounce
earlier than the inner ones. Recent calculations (Barreto et al., 1989) for the same
Tolman VI model, but in the diffusion limit approximation, yield the opposite picture
for the bouncing, i.e., inner shells bounce earlier than the outer ones.

In the present work we extend the recent work of Herrera et al. (1990). Free-streaming
out and diffusion processes coexist. It is assumed for a local co-moving observer that
free-streaming processes are proportional to diffusive ones. Within the framework of the
above-mentioned semi-numerical method both the initial data and the profile of
radiation are given at the surface of the matter distribution. In particular, the form of
this profile is a very relevant physical input because it sets the time-scale for the
hydrodynamic evolution of the sphere. Consistent with this approach the ‘proportionali-
ty function’ between both processes is calculated from the radiation profile at the surface
of the configuration.

This work is organized as follows. In Section 2 the conventions used, the Einstein
field equations, and an outline of the method are sketched. Section 3 contains a
description of the models worked out. The discussion of the results is presented in
Section 4.

2. The Field Equations and the Method

2.1. THE ENERGY MOMENTUM TENSOR, THE METRIC AND THE EINSTEIN
EQUATIONS

Let us consider a nonstatic distribution of matter which is spherically symmetric. In
radiation coordinates (Bondi, 1964) the metric takes the form

ds? = e?A((V/r) du?® + 2 du dr) — r* (d9? + sin?9 dop?), (1)

where f and V are functions of u and r; u = x° is a time-like coordinate, r = x? is the
null coordinate and 3 = x? and ¢ = x> are the usual angle coordinates. It is worth
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mentioning that the u-coordinate is the retarded time as seen by a distant observer and,
therefore, u-constant surfaces are null cones open to the future.

The hydrodynamic scenario, as viewed by a local Minkowskian observer co-moving
with the fluid, consists of:

(i) An isotropic fluid of density p and pressure P.

(i1) Isotropic radiation energy density 3 4.

(i) Unpolarized radiation energy flux density £ travelling in the radial direction.

(iv) Radiation energy flux density ¢ diffunding in the radial direction.

Therefore, for this co-moving observer the covariant energy-momentum tensor is

(p+3P+8) -b-4 0 0o |
. -8-¢ (P+2+8) 0 0
T, =
0 0 (P + 2) 0
0 0 0 (P + 2)

This energy-momentum tensor describing this fluid can be written, for a non-co-mov-
ing observer, in radiation coordinates as (Herrera and Nuiiez, 1990, for details);

T,=E+P)U,U,-Pg, + KK +QU,+QU,, 2)

where P=P+ P, p= p + 3.
The four-velocity is given by

\1/2 —1/2 _ 1/2
U, =0ef(1 - w*)~ 12 (—) + 0ef <K> (1 a)> ; (3)
r ¥ 1+ w

the null four-vector is

V 1/2 1—(0 1/2
sl (2 4
# # ¥ l+w “)

and the heat flux vector can be written as

1/2 _ 1/2 -1/2
s (- () o
r I+ow ¥

Note that

Q“U, =0 (6)

is valid for the above expression (5). Also, note that we have kept each contribution to
the radiation fields, free streaming and diffusing, as viewed by the local co-moving
observer.
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Outside matter, Equation (1) should represent Vaydia’s metric, i.e.,

— my(u) (8)

p=0. V=r-m, B 4nr(r — 2m(u)) ’

where m is an integration function depending on u, which is the same as the ‘mass aspect’
defined by Bondi eral. (1962). In addition, this ‘mass aspect’ coincides with the
Schwarzschild mass in the static limit. Inside the matter configuration m(u) is
generalized to m by considering everywhere

V =e(r- 2m(u,r)). 9

Now, the Einstein field equations take the form (Herrera ez al., 1987a; Herrera and
Nufiez, 1990) of

