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INTRODUCTION

The concept of fractals, introduced by Mandelbrot (1982), has proven to
be a highly useful way to describe the statistics of naturally occurring
geometries. Fluid flow, whether it be the rise and fall of rivers (Bridge &
Jarvis 1982), turbulence in air or water (Nelkin 1989), or precipitation
(Mandelbrot & Wallis 1968), is found to follow self-similar patterns in
time and space. Natural objects, from mountains and coastlines (Mandel-
brot 1982) to the perimeters of forests (Loehle 1983), are found to have
boundaries best described as self-similar, appearing the same on all length
scales and having a measured size that depends on the scale of the measure-
ment. Microscopic processes of diffusion (Orbach 1989) and chemical
reaction kinetics (Kopelman 1988) can lead to fractal structures, while the
scale independence of natural processes can lead to the ubiquitous 1/f
noise and stretched exponential relaxation (West & Shlesinger 1990). Many
review articles and books have been written on fractals [see Hurd (1988)
for a bibliography], and reviews (Wong 1988) and conference proceedings
(Scholz & Mandelbrot 1989, Aharony & Feder 1989, Fleischmann et al
1989, Avnir 1989) have appeared on various aspects of fractal applications
in geophysics.

I do not attempt to review here basic fractal concepts as they are covered
in the cited literature but rather concentrate on fractal structure at the
microscopic scale in sedimentary porous rock and on the geometry of
flowing fluids. One objective of this work is to develop models for rock
pore geometry that will distinguish rocks from other porous materials.
The length scales of interest include the submicron structure on pore walls,
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the hundreds of microns structure in pore volumes, and length scales up
to the order of centimeters, where a collection of grains can first be
described as having the properties of a bulk rock. These geometrical
studies are the first step in establishing scaling relations between properties
measured at the laboratory and field scales.

A second objective of this work is to identify connections between the
geometry of flowing fluids in rock pores and the transport properties, such
as flow permeability. The pore geometry of many sedimentary rocks is
determined by the processes of crystal dissolution and growth that are
themselves closely related to fluid flow. Even though there is no known
general analytical relationship between the complex geometry of a pore
space and the transport properties of fluids in that pore space, we would
like to know if sedimentary rocks are a special case where geometry and
transport are closely connected. If they are connected, then ties between
various physical properties may be established that could permit improved
remote measurements of permeability and direct hydrocarbon detection.
General rules connecting geometry and transport in rocks could be possible
if the pores of interesting rocks can be described by a small set of geo-
metrical statistics, such as fractal statistics.

FRACTAL CONCEPTS FOR POROUS ROCK

The fractal properties of interest to rock physics can be described by
qualitative concepts. Figure 1 is a scanning electron photomicrograph of
a fracture surface of a sandstone taken from Thompson et al (1987a),
where its fractal properties were discussed. Qualitatively (statistically), the
structure seen in Figure 1 appears similar as the magnification is increased.
This structure is described as a stochastic fractal if there is a power-law
relation between the number of grains or surface irregularities of size / and
the size /. Measurements of the fractal properties must determine both the
distribution of pore or surface sizes and the correlation between sizes. If
the grains of size [ were all clustered together, then there could be long-
range order not characteristic of fractals. In each case the fractal character
resides between limits /; and /, that define the lower and upper scale
boundaries of the structure, respectively. The lengths /; and /, and the
fractal dimension (the exponent in the power-law size distribution) are the
statistics needed to define a pore fractal.

The fractal structure of Figure 1 might be described as a fractal quilt, a
patchwork fractal, or a multifractal. Regions smaller than some size /,,
typically a size close to the largest grain size, have surface and/or volume
fractal character. Different locations in a rock of size less than /, may have
slightly different fractal dimensions and fit together at graded or fractal-
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Figure I Scanning electron photomicrograph of a highly diagenetically altered sandstone.

defect boundaries. The /, values may have a Gaussian distribution and
vary from one location in the rock to another. Measurements on the whole
quilt then yield average values of /, and the fractal dimension Dy. The
details of such a model recently have been discussed by Nigmatullin (1989).

The structure on a fracture surface such as shown in Figure 1 contains
a small number of defects introduced by rock fracture. These defects, such
as grains plucked from the surface, comprise perhaps 10% of the observed
surface for a typical sandstone, whereas the remainder of the surface
structure is characteristic of the pore structure.

The rock pore geometry conveniently can be divided into the surface
geometry, the single-pore-volume geometry, and the collective geometry
of all of the pore space. The surface geometry of interest may extend from
atomic dimensions of a few angstroms up to the size of the pore volume
(hundreds of microns) if the pore surface is so complex as to be space
filling. The pore volume geometry may be thought of as two-dimensional
ribbons, or as tubes or spheres in cases where the pore wall is relatively
smooth. In other cases, the roughness of the pore wall is so great that
separating the pore wall from the pore volume is not meaningful. The
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ensemble of pores is often modeled as a collection of tubes on a lattice or
as the interstitial region jin a glass-bead pack. Such simple packings lead
to notions of pore throat and pore bodies, but in sedimentary rock the
definition of throats and bodies is questionable, and the dissolution and
precipitation associated with pore-fluid flow leads to pore-to-pore cor-
relations that may not be described well by random flow models. An all-
encompassing geometry of rock pores will probably require a multifractal
description in which the concepts of surface, volume, throat, body, etc,
are blurred by the evolution of the geometry from one scale to another.
However, the present discussion treats the pore surface, volume, and
ensemble of pores as separable concepts as a means of summarizing the
present literature.

