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ABSTRACT 

Stellar photometry with CCDs usually relies on the construction of aperture growth curves for 
its ultimate calibration. In the past this has been a tedious chore requiring a great deal of human 
intervention, mostly to select data suitable for defining empirical growth curves from data sets 
containing some corrupt values. A computer program has been written which incorporates a priori 
knowledge of the typical morphology of stellar profiles and is capable of taking a synoptic overview 
of all the aperture growth curves from an entire night or observing run. The program is thus enabled 
to make its own judgments as to the reliability of individual data points and to draw physically 
reasonable growth curves without human supervision, even for individual frames with insufficient 
or badly contaminated data. The program runs quickly and independently and produces results not 
noticeably inferior to those obtained by traditional hand-and-eye methods. 
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1. Introduction 

Charge-coupled devices (CCDs) have revolutionized 
the field of star-cluster photometry. Their high quantum 
efficiency and generally excellent linearity and stability 
represent major advances over older photographic and 
electron-tube technology. Furthermore, their two-di- 
mensional format offers more than the simple multiplex 
advantage that comes from their ability to record many 
stars in a single integration: Profile-fitting techniques 
permit precise photometry to be obtained in fields too 
crowded for work with the older technologies. Crowded- 
field stellar photometry is now routinely carried out 
with sophisticated, heavily automated computer software 
packages such as ROMAFOT (Buonanno etal. 1983; Buo- 
nanno and lannicola 1989), STARMAN (Penny and Dick- 
ens 1986; see also Penny, STARMAN: A Users Guide), 
WOLF (Lupton and Cunn 1986), DAOPHOT (Stetson 
1987; see also Stetson, DAOPHOT Users Manual), and 
DoPHOT (Mateo and Schechter 1989). 

The profile-fitting techniques used by these computer 
programs depend on intensity scaling to define the rela- 
tive magnitudes of stars contained within a given digital 
image. First, a model two-dimensional brightness profile 
resembling star images in the frame is somehow con- 
cocted and stored in the computer. Then for each star an 
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intensity scaling factor is computed such that, when the 
model profile is multiplied by this factor, the intensity 
values actually observed in the detector pixels containing 
the image of the star are best1 reproduced. In practice, 
this scaling factor is determined primarily by the inner- 
most few pixels of the image of a star where the signal-to- 
noise ratio of the observed intensities is highest, the 
fractional contribution of the diffuse sky brightness is 
lowest, and the chance of contamination by other astro- 
nomical objects is least. Usually, "best" estimates of the 
centroid position of the star and of the local sky brightness 
are determined at the same time. 

The magnitudes returned by such profile fits are rela- 
tive—they represent the brightness ratios (φ the magni- 
tude differences) between stars recorded in a given frame 
and the model stellar profile for that frame. To relate 
these differential magnitudes to an external photometric 
system—i.e., as defined by some set of standard stars— 
one must establish a fundamental magnitude zero point 
for the frame, which will be determined by the total 
number of photons actually detected from a given star per 
unit time. To the extent that the model profile may differ 
from one exposure to another because of changes in the 
seeing, telescope tracking errors, or defocusing, this zero 
point cannot be determined by a simple relative scaling of 
the model profiles of the different frames. Thus, except in 
the unusual and fortunate circumstance of having previ- 
ously established photometric standards in each of the 

Usually in a least-squares sense. 
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program fields, it is necessary to determine the absolute 
number of photons contained within the model profile of 
each frame. Only then may the inherent stability of the 
detector's sensitivity be used to define the magnitude 
zero point of one frame with respect to another. From this 
point on, the reduction of the program observations to a 
standard system—viz., by direct observation of standard 
stars and derivation of transformation and extinction 
corrections—follows the methods traditionally used in 
photomultiplier photometry (e.g.. Hardie 1962; Harris, 
FitzGerald, and Reed 1981; see also Stetson and Harris 
1988, §IV). 

Determining the number of photons contained with- 
in the model stellar profile of a given frame is not neces- 
sarily straightforward. Some computer programs (e.g., 
ROMAFOT, STARMAN, DoPHOT) encode the model 
star image as an analytic function, with parameters which 
can be adjusted by fits to actual observed star images so as 
to optimize the simulation. Once these parameters have 
been determined, the analytic function could—in princi- 
ple—be integrated numerically from minus infinity to 
plus infinity in χ and y to determine how much total flux it 
represents. However, for practical reasons the analytic 
formulae typically contain only a few adjustable parame- 
ters, and these must be determined so as to optimize the 
profile match near the center of the stellar image, which 
will ultimately dominate the profile fits. There is no guar- 
antee that the same analytic function will adequately 
mimic the extended wings of the profile. These wings 
usually span many arc seconds so, even though their 
surface brightness is low, they can still contain a non- 
negligible fraction of the total flux of the star. 

A few computer programs (e.g., WOLF, DAOFHOT) 
represent the observed stellar profile—either in whole 
(WOLF) or in part (DAOFHOT)—by a digital array of 
brightness values actually observed for one or more 
bright stars in the frame; the profile is then evaluated by 
numerical interpolation within this data array. In princi- 
ple, the tabulated brightness values could be summed to 
yield the total number of detected photons for the star, 
but once again high precision in the empirical profile is 
needed only for the central, bright portion of the star 
image which will dominate the actual profile fits and will 
not necessarily be achieved in the extended wings. 