) ! + Pw? 1+ 24

r 1 - w? 1-w/ (- o0?)
2
e e (-2, o
dnr(r — 2m) ¥
_ p—Po [(l1-o m,
e 2BT - — ( >= s (IOb)
Tl 1 1+ w 4ny?
2m l1-w 1-w r— 2m
(1_f>T11:*(P+P)_24< ): 5 B, (10c)
r 1+ w 1+ w 2nr
-T7=-T;=P=
_ -2 9
- Do i(l——’")(wn 4ﬁf—&)+
47 81 r s

+ 3ﬁl(l - 2n~11) - ’;lll
8nr

(10d)

Note that these equations are slightly different from those displayed in Herrera et al.
(1987a). Our ¢ differs from their Q by a factor - i.e.,

- (1 - w?)1?
T~ 2y ¢ (I

Observe that, given the metric coefficients /2 and f for a radiating sphere with free
streaming and heat flow (£ # 0 and 4§ # 0), the system (10a—d) is underdetermined to
find the physical variables w, p, P, ¢, and &. Therefore, to obtain them unequivocally,

it is necessary to introduce additional information about the nature of the physical
processes involved within the matter configuration. For the present work we shall
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assume that
£E=%4q,

i.e., for alocal co-moving observer free-streaming processes are proportional to diffusive
ones. In general this ‘proportionality function’ & should be a function of time « and
position r and should be given by the microphysics of the radiation transfer. In this paper
we do not discuss the mechanisms inducing either free streaming or diffusion; rather,
we are interested to study to what extend they influence the hydrodynamic when both
are considered simultaneously. For simplicity and without depriving it with all its
physical meaning, we shall assume % as a funciton of u. With this, rather strong,
assumption this % can be calculated at the boundary surface, provided the correspond-
ing profiles of radiation emerging from the different processes considered. We shall refer
to this point later in this section.
Now, defining two auxiliary functions

- +Pow (l-w
p-trfe(1=9) (120)
l+w l1+w
and
ﬁ:P*pw—q(l_“’» (12b)
1+ o 1+ o

which are referred to as the effective density and the effective pressure, respectively.
Integrating the field equations (10b) and (10c) it can be obtained

r

= J41tr2,5 dr (13a)
0
and
o _
g= (5 + P)dr. (13b)
r—2m

a(u)
Consequently, 7#(u, r) and P(u, r) are written as functions of p and P in the same
way that they are expressed in terms of p and P for the static limit.
2.2. JUNCTION CONDITIONS AND THE SURFACE EQUATIONS

For the method outlined below to be consistent, it is necessary to match the interior
solution to the Vaidya metric at the surface of the distribution. This matching can be
carried out either by using Darmois~Lichnerowicz conditions (Bonnor and Vickers,
1981) or, by requiring the continuity of the functions f and / across the boundary of
the distribution and demanding that

—:BOa+(1_
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at this boundary surface (Herrera and Jiménez, 1981). From now on the suffix a
indicates the corresponding quantity is evaluated at the surface r = a(u).

If we use that Bis continuous and f = 0 for the Vaidya metric, we may expand it near
the boundary surface r = a(u) as

Boa + aPra =0, (15)

where @ = da/du. If we substitute this last expression back into (14) and using field
equations (10b) and (10c), we obtain

7 -P
(1 _ 2ma> {wapa a + qa} -
a 1 - w,
a- A . (16)
(pa + Pa - 2Qa)

In radiation coordinates, in general, the velocity of matter is given by Bondi (1964) as

oV o (17)
du r 1l-w
Therefore, it follows that
a= (1 - 2’””) P (18)
a/)l-ow,
If we compare (16) and (18) we may get
P,=q,. (19)

Thus the pressure at the boundary of a heat conducting sphere is discontinuous and does
not vanish (Santos, 1985; Herrera et al., 1987a, b). Instead, as seen from a local
co-moving observer in radiation coordinates, it coincides with the value of the heat flux
at the surface of the sphere. The crucial point of the HIR-method is the system of
ordinary differential equations for quantities evaluated at the surface: the surface
equations. Two of these equations are the same for any spherically-symmetric model.
The first one is Equation (18), where

m, = m(u)
is the total mass. If we scale the radius g, the total mass m, and the time-like coordinate
u by the initial total mass m(u = 0) = m(0),

A = a/m(0), M =m/m(0) and u/m(0)=u;
and define

1
F=1-2M/A and Q= "

l - ow,

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991Ap%26SS.178..261B

1
a1
Q1
)
2,
[=h

L

&SS 178 "Z61B.