FRACTAL MEASUREMENTS ON SEDIMENTARY
ROCK

Discrete Methods

The discrete methods for fractal measurements are based on the earliest
descriptions of curves with nonintegral dimensions (Mandelbrot 1982, and
references therein). In these methods the size or measure of the fractal
object is determined by using rulers of different lengths. Perhaps the best
known example is the measurement of the length of the coastline of an
island using dividers of different sizes. A fractal coastline will have a
length that increases in power-law fashion as the divider size decreases.
Alternatively, the coastline could be covered with circles of one size and
the number of circles required determined as a function of circle size. These
discrete, direct methods are robust and convincing ways to measure Drg.
In practice, such methods are often difficult to implement because the
geometry in question must be digitized with high spatial resolution so that
precise power-law relations can be observed over more than one decade
in length scale.

In one of the earliest direct measurements of Dg, Kay (1986, and ref-
erences therein) characterized the shape of fine particles of carbon black
using a two-dimensional projection and estimated the fractal dimension
to be 1.32 from data covering one-half an order of magnitude in length
scale. In similar work, Orford & Whalley (1983) attempted to discriminate
between various sedimentary particles based on their fractal character.
Fractal dimensions between 1.0 and 1.3 were reported. Different particle
types were distinguished on the basis of both the fractal dimension and
the length scales over which fractal behavior was observed. The limited
set of length scales available to these studies, the closeness of Dy to 1.0,
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and the limited statistics available from data on single particles lead to
uncertainties in the fractal interpretation of particle structure. Farin et al
(1985) have highlighted problems with a fractal analysis on these small
data sets. Clark (1986) has described several approximate divider methods
for a more rapid determination of an approximate Dg on particle shapes,
but these methods are also limited by the small data sets available on single
particles.

Ensembles of particles in sedimentary rocks provide opportunities to
develop good statistical relations over many orders of magnitude in length
scale. Hansen & Skjeltorp (1988) cover the pore volume and pore surface
observed on thin sections with boxes of various sizes. Surface and volume
fractal dimensions of 2.59 and 2.73 were determined for a North Sea
sandstone. These box-counting methods are selective to pore volume and
pore surface fractals, and good statistics can be accumulated by choosing
many different locations for the centers of boxes. They are limited in that
they can be readily applied only to thin sections where edges (pore surfaces)
and volumes can be distinguished. Also, thin-section resolution is typically
limited by the polishing process to 1 um. The Hansen & Skjeltorp results
do not permit a direct calculation of either the fractal pore volume or the
surface pore volume for comparison with measured porosity because the
limits of the fractal region are not reported. A comparison of the fractal
volume with measured porosity would lend support to the physical rele-
vance of the fractal measure. Such a comparison for the North Sea sand-
stone is particularly important because the fractal regime extends beyond
the size of the largest grains, and because the log-log plot for the surface
structure 18 nonlinear, indicating departures from fractal scaling.

The fractal dimension of the pore-grain interface may also be inferred
by measuring the chord-length distribution formed by intersections
between a line and the pore surface (Thompson et al 1987a). The principle
of these measurements is shown in Figure 2 for a thin section and a
fracture surface. Both measurements determine the same parameter-—the
distribution of chord lengths terminated by the interface. Note that chord
length is measured in both rock and pore regions. For a fractal interface,
the number of chords of length / will form a power-law relation with the
chord length /, and the power-law exponent gives the fractal dimension.
No correlation information is contained in the chord-length distribution,
so a power-law correlation establishes a necessary but not sufficient con-
dition for fractal structure. This disadvantage is balanced against the
advantage that the chord-length measurements can be done on both thin
sections and fracture surfaces, using both optical and electron microscopes,
and so cover length scales ranging from 1 ¢cm to 107> ¢cm (0.1 um). Chord-
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Figure 2 Schematic illustrations of chord-length measures of the fractal dimension of a
pore-rock interface. The top frame illustrates measurements on a fracture surface, while the
bottom frame represents a thin section.

length distributions are also sensitive to the length-scale limits for fractal
behavior and do not mix interpore and intrapore correlation information.

Chord-length measurements for two sandstones are shown in Figure 3.
The top part of Figure 3 shows a case where the fractal structure continues
over the whole range of measurement, while the bottom part shows a
crossover to homogeneous, nonfractal behavior near 10 um. The data of
Figure 3 are plotted such that the slope is 3 — D¢, so that a homogeneous
region has zero slope. This manner of plotting the data sensitively reveals
deviations from power-law behavior. Log-log plots made with a slope of
Dr tend to hide systematic errors in the data and should not be trusted to
support conclusions about fractal structure.

A direct measurement of the size distribution of pore volumes on a thin

© Annual Reviews Inc. * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991AREPS..19..237T

rI99IAREPS L0 237 !