As a result, most profile-fitting photometry relies on 
two additional reduction steps, synthetic aperture pho- 
tometry followed by a growth-curve analysis, to measure 
total integrated magnitudes for one or more stars in each 
program image. The mean difference between these 
"true" instrumental magnitudes and the relative profile- 
fitting magnitudes for the same stars establishes an abso- 
lute zero point for the profile-fitting results, which allows 
a valid comparison to be made between program-star data 
and observations of photometric standards in different 
CCD frames. Active practitioners of CCD photometry have 

long been familiar with this process (see, e.g.. Da Costa, 
Ortolani, and Mould 1982, §II(a); Rich, Da Costa, and 
Mould 1984, §11; Stetson, VandenRerg, and McClure 
1985, §11; Smith et al. 1986, §11, steps 9 and 10), and— 
while I do not recall ever seeing the statement made in 
print—many CCD photometrists believe it may be the 
single most crucial step limiting the absolute accuracy of 
the final photometry (e.g., G. S. Da Costa, private com- 
munication; R. D. McClure, private communication; 
M. Rolte, private communication). However, a compre- 
hensive justification of the aperture growth-curve tech- 
nique has only recently appeared in the refereed litera- 
ture (Howell 1989); the reader is directed particularly to 
this paper for a thorough discussion, but I will provide a 
brief summary here. 

2. Summary of the Aperture Growth-Curve Method 

The principle of synthetic aperture photometry is sim- 
ple: Ry adding up the observed flux in pixels within some 
(comparatively large) radial distance of the centroid of a 
star and subtracting from that total the contribution ex- 
pected from the diffuse sky brightness, one obtains an 
estimate of the total flux from the star alone. To the extent 
that no other objects are contained within the aperture 
and the sky-brightness estimate is correct, and provided 
that the "aperture" radius is sufficiently large that seeing, 
tracking, and focus errors do not affect the fraction of the 
star's flux which falls outside the aperture, one then has a 
basis for comparing stellar fluxes among digital frames 
with different star-image profiles. The computer-defined 
"aperture" within which the pixel values are summed in 
the two-dimensional data array is a direct analog to the 
physical aperture placed at the telescope focus in a stan- 
dard photometer. 

The need for a growth-curve analysis is more subtle and 
rests on signal-to-noise arguments. As discussed briefly 
by, for instance. Da Costa et al. (1982) and Stetson et al. 
(1985), and recently in much more detail by Howell 
(1989), a larger synthetic aperture obviously contains 
more stellar flux (= signal) than a smaller one. However, 
the rate at which the total signal grows with increasing 
aperture size declines as the wings of the stellar profile tail 
off toward zero intensity. On the other hand the noise of 
the measurement grows rapidly with increasing aperture 
radius. Such random errors as the total readout noise 
contained within the measuring aperture, the Poisson 
shot noise in the diffuse-sky contribution, and flat-field 
errors on small spatial scales all grow as the square root of 
the number of pixels—that is, linearly with aperture 
radius. Local systematic errors caused by a misestimated 
sky brightness or the potential for contamination by unre- 
lated astronomical objects grow linearly as the aperture 
area—that is, as the square of the radius. As a result, the 
signal-to-noise ratio of the flux measurement achieves a 
maximum value at some intermediate aperture radius 
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(e.g., Howell 1989, Fig. 6). The aperture with the maxi- 
mum signal-to-noise ratio will not necessarily be large 
enough to contain a seeing- and tracking-independent 
fraction of the stellar flux. Furthermore, the aperture 
with the maximum signal-to-noise ratio will be different 
for stars of different apparent magnitude. 

The simplest way to improve the accuracy of the total 
flux measurement is to photometer each star through two 
concentric apertures, one small and the other large. The 
mean difference, in ma0nitudes, between the measure- 
ments through the two apertures is determined from as 
many bright, isolated stars in a given frame as possible. 
Then this mean difference is added as a correction to the 
small-aperture measurements for all the stars in the frame 
(e.g., Da Costa et al. 1982). In general, it is neither 
practical nor necessary that the larger aperture contain 
the total flux of the star. Provided it is large enough 
(typically of order 10") that the fraction of light missed be 
independent of seeing, guiding, and focusing errors, and 
as long as the same large aperture be used for all program 
and standard-star frames, the constant missing flux will be 
absorbed into the zero point of the derived transformation 
equations. 

A more powerful approach is to measure as many stars 
as possible through a series of several concentric aper- 
tures of increasing radius and to calculate the observed 
magnitude differences between successive apertures 
for each star. These are plotted as a function of radius, and 
a smooth curve is sketched through them to yield the 
average "growth curve"2 of the frame. The average mag- 
nitude differences between successive apertures are 
then read from this curve and summed from the outside 
inward to yield cumulative corrections from each of 
the smaller apertures to the system of the largest. This 
multiple-aperture technique offers several advantages 
over the simpler two-aperture method. 

(1) Some stars may not be measurable in the largest 
aperture: It may extend beyond the edge of the frame; it 
may include a companion star or a charged-particle event 
which contributes some unknown amount of flux, or an 
image blemish which obliterates some flux; or—for 
fainter stars—the signal-to-noise ratio of the measure- 
ment in the largest aperture may simply be too poor to be 
useful. On the other hand, such stars may still be measur- 
able through several of the smaller apertures. Determin- 
ing the mean magnitude difference between each succes- 
sive pair of apertures from all the stars which can be 
reliably measured through those two apertures, and then 
summing the mean differences from the outside in, yields 
a more precise determination of the total correction from 
the smallest aperture to the largest than would be ob- 
tained if only those stars were used which could be mea- 

^he earliest published use of the phrase in this context which is 
known to me is in Rich et al. (1984). 

sured in the largest aperture. 
(2) The radius of the aperture providing the maximum 

signal-to-noise ratio for a brightness measurement de- 
pends on the apparent magnitude of the star. Having 
measured each star through a number of apertures of 
differing radius, one can then choose for each star the 
aperture which maximizes the signal-to-noise ratio of that 
star and correct that measurement to the system of the 
largest aperture. 