RADIATING SPHERES IN GENERAL RELATIVITY 267

Equation (2.19) can be written as
A=FQ-1). (20)

The second surface equation relates the total mass-loss rate with the energy flux
through the surface. This can be obtained by evaluating the field equation (10a) at both
sides of the boundary surface; it can be shaped as

1;?=Q+E"”+(1—F)(Q—1)

F A @)

where
Q=4na*§,2Q-1) and E"=4na’:"(2Q - 1).

If independent profiles for FQ and FE™ are given, then % can be written as

B Ein
0

The third surface equation can be obtained from the field equations (20b), (10c), and
(10d) evaluated at r = a(u) or, equivalently, by recalling the conservation equations

(T{‘;u)a=oa

(0,2
(1 = 2m/r)/oa or/a

+ [M (4n1’+ T)] _ 2o P+ 2P, . (22)
(1 - 2m/r) r’)1.  a a

We stress the conspicuous role played by the effective variables 5 and P in this
relation, which is the generalization of the Tolman—Oppenheimer-Volkov equation for
nonstatic radiative situation. After some straightforward manipulations and in case that
the effective density is separable, i.e., p = A(r)g(u), it can be written as

F

1.e.,

§+ (1-F) Q= 9F,Q,A)m(0), (23)
where
G(F,Q,A) = 2QF(1~— £ P, - QZFEEI -h, (F-1)(Q-1)x
Ap, Pa
x [4na,7)a Be-1)_ 3;F+ ‘E—F B+ K(a)F},
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Rw) = {a—ﬁ + M <47t13 + ﬁ):l
or (1 - 2]’7’1/") r? a

K(a)Ei lnli1 J r? <@> dr].
da a J h(a)

See Herrera et al. (1987a) and Herrera and Nuifiez (1990) for details.

with

and

2.3. THE METHOD

The above considerations suggest the following procedure to obtain models of radiating
fluid spheres.

(1) Take a static interior solution of the Einstein equations for a fluid with spherical
symmetry,

pstatic = p(r) 5 Pstatic = P(r) .

(2) Assume that the r dependence of P and p is the same as that of P, and
Pstaic DUt taking care with the boundary condition which, because Equations (12a) and
(12b), it reads

~

Pa= _waﬁa'

(3) With the r dependence of § and P and if we use (13a) and (13b) we get 7 and
B up to three functions of u.

(4) For these unknown functions of u, we have a system of ordinary differential
equations ((20), (21), (23)) for quantities evaluated at the surface: the surface equations.
The first two equations (Equations (20) and (21)) are model independent, and the third
one depends of the particular choice of the equation of state.

(5) One has three surface equations (Equations (20), (21), and (23)) corresponding to:
the boundary radius A4, the velocity of the boundary surface (related to Q), the function
m evaluated at r = a(u) (related to F) and the ‘total luminosity’ FE™ + FQ. Providing
one of these functions the system of surface equations can be integrated for any particular
set of initial data.

(6) By substituting the result of the integration in the expressions for # and f, these
metric functions become completely determined.