FRACTALS IN ROCK PHYSICS 243

Qo 10 T T
o 1 1
© ]
e w
o
\ 4
)
) 3
C
o)
Fe)
© 4
o
w
e Slope=0.27
o -S—DF 1
S i
0o
5

1 1 1
z 0.1 1 10 100

Feature Size (um)

Q 10 T T
m 3
@ H
£ !
-~
N i + +
o ¥ +
' Slope=0.34
o)
‘:; =3-De 4 End of Fractal
o
w
Y
o
.
o
o
£
)

1 L 1
< 0.1 1 10 100

Feature Size (um)

Figure 3 The results of chord-length measurements on two sandstones. The top frame is
for the sandstone of Figure 1, where the upper end of the fractal region is not detected. The
lower frame is for a second sandstone, where the crossover to the homogencous region is
near 10 um (Krohn & Thompson 1986).

section can be used to estimate the nonfractal portion of the pore volume
and the distribution of pore volumes above the fractal-to-Euclidean cross-
over (Krohn 1988a). The pore volume distribution is determined by count-
ing the number of volume elements of length / having cross-sectional area
of one pixel. This number of volume elements is then plotted versus the
length /. Figure 4 is a plot of the pore-volume distribution and the cumu-
lative porosity for the sample of Figure 1. Below 6 um the power-law
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Figure 4 The pore-volume distribution (points) and the cumulative porosity (solid line)
measured on a thin section for the sample of Figure 1. The sample is from the Price River
formation in Utah. The cumulative porosity shows that most of the pore volume lies at
length scales in the fractal, power-law region below 6 um (Krohn 1988a).

distribution of volume elements is in the fractal regime, whereas above
6 um the pore-volume distribution is exponentially decaying. The data of
Figure 4 show that for that rock the fractal volume accounts for most of
the pore volume. The fractal porosity can be estimated from the relation
¢ = (I,/1,)’ %, where [, and [, are the lower and upper limits of the fractal
region, Dr is the fractal dimension, and ¢ is the porosity (Katz & Thomp-
son 1985). This relation for porosity was used to calculate ¢ for a group
of sandstones whose pore space is dominated by fractal structure. The
length /, is experimentally determined, while /, is an adjustable parameter
assumed to be the same for all the samples. The measured and calculated
porosities were found to be in good agreement with /; = 2 nm (Thompson
et al 1987a). The 2-nm, molecular length scale is consistent with generation
of fractal structure on pore surfaces by crystal growth and nucleation
(Katz & Thompson 1985) and is consistent with an empirical connection
between fractal structure and clay content (Wong et al 1986). The agree-
ment between calculated and measured porosities lends support to the
conclusion that the fractal parameters measured on those samples are
measures of pore volume.

The exponential decay of volume elements at /,, as shown in Figure 4
above 6 um, may be typical of the boundaries of fractal regimes in natural
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systems. The power-law region would be expected to end smoothly because
the fractal-quilt picture suggests that there is a distribution of fractal
dimensions and /, values. The exponential decay may indicate a Gaussian
size distribution of fractal patches.

Spectral and Scattering Methods

The discrete methods microscopically digitize and analyze data in the
spatial domain, while the spectral and scattering methods transform to the
spatial frequency of wavenumber domain. Among spectral and scattering
methods, I consider here small-angle neutron scattering, autocorrelation,
and spectral density methods. Generally these techniques have the advan-
tage that the data are either collected as averages over the whole sample
with no microscopic digitization or are numerically transformed to the
frequency domain where they are analyzed. The disadvantage of these
methods is that the interpretation is often model dependent, and the
transformed data may not sensitively distinguish subtle differences between
two models.

The pore-space autocorrelation function measured on a thin section is
closely related to one definition of a fractal pore set (Mandelbrot 1982).
If the pore space is fractal, then the probability of finding pore space at
distance r falls off as r°~?. A measurement of this type on a rock section
would, in principle, be an unambiguous test for fractal behavior. In a few
cases this measurement is satisfactory for rocks, but in most cases it is not,
for two reasons. First, the range of length scales that can be measured is
too limited; second, overlapping uncorrelated pores distort the power-law
result.

Katz & Thompson (1985) made autocorrelation measurements by a
classical optical technique. Backscattered electron micrographs of polished
thin sections were photographically enhanced with high-contrast black-
and-white film to produce a binary image. Two identical negatives were
then made on 35-mm-film format. The two films were placed in an optical
microscope to measure the transmitted light through both films. The
autocorrelation function is given directly by the transmitted intensity as a
function of the distance one film is translated relative to the other.

Figure 5 is a set of results for a fractal pore space that illustrates the
information contained in such data. The data are on a log-log plot to
identify a power-law component. The x-axis is the lag—the translation of
one film relative to the other from the position of maximum registry. The
y-axis is the transmitted intensity and is proportional to the autocor-
relation. At small lag the plot is approximately linear but continues over
less than one order of magnitude in length scale. At longer lag, the intensity
flattens off. This is the behavior expected for a fractal pore space when the
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Figure 5 Autocorrelation measurement of the fractal dimension for the sample of Figure
1. The slope is D — 3, giving D = 2.73, in agreement with chord-length measurements (Katz
& Thompson 1985).

longer lags introduce overlap between separated pores that are randomly
correlated.

Pores that are not connected or that are separated by more than some
correlation length /, are uncorrelated. Power-law behavior is then expected
only between the resolution limit of ~1 um and an upper limit set by the
appearance of pores that are not correlated with those at zero lag.

The rock sample illustrated by the data of Figure 5 is an excellent
example of fractal behavior. This is the same rock sample illustrated in
Figure 1, and the Dy value determined from the autocorrelation agrees
with that measured by the discrete, chord-length measurement. It is a tight,
highly diagenetically altered sandstone from the Mesa Verde formation in
Utah. The alteration is so extensive that the sedimentary sand grains are
difficult to recognize. Because the pore infilling is so extensive, the whole
pore volume is a space-filling fractal, and the fractal structure continues
up to the dimension of the sand grains.