(3) In plotting for each star the magnitude difference 
between successive apertures as a function of radius, one 
may see whether and at what radius the personal growth 
curve of each star begins to diverge from the mean growth 
curve for its frame. This will draw attention to previously 
unrecognized companions or defects and will help in 
deciding which is the largest reliable aperture for the star. 

This is the process employed by Rich et al. (1984), 
Stetson et al. (1985), Smith et al. (1986), and others, as 
summarized by Howell (1989). 

This empirical aperture-growth-curve method still has 
some problems, however. First, it is extremely tedious. 
Even with some computer assistance it can take many 
minutes per frame to compute the magnitude differences 
between successive apertures, plot them as a function of 
radius, identify questionable data, produce a smooth 
curve through the rest, read the mean corrections from 
the curve, add up the cumulative corrections for the 
various apertures, and apply them to the raw observa- 
tions. To carry out this process for an observing run of 
some hundreds of frames could take weeks. The vast 
amount of effort involved encourages the taking of short- 
cuts, such as using only the brightest few stars per frame 
rather than all stars which could contribute usefully to the 
mean growth curve, and giving all stars equal weight in 
sketching the mean curves, rather than weighting by the 
estimated standard error of each aperture measurement; 
it discourages repeating the process to check for computa- 
tional mistakes or to experiment with different sets of 
apertures. Second, the method requires that every frame 
of interest contain some bright stars that can be reliably 
measured out to the radius of the largest aperture. This is 
not always the case. Underexposed frames may have no 
stars bright enough for high signal-to-noise measure- 
ments in a large aperture, yet may still be of scientific 
interest; even in well-exposed frames the bright stars may 
have companions, or may lie near defects or the edge of 
the frame; the diffuse sky brightness may be spatially 
variable on the scale of the largest aperture (an underlying 
galaxy or emission nebulosity, for instance), and hence 
the precision needed in correcting for its contribution to 
the largest aperture may not be achievable from the 
information available. Methods for dealing with faint 
companion stars and backgrounds which vary on large 
spatial scales have been described in the past: The fitted 
model profiles may be used to subtract companion stars 
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from the frame (e.g., Stetson et al. 1985; Stetson and 
Harris 1988; see also Penny and Dickens 1986, §3.3, for a 
different approach), and robust filtering techniques can 
remove Smooth (i.e., on spatial scales much larger than a 
stellar image) background variations (e.g.. Stetson and 
Harris 1988). However, the other possible complications 
just mentioned can still render a classical growth-curve 
analysis unfeasible for some frames. 

What is needed is a computer program which (a) is 
completely automatic, enabling the computer to evaluate 
the growth curve of a frame and apply it to the raw 
measurements, deciding for itself which apertures are to 
be used for which stars without human guidance; and (b) 
can process the data from an observing run in a time 
comparable to that required for other CCD reduction 
stages such as flat fielding (i.e., much less than a day), so 
this step will no longer be a serious bottleneck. To be 
successful in achieving these goals, the program should (c) 
have a priori expectations of reasonable growth-curve 
morphologies and (d) be able to take a synoptic view of all 
the growth curves for all the frames from a given night or 
observing run. The program must have this "experience" 
with representative stellar profiles to be able to judge 
reliably which observed aperture differences are likely to 
be erroneous—a feature which is particularly important 
for frames having empirical growth curves derived from 
only one or two stars, so that purely internal consistency 
checks are impossible. Furthermore, under the assump- 
tion that stellar profiles which are similar at small radii 
will also be similar at large radii, the computer can use 
this experience to extrapolate growth curves to the largest 
radius even for frames which contain no stars with reliable 
measurements in the larger apertures. The next section 
describes a working prototype of such a program. A semi- 
interactive version of this method was employed by 
Stetson and Harris (1988); on the basis of that experience a 
completely automated version has now been written and 
is currently being employed in other photometric investi- 
gations. 

3. General Principles 

The fundamental assumption underlying the present 
technique is that it is possible to define a one-parameter 
family of aperture growth curves for a given night or 
observing run, in which the azimuthally averaged outer 
part of the stellar profile is asymptotically independent of 
seeing, guiding, and focusing errors. This assumption is 
suggested by the study of King (1971), who provided an 
empirical description of the internal structure of star 
images. According to King, much of the flux of a star is 
contained within a small, bright "core", in which surface 
brightness is well approximated by a Gaussian function of 
radius; this Gaussian form is almost certainly imposed by 
the statistical effects of seeing and guiding. The extended 
outer "aureole" of the image falls off as an inverse power of 

radius with an exponent close to 2 and is probably caused 
by scattering in the atmosphere and in the telescope 
optics. (However, the surface brightness cannot really fall 
as slowly as r ~2 because integration over all radii would 
imply a divergent total flux.) Between the Gaussian inner 
core and the outer power-law aureole, King found a tran- 
sition region which is reasonably well matched by an 
exponential function of radius, whose physical cause is not 
intuitively obvious. 