(7) We obtained the ‘proportionality function’ &, the complete set of matter
variables p, P, , 4, and & can be algebraically found for any part of the sphere by

using the field equations (10a—d).
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3. The Modeling Performed

Within this section we shall work out two models, previously studied in both radiation

limits (Herrera et al., 1980, 1987a, 1990; Barreto et al., 1989). These models are
Schwarzschild-like and Tolman VI-like solutions. Although they are very simple models,
they are not deprived of some interesting physical meaning. In the static limit the
Schwarzschild-like homogeneous solution represents an incompressible fluid of con-
stant density. The equation of state of the static Tolman VI solution approaches the one
of a highly relativistic Fermi gas and, therefore, with the corresponding adiabatic
exponent of 3.
The first model considered is the Schwarzschild-like homogeneous model. The
effective density is assumed to be
p=7sw (24)
and the effective pressure can be easily computed
- 320 2 2\I2 (W2 _ a2)1/2
P=,5( YW= -r) 2 = (W* - a%) , 25)
3(W? —a®)'? - (3 -2Q)(W? - r?)'/2
where
2 _ 3 '
87f(u)
The surface equations are written as
A=FQ-1),
. FQ + FE™ A
poPeHEET 4
A
and
. Q 4Q% 3(1 - F)? F
Q= [Q 3 ) (2Q—1)(Q—1)—:|. (26)
1-F 34 24Q F

This system has been integrated by use of
A0) =5, F(0)=0.6 and Q(0)=1

as a set of initial data. It is also considered that the total radiated mass is
m,,q = 0.04m(0). For the present modeling it is possible to split the total radiated mass
in

Myiag = My _rad + mf— rad »

where m,_ .4 and m,_ 4 are the portion of the initial mass radiated by diffusion and
free streaming out processes, respectively. For the Schwarzschild-like homogeneous
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model we have used
My .q=25%10"*m(0) and M rag = 4.0 X 10~ ?m(0) .

The second model is the Tolman VI-like model expressed by the effective variables

-~ 3h(u
5 = M) en
r
and
~ p(1-9
p-r <_—(”)r> _ (28)
3\ 1 - k(wr -
The functions A(u) and k(u) are related through the boundary condition
P = - w,p, and, therefore, k(x) can be expressed as
40 —
k)= 2273
3a(4Q - 1)

For the present model the system of surface equations is

A=FQ-1),
F:FQ+FE"”+(1_F)f_1
A
and
. Q F F
L '} 2_ 2 (1-F)@EQ-3)4Q-1)-=]. 29
Q 1_F[QFQ 8A( ) ( ) (4Q - 1) F} (29)

We integrate the above system using the initial data,

A(0) = 6.6667 , F@0)=0.7 and Q(0)=0.8571;
considering that

My_raq =2.0Xx107*m(0) and m, 4 =2.1x10">m(0).

As we have stressed above, the particular profiles for free streaming and diffusive
processes are given independently (see Figures 1(a) and 1(b)) and the total luminosity
contour is formed by the superposition of these two profiles. The significant values for
their relative characteristic times and radiated energy are preserved. The integration is
carried only during the stage of the collapse where both radiation processes are present
and the running time is suggested by the behaviour of the matter variables themselves.

The Schwarzschild-like model is considered in Figures 2, 3, and 4. Figure 2 displays
the profiles for the radial velocity; radiation energy flux density profiles are sketched in
Figure 3 (heat flow) and Figure 4 (unpolarized radiation energy flux density). Figure 5
resume the radial velocity provides for a Tolman VI-like model.
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3.99

3.19

2.39

Fig. 1a. The pulse of radiation at the surface associated to free-streaming out processes. The FE scale is
multiplied by 10°.

110.00 : ] : - : |

88.00

[ L s 1 L
0.00 75.00 150.00

u

Fig. 1b. The radiation profile corresponding at the surface to diffusion processes. The FQ scale has been
multiplied by 107 while the time-scale has been by 102

4. Conclusions

We have seen, so far, that the HIR-method can be extended to include both diffusion
and streaming out radiation. Although a model-dependent hydrodynamic picture seems
to emerge from the present calculations, it is clear that the coexistence of both radiation
fields induces a drastic changes in the dynamics of the previously studied models
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(Herrera et al., 1980, 1987a, 1990; Barreto et al., 1989). It is also possible to associate
particular hydrodynamic behaviour to a specific radiation transfer scheme. In our
simulations these models radiate much less energy but they have a qualitatively different
evolution than those reported earlier (Herrera et al., 1980, 1987a, 1990; Barreto et al.,
1989).