In other cases the diagenetic alteration is not so extensive. Only the pore
surface is fractal and/or the fractal structure stops short of the size of
grains (Krohn & Thompson 1986, Krohn 1988a). In these cases the auto-
correlation function has a complex shape with no power-law behavior.
The limited length scales available to thin-section measurements and the
inhomogeneities and anisotropies encountered in many rocks mediate
against the usefulness of autocorrelation measurements for fractal analysis
(Thompson et al 1987a).

Power spectrum or spectral density analyses have been made on numer-
ous geologic structures. They have not been widely used for micro-
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structural analysis but are included here for completeness. Huang & Tur-
cotte (1989) used the spectral density to analyze fractal maps of land
topography on a scale of kilometers; Brown & Scholz (1985) used surface
profilimeters to measure rock topography at scales of less than 1 m and
analyzed the data using power spectra; Hewett (1986) performed spectral
analyses of reservoir heterogeneity; and Wong (1987), Brown (1987),
Hough (1989), and Power & Tullis (1988) have discussed the relation
between spectral and divider methods. Geologic surfaces may be either
self-similar or self-affine fractals. A self-similar surface fractal is like the
pore surface fractal, where the processes of crystal nucleation, growth,
and dissolution produce three-dimensional structure with overhangs and
convoluted shapes. A self-affine surface fractal (Mandelbrot 1986) has
different scaling properties parallel and perpendicular to the surface and
might be expected to result from anisotropic processes, such as those
influenced by gravity (mountain profiles) or by abrasion (some fracture
surfaces). A fractal time series would be expected to be self-affine. But as
Hough (1989) points out, a power-law relation on a power spectrum
is only a necessary and not a sufficient condition for fractal behavior.
Nonfractal time series may have power-law Fourier transforms.
Small-angle scattering of X rays or neutrons provides a measure of
fractal properties at length scales between 50 and 0.5 nm. Wong (1987)
reported the neutron data on a shale and sandstones shown in Figure 6,
whereas earlier data by Bale & Schmidt (1984) were taken on coal. The

+Frio shale
xPortland sandstone
oCoconino sandstone

10°

Cross section/volume {cm™")

A | . [ S S A |

2x107° 1072 107"
o-1
qfA )

Figure6 Neutron scattering data on a shale and sandstones showing fractal surface structure
at length scales below a few tens of nanometers. Reproduced with permission from Po-zen
Wong (see Wong 1983).

© Annual Reviews Inc. * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991AREPS..19..237T

rI99IAREPS L0 237 !

248 THOMPSON

scattered intensity at small angles (small wavenumber g) is a power law.
For a surface fractal on rock grains the intensity is I(g) oc ¢~ °~?7, while
for a volume fractal the intensity is 1(g) oc ¢~ °f (Bale & Schmidt 1984).
The scattered-intensity power law then has an exponent lying between 3
and 4 for a surface fractal, and between 2 and 3 for a volume fractal. The
data of Figure 6 show that below a few tens of nanometers the scattering
is sensing surface fractal structure. Limestones and dolomites were found
to have smooth surfaces at these length scales. Lucido et al (1988) find a
similar surface fractal result for certain volcanic rocks, but in several
examples the power-law exponent is so close to —4 that fractal surface
scattering is not distinguishable from scattering from smooth particles
(Porod scattering with d = 2).

These small-angle scattering studies establish that the scattering at
molecular length scales is dominated by a surface fractal on the pore wall.
The results do not provide evidence concerning pore-volume fractals at
other length scales. Although the small-angle scattering found smooth
surfaces in limestones and dolomites, Krohn (1988b) found fractal pore
volumes in carbonates at length scales greater than 100 nm using image
analysis of electron photomicrographs. In some cases, such as the example
of bedford limestone, the individual grains are smooth, but the broad
distribution of grain sizes and their packing arrangement lead to a fractal
pore volume. The issue of having a fractal pore volume over many orders
of magnitude in length scale has led to some controversy (Roberts 1986,
Katz & Thompson 1986a). If the pore volume were a perfectly self-similar
fractal over a length-scale interval of, say, 2 nm to 100 ym, then it could
be argued that the largest free volumes would be of the order of 2 nm.
Also, it is known that for some model self-similar structures, a surface
fractal bounding a volume fractal will not have the same fractal dimension
(Hansen & Skjeltorp 1988), and indeed the volume enclosed by a surface
fractal need not be fractal. These concerns, based on ideally self-similar
fractals, are not relevant to real world, stochastic fractals, where we expect
to see Euclidean defects terminating the fractal region at both the large
and small length limits of the fractal region (Figure 4), and where we can
expect to see both surface and volume multifractals. Sinha (1989) has
discussed the general case of scattering from mass and surface fractals
with length-scale cutoffs /, and /,.

In recent X-ray and neutron scattering studies (Hurd et al 1989), the
small-angle scattering calculation of surface area was compared with sur-
face arca measured by adsorbates. High-surface-area silica and carbon
samples were studied. The samples had fractally rough surfaces that
behaved as if the surface area increased as the fractal dimension
approached 3. The data support the surface fractal models for scattered
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intensity and calibrate the surface adsorption methods used to measure
fractal dimension.

Small-angle scattering from fractal porous media has been of interest in
model systems related to applications such as catalysis. Rojanski et al
(1986) report multiple surface measurements on silica gel. Freltoft et al
(1986) discuss the effects of finite cluster size on scattering measurements.
Sharp cutoff lengths /, and /, result in slow changes in slope of the scattered
intensity curves and complicate the interpretation in those cases. Sinha et
al (1988) calculate the scattered intensity from rough surfaces, including
self-affine fractals. A review of the literature on small-angle scattering is
beyond the scope of this article; the reader is instead referred to this cited
literature.