For the present work, then, my specific assumptions 
are that (1) to a reasonably good approximation a stellar 
profile may be represented by a sum of a Gaussian func- 
tion, an exponential, and a third function which resem- 
bles an inverse power law with exponent at large radii; 
(2) the radial scale lengths of the Gaussian and exponential 
components of the profile will differ from frame to frame 
due to differences in the seeing conditions, guiding his- 
tory, and degree of telescope defocusing; and (3) the 
relative fractions of stellar flux contained in the seeing-de- 
pendent and seeing-independent parts of the stellar pro- 
file will either (a) be constant properties of a given night or 
observing run or (b) depend solely on the air mass of the 
observation. 

The fundamental equation which I use to describe the 
general stellar profile is 

Ητ,Χ^,Α,Β,Ο,Ό,Ε) - (ß+E · XJ · M(r;A) 

+(1-β —Ε · X¿) · [C · (1) 

+ (1-C) · H(r;D ' R,)] , 

where r is a radial distance measured (in pixels) from the 
center of the concentric apertures which are in turn as- 
sumed to be concentric with the star image; Xi is the 
airmass of the ith data frame (known a priori); R; is the 
seeing- (guiding-, defocusing-) related radial scale 
parameter for the ith data frame; and M, G, and H are 
Moffat, Gaussian, and exponential functions, respec- 
tively: 

M(r;A) =^-^(1 + r2)~A , 
TT 

Gín-Kj) = 2^2exp(-r2/2fíf) , 

H{r; D' Ri)~ 2tt(D ■ fi,)2 exP [(-r/(D · ^))] · 

In the reduction of the data from a given night or observ- 
ing run, a separate value of the image-radius parameter ^ 
is computed for each image, but the values of the other 
fitting parameters A,... ,£ are required to be the same for 
all frames. Some specific points to note: (1) The parameter 
A affects the asymptotic power-law slope of the outer, 
seeing-independent part of the profile, and for a physi- 
cally reasonable profile we must have A > 1; (2) the 
fraction of the total flux of the star which is contained in 

© Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System 



936 PETER Β. STETSON 

the aureole is given by ß + £ * Xi (the parameter Ε 
allowing the relative strength of the wings to depend 
linearly on airmass); (3) the parameter C defines the 
relative importance of the Gaussian and exponential con- 
tributions to the seeing-dependent part of the profile; (4) 
D permits the Gaussian and exponential components to 
have different—though linearly related—seeing-im- 
posed scale lengths. Finally, (5) a Moffat function is used 
rather than a simple power law to prevent an unphysical 
divergence of the profile at r = 0. The Moffat function, 
unlike a power law, does have a characteristic scale length 
at small radii. However, this has arbitrarily been set to 1 
pixel, which is invariant and is enough smaller than the 
smallest aperture commonly used (^3 pixels, in my own 
work) that in the radius domain of interest this implicit 
scale length is unimportant. In my experience to date the 
parameters D and Ε are comparatively unimportant; they 
could be fixed at 0.9 and 0, respectively, as I will discuss 
below. Nevertheless, I include them as free parameters 
for greater completeness and in case future data sets turn 
out to require the additional flexibility. 

Equation (1) is applied only in a differential sense. 
That is, given a set of instrumental magnitude measure- 
ments rriijj. through a set of apertures k = 1,...,η with 
radii rk (I assume throughout that rk > for stars j = 
1,...,Ν i in frame i, we work with the observed magnitude 
differences 

hj.k = 

These values of δ are fitted by a robust least-squares 
technique to equations of the form 

* .1 ~ --1 , Γ / (r,x, ;fi.,A. 5, C, D ,£ )(2τγγ )dr Ί 
i,lk ' ^¡^Ι^,Χ^,Α,Β,Ο,Ό,Ε^ 

Through no coincidence at all, the three functions which 
I chose to represent the components of the stellar profile 
all have analytic integrals, 

Í M(r;A) {2TTr)dr = 1 - (l + r^)~A , 
Jo 

j k G(r;^) {2ur)dr = I — exp(—rf/2fíj) , ^ 

i k H (r;D · Rj) {2TTr)dr 
Jo 

= 1- [l+rfc/(D · Ri)] exp [-rk/{D ■ RJ] , 

and have been so normalized as to have unit total volume 
when integrated to infinity. 

This growth-curve methodology is complementary to 
the profile-fitting techniques mentioned in Section 1. In 
profile-fitting photometry one strives to produce an accu- 
rate model of the bright, inner portions of a star image for 
the best possible relative intensity scaling. A crude esti- 
mate of the tail of the profile is acceptable because the 

surface brightness in the wings of a star image is low 
enough that even a poor estimate is sufficient to correct 
for the narrow sector of the wing of one star which over- 
lies the core of another when their profiles are being 
fit. In evaluating the total flux of a star, however, the 
surface brightness in the wings must be multiplied by 
2TrrAras it is integrated over azimuth. Thus, any signifi- 
cant error in the inferred profile at large radii could make 
a major difference to the derived total flux. For precise 
and accurate absolute brightness measurements we 
must, therefore, obtain the best possible representation 
of the outer part of the profile. Conversely, for the 
growth-curve analysis the detailed structure of the star 
image inside the smallest aperture is immaterial: The fact 
that the exponential function has an unphysical cusp at 
the origin and the fact that an arbitrary radial scale length 
has been imposed on the Moffat function are unimpor- 
tant, because the only way the profile inside the inner- 
most aperture appears in the analysis is as the integral 
J^11(r) {2i:r)dr, which is merely a constant contributing 
to the numerator and denominator of all equations (2). 