0.03

0.02

0.01

0.00

Velocity

-0.01

002 L 0 B/ S
0.00 15.00 30.00

u

Fig. 2. The evolution of mass velocity for the Schwarzschild-like model. It is monitored at four different
fixed mass shells. Curves labeled by (d), (c), (b), and (a) correspond to ratios r/a, = 0.25, 0.50, 0.75, 1.00,
respectively.

0.00 — — Nﬁ :
240 |

~

x

]
T

Heat flow
1
<
N
(@]
T

©
)}
]

1200 Lo —
0.00 15.00 30.00

u

Fig. 3. Heat flow profiles for the Schwarzschild-like model. Curves are labeled by (d), (c), and (b)
correspond to ratios r/a, = 0.25, 0.50, 0.75, respectively. Heat flux values are multiplied by 10°.
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From Figure 2 it is clear that inner shells bounce for a Schwarzschild-like sphere. This
bounce, absent in the streaming out limit (Herrera et al., 1980; Barreto et al., 1989),
takes place when mainly diffusion processes are present (see Figures 3 and 4). Diffusion
seems to be a very important mechanism for a Schwarzschild model because, although
the contribution of these processes to the total radiated energy is fairly low, its
hydrodynamic scenario resembles the one found for the diffusion limit approximation.

12.00 - - T : T

3.80

b

o))

(&)
T

N

N

(@]
T

Radiation density

-0.80

-4.00 : : !
-0.00 15.00

730.00

u

Fig. 4. Free-streaming out flux profiles for the Schwarzschild-like model. Curves are labeled by (d), (¢),

(b), and (a) correspond to ratios r/a, = 0.25, 0.50, 0.75, 1.00, respectively. Radiation flux values are
multiplied by 10°,

0.15 : \ ; ] : .
0.09
0.03

-0.03

Velocity

-0.09

-0.15 - — —
0.00 12.50 25.00

u

Fig. 5. The evolution of mass velocity for the Tolman VI-like model. Curves labeled by (d), (c), (b), and
(a) correspond to monitoring shells at r/a, = 0.25, 0.50, 0.75, 1.00, respectively.
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For the Tolman VI-like model an opposite picture is obtained (Figure 5). In this case
the radiated mass emerging from free streaming is very low when it is compared with
that emerging from the diffusion processes. Nevertheless, the hydrodynamics of this
model is quite similar to the streaming out limit (Herrera et al., 1980; Barreto et al.,
1989): inner regions bounce earlier than the outer ones. Therefore, we may conclude
that, for the Tolman VI model, processes leading to streaming out are more relevant than
those described by the diffusion.

These model-dependent conclusions could be understood in the following sense:
when the characteristic times of free streaming, hydrodynamics, and diffusion proesses
are considered comparable, hydrodynamics and radiation are strongly coupled; i.e., the
particular equation of state chosen, emerges as a very important element in the dynamic
of the matter distribution.

We would like to conclude with the following comments:

(a) All the values for the radiated mass either by streaming out and diffusion
processes are the higher for a model to be physically reasonable.

(b) The obtained results are independent of the explicit dependence of the four-vector
Q,, on the gradients of temperature.

(c) We have considered a very crude approximation for the radiation transfer within
the matter distribution. The coexistence of free-streaming out and diffusion processes
have been described by a ‘proportionality function’ % . This function is assumed to be
dependent only on , in order to calculate it from the different radiation profiles at the
surface of the configuration. Again, we harbour the hope that the astrophysical
community, with much better information than we presently have, will provide the
adequate microphysics description missing in our work.
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