Adsorption Methods

In addition to small-angle scattering, the fractal structure of surfaces at
molecular length scales can also be investigated by molecular adsorption.
In one of the earliest experiments on fractal surfaces, Pfeifer & Avnir
(1983) and Avnir et al (1983) reported data on surface coverage as a
function of molecule size. The idea is that molecules of various sizes can
be used as molecular-scale yardsticks to measure the area of a fractal
surface as a function of the size of the yardstick. The number of molecules
required to form a monolayer was measured for different molecules and for
one molecule on samples with different surface areas. Fractal dimensions
between 2 and 3 were obtained on a variety of powdered samples. Avnir
et al (1984) tabulated similar measurements on numerous materials, includ-
ing igneous and sedimentary rock. Pfeifer (1987) has reviewed the adsorp-
tion methods in context with other measurement means. In addition to
quantitatively measuring the adsorbed gas at one monolayer, adsorption
isotherms (Pfeifer et al 1989, Albano & Martin 1989) and molecular
dynamics (Drake & Klafter 1990) can be used to determine surface or pore
properties at molecular dimensions. Drake & Klafter (1990) find that the
molecular dynamics of fluids in porous silica glasses can be characterized
by an effective average pore size, and a fractal pore geometry is not needed
to explain the data.

Adsorption methods may, in some circumstances, yield biased values of
the fractal dimension if chemical disorder on surfaces is a dominant fac-
tor, or if molecular orientation or conformation is a function of coverage
or surface structure. These problems have been addressed by systematic
studies with molecules of various sizes and internal structures (Meyer et
al 1986). It further was suggested (Fripiat et al 1986) that molecular
adsorption does not ideally cover the interface (the molecule would have
to penetrate the solid to do this) but instead resides on the surface on one
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side of the interface. On extremely complex surfaces with Dy ~ 3, portions
of the surface may shadow neighboring surface, leading to incomplete
adsorption and an underestimate of Dg. There is also a potential ambiguity
as to when a monolayer coverage is achieved (Hall 1986). However, these
concerns have not proven to be of general significance in studies on geo-
logic materials, where measured values of D are in approximate agreement
with those obtained by other means.

Summary of Methods

Numerous methods have been used successfully to determine the micro-
scopic fractal properties of porous rock, each having its own utility. The
choice of method depends on the questions being asked and the length
scales of relevance. Almost all sedimentary rocks have some region of
fractal structure, and the existence of robust power-law distributions is
not an issue. [The only counterexample known to the author is novaculite,
a metamorphic, porous rock with no apparent fractal structure (Thompson
et al 1987a).] Sandstones and shales generally have fractal pore surfaces
at molecular dimensions below 500 A. These fractal surfaces may evolve
into fractal pore volumes at pore sizes, in which case the total porosity
can be estimated from a calculation of the fractal measure. Our experience
suggests that ~15% of measured samples fall in this category. In the
remaining cases there are varying degrees of pore-filling fractals. Car-
bonates may be formed by different processes from those involved in
sandstone diagenesis and hence have different structures. The molecular-
scale surfaces may or may not be fractal, while the pore volume may be
fractal even when the individual grains are smooth, just as if such a rock
were constructed from a distribution of spheres or cubes in the same
manner as numerically generated fractals.

All of the fractals discussed here are at the pore scale or below. In
general, interpore fractal correlations have not been reported, but such
studies have not been exhaustive. The molecular-scale fractals are of inter-
est in understanding gas adsorption measurements of surface area, rock
wettability, diagenesis, and petrography. The larger scale structure is of
interest in its impact on rock transport properties, particularly the electrical
conductivity in shaly rock (Sen 1989, Schwartz et al 1989) and flow per-
meability (Thompson et al 1987a).

The length-scale limits of the fractal regions may help to define the scales
where physical properties should be governed by one set of processes. In
this regard it would be interesting to know the upper boundary for the
surface fractals seen at molecular dimensions so as to better quantify
the surface influence on transport properties and surface conduction in
particular.
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FRACTALS AND TRANSPORT PROPERTIES

Fractals enter the problem of fluid transport in porous media in at least
two distinct ways. First, the fractal pore-structure information might be
used directly to calculate the conductivity and permeability of porous
rock. Second, the paths formed by flowing fluids or ions in pores may be
described by fractal models such as result from percolation theory. In this
second alternative, the pore space may be the model fractal, or the path
generated by the flowing fluid could be the percolation cluster independent
of the underlying pore geometry. Here I briefly summarize work of the
first kind—calculating transport on fractal or random structures—but
spend more time on the percolation problem as it is applied to rock
materials.

Models Connecting Pore Geometry and Transport
Properties

Adler and coworkers (Adler 1989) have pioneered the development of
permeability models on well-defined, deterministic fractal structures.
Stokes equations are solved for one- to three-dimensional geometries of
single or multifractal character. The systematics developed may help estab-
lish ties between the geometric concept of the fractal dimension of the
pores and the transport properties like permeability. Such connections
between geometry and transport might be generalized to more complicated
or statistical fractal structures. Recent work (Adler 1989) is aimed at
generating networks having the statistics of rock-pore systems. One inter-
esting result from these calculations is that one-dimensional fractal lattices
produce results consistent with the classical Kozeny-Carman relation for
permeability [k ~ ¢m?/c, where ¢ is the porosity, m is the hydraulic radius
(or the pore volume divided by the wetted surface area), and cis a constant.
Numerous variations of this relation exist in the literature (Dullien 1979)].
The Kozeny-Carman relation is based on a tube model that weights all
pore surface and pore volume equally and would be expected to work best
in situations such as the one-dimensional example, where all pores are
constrained to carry flow.