In order to improve the signal-to-noise ratio of the 
low-surface-brightness wings, the two-dimensional data 
are compressed to a single, radial dimension by summa- 
tion in the azimuthal direction. Even then, the assump- 
tion that these stellar profiles can be represented by a 
single one-parameter family of curves differing only in a 
seeing-imposed radial scale-length parameter will not 
be entirely valid. In particular, the effects of tracking 
vagaries, telescope aberrations, decentering, and defo- 
cusing will be different and will impose their own charac- 
teristic structures on the stellar profile. However, it may 
be expected that these differences will be reduced in 
importance by the azimuthal summing, and furthermore 
they should be most important in the smallest apertures; 
we may hope that toward larger radii the assumption of a 
one-parameter family will be asymptotically correct, at 
least to within the precision of the observations. 

This analytic approach to growth-curve analysis offers 
one further advantage over the standard computation of 
empirical, mean aperture-to-aperture corrections: One 
may now relax the requirement that the outermost aper- 
ture contain a seeing-independent fraction of the stellar 
flux. The analytic approximation to the outer part of a 
stellar profile which is defined in equations (1) and (2) 
offers a means of extrapolating the integral of that profile 
to radii larger than the largest aperture, even if the total 
flux contained within the largest aperture is still affected 
to some extent by seeing. By integrating the analytic 
model for a given frame to some radius much larger than 
that of the largest aperture, one obtains a numerical 
correction for the lost flux. The error in the estimate of the 
total flux is now not the integral of the true stellar profile 
beyond the largest aperture but the integral at large radii 
of the difference between the true stellar profile and its 
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analytic approximation. 
The rest is conceptually straightforward. One simply 

writes a computer program which reads in the concentric 
aperture photometry for all the frames of a given observ- 
ing run, computes the magnitude differences , and 
fits them using equations (1) and (2) to obtain values for 
the fíi and A,...,Ε (ignoring "obviously spurious" data in 
the process). Then for the ith frame the model correction 
from the k th aperture to a hypothetical aperture of some- 
what larger radius rT > rn is given by 

à , \pi{^ΧΛΛ,Β,α,Ό 
2,5log ljC"/(nW^CAEX^rJ ' 

where the individual points on the model growth curve, 
bi k, are obtained by substituting the final parameter val- 
ues into equations (1)-(3). There are still some problems 
of detail to be considered, however, and I will describe 
my current working solutions for them in the next section. 

4. Details 

(1) Present-day computers are neither large enough 
nor fast enough to use all the stars that a modern tele- 
scope and CCD can record in a given observing run in 
the solution of equation (2); some selection of stars must 
still be made. My prototype implementation of the synop- 
tic, analytic growth-curve method described above (a 
FORTRAN program which I call DAOGROW) works 
directly from data files generated by the PHOTOMETRY 
routine in the computer program DAOPHOT (Stetson 
1987). Along with instrumental magnitudes measured 
through up to 12 concentric apertures of differing radii, 
PHOTOMETRY produces an estimated standard error of 
each aperture magnitude based on knowledge of the read- 
noise and gain of the CCD and the observed diffuse sky 
brightness in the vicinity of the star. DAOGROW allows 
the user to specify a maximum value for this standard 
error: When the files produced by PHOTOMETRY are 
read into DAOGROW, any aperture measurement 
whose standard errors are larger than this value will not 
be used. Furthermore, since these standard errors in- 
crease with aperture radius (see above), DAOGROW will 
ignore any star whose standard error in the next-to- 
smallest aperture exceeds this value. (Obviously, two 
valid aperture measurements are the minimum require- 
ment for at least one valid magnitude difference.) In 
addition, DAOGROW imposes a maximum on the num- 
ber of stars from any given frame which will be used in the 
reductions; at present this number is 40, but it is easily 
changed. Thus, if before DAOGROW is executed the 
files containing the concentric aperture photometry are 
sorted by increasing apparent magnitude in the next- 
to-smallest aperture (e.g., with the SORT routine in 
DAOPHOT), for each frame DAOGROW will use the 
brightest 40 stars having at least one reliable magnitude 

difference; even for those stars it will only use data out to 
the radius where the standard error reaches the specified 
maximum. 

This selection procedure could impose a bias on the 
results, arising from the fact that magnitude errors are 
relative: σ{magnitude) ~ brightness. As a 
result, since it is uprightness) which is actually com- 
puted from first principles, if an aperture measurement is 
accidentally too bright its u{magnitude) will be corre- 
spondingly too small, and the measurement is more likely 
to be included. This bias can be fought by adopting a 
limiting σ which is comparatively large, say 0.10 mag: 
Since bright, well-exposed stars typically have combined 
readout and Poisson errors ~ 0.001 mag, a star near the 
cutoff—where the bias is imposed—would have a natural 
weight of order 10,000 times less than the bright stars that 
will dominate the solution. Furthermore, the weight- 
fudging scheme described in item (5) below will also 
preferentially reduce the influence of observations whose 
estimated a s are too small for their true accuracy. In any 
case, to the extent that this bias is likely to be similar for 
program and standard frames, it may be ignored. 