Berryman & Blair (1987) use an approximate image analysis approach
to define the pore-size parameter (the hydraulic radius) in the Kozeny-
Carman relation. Since (a) only the larger pores are expected to dominate
the flow properties and (b) microscopic surface roughness will have a
minimal effect, the pore space is assumed to be Euclidean, and a low-
magnification image is used to generate an effective volume-to-surface
ratio. This method will directionally give an improved connection between
geometry and transport but does not account for correlation in the pore
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space among pores of different sizes. Although there are the several
assumptions and approximations invoked in this method as noted, Berry-
man & Blair get reasonable correlations with measured permeability.

In another approach to connecting geometry to permeability, the per-
meability is rigorously calculated for a periodic array of spheres at low
sphere density (Zick & Homsy 1982). This exact result is one bound on
permeability at low sphere density. Disorder on the sphere lattice renders
the problem intractable, but upper bounds on the permeability can be
derived using variational methods (Weissberg & Prager 1970). In general,
the permeability of a random porous medium depends on an infinite set
of geometrical parameters—for example, an infinite set of correlation
functions. This set of statistics will not be known for natural media like
rocks. Weissberg & Prager (1970) showed that upper bounds can be
obtained using only correlation up to three-point correlation functions.
Berryman & Milton (1985, 1988) have extended the bounds to include
joint bounds on the electrical and thermal conductivities, the shear and
bulk modulus, and the electrical resistivity formation factor. Torquato &
Beasley (1987) extended the bounds to include overlapping spheres and
suggest that for large overlap the Kozeny-Carman relation will be close
to the computed upper bound. Rubinstein & Torquato (1989) further
bracket the permeability by establishing a means for computing a lower
bound on permeability. Torquato & Lu (1990) and Torquato (1990) con-
sider the case of a distribution of sphere sizes and draw an interesting
tie between the traps that regulate diffusion-limited reactions and the
permeability. This last point could help tie rock diagenesis to permeability.

The permeability bounds discussed above use the statistics of the -
point correlation functions that define pore geometry to derive transport
properties. Fractal statistics may also be used to define the pore geometry.
The fractal dimension is the first statistic in an infinite series of statistics.
The second higher order, geometrical statistic might be the correlation
between regions having the same fractal dimension (Thompson et al
1987a). Stanley (1984) has discussed the fractal statistics needed to specify
various physical properties. These statistics are geometrical but may not
be measurable using micrographs. For example, the fractal described by
the subset of pores making up the connected path of largest pores is not
apparent on a micrograph but might be available by injecting a sample
with liquid metal and measuring the geometric properties of the metal
path when the first connected path is formed. Similarly, other fractal
statistics that measure how far a particle diffuses before it reacts with the
wall, or the fractal dimension of a growing cluster of crystals, may be of
central importance in describing some physical process but, in general, are
not easily measured.
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Effective Pore Size Models

The flow permeability of a porous medium has units of length squared; it
is proportional to the cross-sectional area of some effective pipe size. The
problem of estimating the permeability from other physical or geometric
measurements may be reduced to posing the question, “What is the effec-
tive pore size for permeability?” Historically, this question was answered
by assuming that the onl/y characteristic length in a rock pore space is
the volume-to-surface ratio V/S (Scheidegger 1960, Dullien 1979). This
assumption led to the Kozeny-Carman relation k = (V/S)*(¢/C), as dis-
cussed in the previous section. Although this expression works very well
for some simple geometries, its accuracy will be poor (a) when there are
many small, high-surface-area pores; (b) when there are rough large pores
with surface structure that does not contribute to flow; and (¢) when there
are large pore volumes accessible only through small pores that increase
¢ without increasing permeability. The effective pore size is obviously a
function of all the geometrical parameters needed to estimate permeability
from geometry, i.e. an unbounded set of statistics. It is not generally
available from a single, strictly geometric measure, no matter how cleverly
that length might be chosen. Alternatively, the length parameter entering
the permeability can be viewed from the start as a transport property, and
a transport measurement other than permeability might be designed to
measure that length. I next describe two approaches to transport measure-
ments of the permeability length scale.

THE MERCURY INJECTION LENGTH SCALE This approach to estimating
permeability starts with the assumption that the pore space can be repre-
sented by a network of tubes. The tubes may be smooth pipes or fractally
rough pores. The tubes on the network have a broad distribution of sizes,
and they are randomly placed on the lattice. [The condition that the
distribution of sizes is broad is not a severe requirement because when the
pore diameter and length are the same, the hydraulic conductivity is
proportional to the cube of the pore radius. A factor of 2 or 3 in pore
radius will lead to a factor of 10 in the width of the hydraulic-conductance
distribution (Katz & Thompson 1986b).] There are no long-range cor-
relations (on the order of the sample size) in the size of tubes. When a rock
sample can be assumed to fit this model network, the transport properties
on that network and for that rock can be treated as a percolation problem.

Percolation theory has proven to be a very powerful technique for
modeling transport processes in random materials (Stauffer 1985).
Ambegaokar et al (1971), Shante (1977), and Kirkpatrick (1979) have
argued in the context of amorphous semiconductors that transport on a
disordered lattice can be approximated by assuming that electrical con-
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ductivity is dominated by transport through a subset of the most highly
conducting bonds. Katz & Thompson (1986b) have extended these ideas
to flow in porous media, where they suggest that permeability will be
dominated by flow on an effective path of large pores defined by mercury
injection. The most effective transport path can be visualized by pro-
gressively filling the pores one at a time, starting with the largest pore. At
some critical point, filling one additional pore will create a connected path
across the sample and fluid will flow. As additional pores are filled, the
capacity of the lattice to carry fluid will increase because the number of
pores and paths is increasing, but each additional pore is less and less
effective because it is smaller in diameter. Since the hydraulic conductance
of each tube decreases faster than the filled volume increases, the smallest
pores make a vanishingly small contribution to the total permeability. The
path that is created when the first connected cluster is formed is called a
percolation cluster. In three dimensions it is a fractal with a fractal dimen-
sion of 2.5 (Alexander & Orbach 1982). Note that in this model the pore
space has fixed geometry and the fluid is filling that geometry. The fluid is
percolating onto the lattice. The pore lattice is not a variable being con-
structed in this process.

Katz & Thompson (1986b) recognized that mercury injection defines
the first connected path and, hence, the diameter of the smallest pores on
that path (see also Charlaix et al 1986, Baudet et al 1987, Gueguen &
Dienes 1989). This smallest pore size on the connected path of largest
pores will be the required length /. defining the permeability pore size.
When mercury, a highly nonwetting fluid, is injected into a porous rock,
it seeks to occupy the largest pores at each capillary pressure. The electrical
conductivity across a sample can be measured to determine the point where
a connected path is formed. The pressure at that point can be related to
the effective pore size by the Washburn equation, / = 4y cos ¢/P, where /
is the pore diameter, y is the surface tension, ¢ is the contact angle, and P
is the pressure. The absolute permeability is related to the mercury injection
by the relation (Katz & Thompson 1986b),

k=2 (1)

where [, is the threshold length from mercury injection empirically deter-
mined to be at the inflection point on a mercury-injection curve [recent
numerical simulations also find electrical continuity at the inflection point
(E. J. Garboczi & D. P. Bentz, submitted for publication)], o is the rock
electrical conductivity, and o, is the conductivity of the fluid filling the
pore space. The constant 226 is not an adjustable parameter but rather is
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a result of the percolation model calculations. It arises from the fact that
not all of the flow can be assumed to occur right at the threshold condition,
and the dominant paths for conduction and fluid flow are not the same.
The approximations in the model indicate that the constant should be
accurate to within approximately a factor of two. Banavar & Johnson
(1987) and Doussal (1989) calculate slightly different values using other
approximations.

Equation (1) is very simple and superficially similar to a tube-model
expression for the permeability, but it has much broader applicability than
do tube models. It is expected to correctly estimate the permeability to
within a factor of two for all rocks, satisfying the general model assump-
tions. Figure 7 is a plot of measured absolute permeabilities vs those
estimated from mercury injection using Equation (1). We find that the
agreement is generally within a factor of two except for cases where there
are clear experimental problems associated with either measurement errors
at low permeability values, sample inhomogeneities, or cracked samples.
We do not find any systematic deviations, as suggested by Kamath (1988),
in the permeability/mercury-injection correlation. (When comparing mea-
sured and calculated absolute permeabilities, care needs to be taken to use
only permeabilities measured by gas flow extrapolated to infinite pressure.)
A least-squares fit to the data yields a slope of 0.997 and a constant of 197
instead of the ideal value of 226, well within the expected model uncertainty
of a factor of two. We have had excellent success in applying the mercury-
injection estimate of permeability to sandstones, carbonates, and meta-
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Figure 7 Comparison between absolute permeability measured by gas flow and that cal-
culated from mercury injection using Equation (1). The solid line is in agreement with
Equation (1), while the dashed lines display a factor-of-two variation.
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morphic rocks on samples ranging from 1 mm? to 10 cm?®. The data of
Figure 7 are representative of measurements made on several hundred
samples.

Well before the percolation description of mercury injection and per-
meability, there were empirical correlations established between mercury-
injection curves and permeability. The earliest attempts reasoned that the
complete injection curve was needed to define permeability (Dullien 1979).
In rock studies, Swanson (1981) first noted that the effective path could
be identified from mercury injection but chose parameters that yield the
effective path for conductivity instead of permeability (Thompson et al
1987a). Nyame & Iliston (1980) found an empirical parameter similar to
[, to describe permeability in cement paste, whereas Lukasiewicz & Reed
(1988) applied a mean-entry, pore-radius analysis to porous alumina.

LOCAL ELECTRIC FIELD PORE SIZE Johnson et al (1986) proposed a new
pore-size parameter, A, that is the pore volume-to-surface ratio weighted
by the electric field across the pore. This parameter is a geometrical pa-
rameter that can be determined on a lattice of resistors. It is a measure of
the surface and volume currents and can hence be of value in the study of
shaly rock, where the surface conduction may be large. In permeability
problems it is rigorously related to the high-frequency, ac permeability,
where the flow is a potential flow problem like the conductivity. At low
frequencies and dc, A is not rigorously related to permeability, but it has
properties that should make it a substantially better indicator than the
volume-to-surface ratio alone. Because it is weighted by the electric field
across the pore, it weights the pore-size distribution to reject dead-end
pores and positively weights the pores carrying the largest currents.
Banavar & Johnson (1987) have shown that /. and A are related to each
other within the approximations used to relate permeability to /. For
systems modeled well by those approximations, A may then be determined
from mercury injection. Banavar et al (1988) have proposed that a novel
dynamic measurement, in which the decay of a heat pulse is measured,
can be used to estimate A. If connections to other physical properties can
be made, then A may become a valuable parameter connecting electrical,
thermal, and flow properties that would facilitate remote measurements
of permeability.