(2) For crowded frames, of order 20 to 40 bright stars in 
each field are chosen by visual inspection, and the profile- 
fitting and star-subtraction routines of DAOPHOT are 
used to remove surrounding companion stars before the 
concentric aperture photometry is carried out for the 
hand-picked ones. This step is the current bottleneck and 
is not usually necessary in standard-star frames and other 
sparse fields. 

(3) The magnitudes observed for a given star through a 
set of concentric apertures are not statistically indepen- 
dent: The flux measured through one aperture will also be 
a major fraction of the flux measured through the next 
larger one and, furthermore, the same sky estimate is 
used for each. As the standard error of a given magnitude 
difference (needed for properly weighting the data), I 
therefore simply use the standard error of the magnitude 
from the larger of the two apertures. Thus, if 

then 

= <T{miJik Œyjt . 

A more correct weighting scheme could be devised, but 
I doubt that it would make much difference to the results. 

(4) Convergence of the solution to equations (2) could 
be tricky to achieve. First, the equations are extremely 
nonlinear in the fitting parameters, RjyAy...,E. Second, 
even for bright stars, and even if they are handpicked, 
measurements of some stars through some apertures will 
be corrupted by unrecognized companions or image de- 
fects. For these reasons, cookbook-style weighted least 
squares cannot be relied on to give the optimum growth- 
curve solution. Instead, (a) the computer must be given 
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some reasonable guidance on likely answers, and (b) it 
must be given some capability to recognize and disregard 
erroneous data. 

In regard to (a), as in all nonlinear least-squares prob- 
lems, starting values must be provided for the fitting 
parameters. In all data which I have played with to date— 
from Kitt Peak National Observatory (4-m prime focus 
and No. 1 0.9-m Cassegrain), Cerro Tololo Inter-Ameri- 
can Observatory (4-m prime focus and 0.9-m Cassegrain), 
and the Canada-France-Hawaii Telescope (prime and 
Cassegrain foci)—the following have turned out to be 
reasonable first guesses; exponent in the denominator of 
the Moffat function, A ~ 1.2; fraction of light contained in 
the seeing-dependent component which is in the Gauss- 
ian (as opposed to the exponential) function, C ~ 0.5; ratio 
of the exponential scale length to the Gaussian scale 
length, D ~ 0.9; and airmass dependence of the fraction 
of light in the Moffat-function aureole, Ε ~ 0.00 air- 
mass-1 (which suggests that scattering in the optics typi- 
cally dominates over scattering in the atmosphere). In the 
event of reasonable evidence supporting other parameter 
values, these starting guesses may be easily changed, but 
I expect that the values given are within the capture radii 
of most reasonable solutions. 

At the beginning of a reduction, equation (2) is solved 
with the values of A,... ,E fixed at the starting values, and 
solutions are performed only for the scale lengths of the 
individual frames, When these solutions have con- 
verged, the other parameters are freed one by one start- 
ing with A. With each iteration of the nonlinear solution, 
the standard deviation of the fitting residuals is com- 
puted, and when this stops decreasing (i.e., provisional 
convergence has been achieved) an additional parameter 
is freed, until final convergence has been achieved with 
all parameters free at once. 

Finally, to obtain physically reasonable solutions even 
from poor data, it is necessary to impose the following 
limits on the parameter values: 

A> 1 , 

0<B<1, 

0<C<1, 

D > 0 . 

(4) 

When a parameter approaches one of these limits, the 
maximum correction that any one iteration may make 
to the current value of the parameter is reduced, so that 
the parameter is prevented from passing beyond the 
bound of physical reasonableness (although it still can 
approach arbitrarily close to that bound). It might be 
cynically expected that during the reductions one or more 
of the parameters would tend toward these externally 
imposed limits and then stick there. This turns out not to 
be the case. In fact, with one exception to be discussed 

below, a physically reasonable final convergence is always 
achieved with all the parameters somewhere in the mid- 
dles of their allowed ranges. The important thing seems 
to be to prevent the parameters from overstepping these 
bounds during the early iterations, while the program is 
thrashing around looking for an approximate solution and 
trying to decide which observations are spurious (see item 
(5) below). Once the reduction has survived this early 
period of uncertainty, the parameters invariably settle 
down to final values not far from the starting values I listed 
above. 

(5) At the same time, to deal with complication (b) 
mentioned at the beginning of item (4), I employ a more 
sophisticated version of the blunder-rejecting scheme 
described briefly by Stetson (1987; §111. D.2. d) and which 
I hope to justify in somewhat more detail in Stetson (in 
preparation). Specifically, after the first pass through the 
data all the normal (viz., l/σ2) weights of all observations 
are multiplied by a fudge factor which depends on the size 
of the residual, ¿ = k (where the definition of 
the model-predicted value, bi k, is given at the end of the 
preceding section): 

w ,j,k σ i,jX i,j,k 
(5) 

where 

F{vUhklVi^k;a,h) 1 + 
\3,k 

a · σ, ,j,k 

F has the following properties: 0 < F < 1; Ρ{υ/σ) = 
Ρ{—ν/σ); F -> 1 as υ/σ -> 0; and F -> 0 as υ/σ -► ± οο. In 
fact, under the assumption that when a stellar measure- 
ment through a particular aperture is dubious, all mea- 
surements of that star through larger apertures will also 
be dubious, to a given magnitude difference δίj^ I actually 
apply the minimum of the F values computed for that star 
from that aperture and all smaller ones: 

Note that it is only the weights that are fudged, and not 
the observations themselves. Throughout the reductions 
the quantity a is fixed at a value of 2 (easily changed), so 
after the first pass any observation which departs from the 
current estimate of the mean growth curve of its frame 
by 2σ is given half-weight, with correspondingly lower 
weight for larger discrepancies. At the beginning the 
quantity b is set to unity. It may be shown (Stetson, in 
preparation) that this has the effect of driving the iterated 
solution of equation (2) toward the mean of those observa- 
tions with errors 2σ and toward the median of those 
observations with errors 2σ. Thus, even if the initial 
guesses are far from the correct parameter values, never- 
theless the derived growth curves will be pulled toward 
the center of the bulk of the observations. When the 
reduction has reached the point where the fitting parame- 
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ters Α, Β, and C are all free (see item (4) above), the value 
of b is changed to 2. This further reduces the weight of 
the most discrepant observations and restores the fudge 
factor for observations with residuals < 2σ to a value 
closer to unity; this drives the solution toward a broadly 
defined weighted mode of the observations. Finally, after 
a provisional convergence has been achieved with all 
parameters free, the value of b is changed to 3. The 
weights of the extreme outliers are still further reduced, 
the concordant observations receive weights still closer to 
their natural values, and the solution is driven toward a 
more narrowly defined weighted mode of the observa- 
tions. Extensive experience shows that this procedure is 
extremely effective in leading the computer to arrive at 
about the same solution that an experienced astronomer 
would have sketched by hand through data containing 
some corrupted values. 

(6) As I mentioned in Section 4 above it is unreason- 
able to expect that a single one-parameter family of 
growth curves will accurately model everything that can 
go wrong with a stellar profile. In particular, defocusing 
will not broaden the stellar core in the same way as poor 
seeing, and the effects of erratic guiding will be quite 
different still. Nevertheless, one may with some reason 
expect that these departures from the nominal model 
growth curve will be most noticeable in the smallest 
apertures. Fortunately, it is precisely here that the raw 
observations are best: A given frame will contain many 
more stars which can be effectively measured through 
small apertures than through large ones, and those mea- 
surements will contain the smallest random and system- 
atic errors. Therefore, in parallel with the model growth 
curve for the ith frame (the δα given by the robust 
least-squares solution of equations (1) and_ (2)), one may 
also generate the empirical growth curve, , given by a 
straight robust average of the ^ values actually ob- 
served for stars in the frame, without any assumptions as 
to analytic form. (The empirical growth curve, of course, 
is exactly what we CCD photometrists have been using 
right along: Rich et al. 1984; Stetson et al. 1985; Smith 
et al. 1986; Howell 1989; etc.) In the computerized calcu- 
lation of these bi>k I use a weight-fudging scheme similar to 
that described in paragraph (5) above: successive fudged 
means with a = 2 and b = 1,2, and 3 are taken to drive the 
average difference first toward the weighted median and 
then toward the weighted mode of the raw magnitude 
differences observed with a given aperture pair for all 
stars in a given frame. In this instance the residuals vi jik 

are computed with respect to the current estimate of the 
empirical growth curve, not the model growth curve. The 
adopted growth curve for a frame, δ*, is then some com- 
promise between the empirical mean growth curve and 
the analytic model growth curve, with the compromise 
heavily weighted toward the empirical curve at small 
radii—where the raw data are good but the actual profile 

may depart from the one-parameter family—and toward 
the model growth curve at large radii—where the raw 
data for any given frame may be poor or nonexistent 
but the assumption of a one-parameter family of curves 
should not be too bad. The current scheme for effecting 
this compromise is simply to take a weighted mean of the 
empirical and model growth curves at all radii. The 
weight of each point on the empirical curve is just the sum 
of the fudged weights of the individual raw differences 
going into the average (eq. (5)). The weight to attribute to 
a point on the analytic model curve, however, is much 
harder to quantify. It boils down to the question of just 
how much the mean growth curve of one frame can be 
expected to depart legitimately from the one-parameter 
family of the observing run (or night) and includes such 
considerations as the difference between seeing which is 
constant at some value during the exposure, and seeing 
which is variable about a mean value (since the sum of 
several Gaussians is not Gaussian), and the different 
effects of seeing, guiding, and defocusing. Furthermore, 
it can even be imagined that the growth curve for any 
particular star may legitimately differ from the mean 
growth curve for its own frame as a result, for instance, of 
optical aberrations or decentering. However, some ex- 
perimentation suggests that 

σ(δα) X 0.1 · δα 

is not too bad an estimate of these additional uncertain- 
ties. (The numerical value of the multiplier can easily be 
changed if data warrant it.) On the basis of these ideas, 
then, the adopted growth curve for the frame is given by 

r _(ΣΛμ)Mo.!■§,.) 

and the uncertainty associated with the adopted value for 
each point on the adopted curve is given by 

v\Kk) = /   . 