Doussal (1989) has considered several models that vary the shape and
distribution of pores on the lattice. He finds cases where /. and A are not
equal and hence identifies several models that are not appropriate for
rocks. In a tube model the permeability sensitively depends on the cross-
sectional shape of the pores (Scheidegger 1960, Dullien 1979), and thus
the constant in Equation (1) can take on essentially any value. But E. J.
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Garboczi (submitted for publication) shows that for elliptical pores, the
effective pore size determined from mercury injection is the one needed to
define the hydraulic conductivity so that Equation (1) is independent of
pore cross-section aspect ratio. In unpublished work we have also con-
firmed this result for triangular pore cross sections.

FRACTALS IN MERCURY INJECTION The patterns formed when fluids enter
porous media have been studied in substantial depth. Lenormand (1989)
summarizes three types of displacement: capillary fingering of one fluid
into another when capillary forces dominate, viscous fingering when a less
viscous fluid displaces a more viscous fluid, and stable displacement of a
less viscous fluid by a more viscous one. Of the extensive literature on this
subject, only the case where mercury enters an evacuated pore space is
discussed here.

The earlier section on permeability pointed to work connecting the
mercury-injection threshold to absolute permeability. This connection was
based on percolation theory, which requires that the invading mercury
form a percolation cluster on the pore-space network. Such a percolation
cluster will be a fractal with Dg = 2.5 (Alexander & Orbach 1982). One
consequence of the fractal mercury geometry is that the electrical con-
ductivity as a function of mercury saturation is predictable from simu-
lations on a network or by computing the probability that increases in
saturation will create new connected, conducting paths (Thompson et al
1987b, Katz et al 1988). The experimental result shown in Figure 8 and
numerical simulations both show that the electrical resistance changes in
stepwise fashion as the mercury completes new conduction pathways. The
resistance step sequence forms a “devil’s staircase” of steps—a power-law
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Figure 8 The pressure dependence of the resistance for mercury injection into berea sand-
stone (Thompson et al 1987b).
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distribution of steps, as shown in Figure 9, with an increasing number of
steps detected as the resolution increases. Batrouni et al (1988) and Roux
& Wilkinson (1988) also verify the power-law step distribution, while Katz
et al (1988) show that the gravitational dependence of the step distribution
is predictable from percolation theory in a potential gradient.

From visual inspection of injected Wood’s metal patterns, Swanson
(1979) called attention to the filamentary nature of partially saturated
rock. Recently Clement et al (1987) measured directly the geometrical
properties of Wood’s metal injected into crushed glass. Correlation
measurements showed that the Wood’s metal formed a fractal structure
with Dg = 2.5 between the grain size and 20 grain sizes. It is then well
established from direct and indirect measures of geometry that the per-
colation model of mercury injection is appropriate, and hence that the
assumptions behind Equation (1) are appropriate for rocks.

RECENT ADVANCES

Work to date has shown that fractal pore structures are ubiquitous in
sedimentary rock, that the correlations between pores are sufficiently ran-
dom to apply percolation concepts to the study of flow through the pores,
and that the old technique of measuring pore sizes with mercury injection
actually gives information about the percolation structure (a fractal)
formed by flowing fluids. Recent work suggests that capillary pressure also
may be of use in measuring fractal properties of pore surfaces.
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Figure 9 The log-log plot of the number N of resistance steps of size AR vs the resistance
step size AR for the injection curve of Figure 8. The power-law relation indicates a “devil’s
staircase” of resistance steps, in agreement with a percolation model and simulation of
injection into a finite sample (Thompson et al 1987b).
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De Gennes (1985) pointed out that the capillary pressure curve for a
porous medium with a fractal pore surface will have a power-law form at
low wetting-phase saturation. This power-law form will occur when all of
the fractal surface is fully connected to the pore body, so that accessibility
to structure is not limited by penetration through smaller structure. For
mercury injection this means that the high-pressure part of the injection
curve will have a power-law form if all surface structure is equally acces-
sible. Friesen & Mikula (1987) have applied these ideas to mercury injection
in coal, where they find fractal structures in a few cases with 2.6 < Dg < 3.
Davis (1989) also has made the connection between water/air capillary
pressure and fractal pore structure. Using published data, he finds that
Dy = 2.55 for berea sandstone. Building on these suggestions, we have
found that the high-pressure region of the injection curve for berea sand-
stone is a power law with an implied surface fractal dimension of 2.56, in
agreement with Davis’ calculation, and that /;, = 14 nm and /, = 1 um for
this surface fractal (A. H. Thompson, to be published). The pore-volume
fractal dimension for berea sandstone was previously measured to be
2.85 (Krohn & Thompson 1986). Additional data will be required to
unambiguously connect capillary pressure to fractal structure, but if suc-
cessful, this technique could become the fastest way to measure surface
geometrical properties of porous media for a wide range of applications.
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