(Σ^ΗαΤ^)' 

The adopted cumulative growth curve is calculated by 
summing the adopted differential growth curve from the 
outside in, with an outer tail given by extrapolation of the 
analytic model: 

Δ· - Υ δ* g | ΓΓ/(Γ.Χ,·Α„Α)Β,€)Ρ)£)(2ϊγγ)^Ί 
Âi [S;"I(r,Xt;R,,A,B,C,D,E}(2T:r)dr\ 

σ2(Δ*,,)= ¿ σ2(δ* j..) . 
k' = k+l 

I have neglected the error of the extrapolation from rn to 
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rT because it is only the error in the seeing-dependent part 
of this extrapolation that matters: Any error in the con- 
stant part of the tail will be absorbed into the zero point of 
the transformation. Unless the aperture radii are very 
poorly chosen, the error in the seeing-dependent part of 
the outer tail will be much smaller than the other uncer- 
tainties in the analysis. (I note at this point that it is 
probably not a good idea to set rT = oo, because if the least- 
squares solution of equation (2) should result in Λ ~ 1, 
then the outer part of the profile approaches an inverse- 
square law, the integral of which diverges when taken to 
infinity. A slight error in the parameter Ε could then 
introduce a large airmass-dependent error into the ex- 
trapolation. This would be absorbed into the extinction 
coefficient for the night but, nevertheless, should be 
avoided if possible. I have adopted rT = 2rn.) 

(7) Now that we have complete cumulative growth 
curves for all apertures and all frames, each aperture 
magnitude measurement may be corrected to the system 
of the (hypothetical) aperture of radius rT : 

In estimating the uncertainty of this corrected magni- 
tude, we must include the standard error of the raw 
magnitude measurement itself as well as the standard 
error of the adopted growth-curve correction: normally 
this would be 

In choosing which aperture k to use for a given star, one 
could then exploit the fact that the error of the raw 
magnitude measurement j J] grows rapidly toward 
larger aperture radii, while the error of the correction 
[σ(Δ*^)] grows rapidly toward smaller radii. Thus, the 
combined error for a given star will have a minimum 
in some—usually intermediate—aperture. However, at 
this point, I must remind the reader that there is one final 
complication: Some aperture measurements for any given 
star may be corrupted by companion stars, image defects, 
or a poor sky determination. I have already introduced a 
mechanism for recognizing and dealing with the suspicion 
of such contamination, namely the weighting fudge fac- 
tors F discussed in paragraphs (5) and (6) above. I recycle 
that fudge factor here by setting the uncertainty of the 
corrected magnitude equal to 

σν^) = + . 
i,j,k 

If the individual growth curve for a particular star begins 
to diverge from the adopted growth curve for its frame 
due to whatever reason, the program begins to lose confi- 
dence in those measurements: For that aperture where 
the divergence first becomes apparent (that is, the resid- 
ual becomes recognizably large in comparison with its 
standard error) and for all larger apertures, the F factor of 

the star decreases, the estimated errors of the corrected 
magnitudes increase, and a(m· jfc) now achieves its mini- 
mum value in some smaller aperture, where the contami- 
nation is not yet significant. The corrected magnitude 
based on this aperture is adopted as the total magnitude of 
the star, m*^, and the minimum σ itself becomes a(m*j). 

Adopting the corrected magnitude from that aperture 
where σ(?η*^) is minimized differs slightly from the ap- 
proach recommended by Howell (1989), who suggests 
that the weighted average of the corrected magnitudes 
m*jjt for a given star through several consecutive aper- 
tures k be adopted as the total magnitude for the star. 
Since the measurements through the various concentric 
apertures are highly correlated, it is not clear that How- 
elFs approach adds significant additional information and, 
in fact, it may be more sensitive to contamination than the 
approach suggested here. 

5. Examftfes 

During three photometric nights in June 1988, I ac- 
quired 203 CCD frames with RCA5 on the Cerro Tololo 
4-m telescope. Once concentric-aperture photometry 
had been derived for these frames, DAOGROW required 
25 minutes on a VAX 11/780 to compute the 203 synoptic 
growth curves and the corrected total stellar magni- 
tudes—a task that would have taken me probably one or 
two weeks in the old days and most likely would not have 
been done as well even then. 

Of course, that 25 minutes represents only one part of 
the total reduction chore. Since I have automatic routines 
to set up the star-finding and aperture-photometry tasks 
for batch processing, for the standard-star frames and 
other uncrowded fields the only astronomer effort re- 
quired to obtain the concentric-aperture photometry was 
that involved in typing the image file names into the 
computer, viz., a few seconds per frame; the star finding 
and aperture photometry then ran overnight and were 
ready the next morning. For the crowded (in this case, 
globular-cluster) program frames, on the other hand, 
much more time was needed to define the point-spread 
functions (PSFs) that are required for the profile-fitting 
photometry. Working at top speed I can presently define 
of order 20 to 25 PSFs per normal working day; with the 
interruptions common at any workplace, rather less than 
this is more typical (although I hope for increased 
throughput some day, with new software and a "private" 
workstation). Thus, one astronomer week per night of 
observing is a reasonable order-of-magnitude estimate for 
the time spent in this task, which has always been a, or 
the, major bottleneck in DAOPHOT reductions. How- 
ever, once this chore has been completed, no significant 
additional astronomer time needs to be spent in choosing 
stars for the aperture-growth-curve analysis: It is simple 
to arrange it so that those stars which were chosen to 
define the PSF (typically 20-30 per frame) are subjected 
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to new concentric-aperture photometry after all other 
stars have been subtracted from the frame, and automatic 
software to perform this task has been written. 

Clearly, 25 minutes of CPU time is little enough that 
the computation and application of growth curves should 
no longer be a major contributing factor to the effort of 
reducing our CCD photometry. It is perhaps not fast 
enough for real-time photometry in the dome (possible 
for uncrowded fields only), but the philosophy behind 
D AO GROW is inappropriate to that application anyway 
since the synoptic growth curves should be based on all 
the frames from a given night or observing run which are, 
of course, not available until the night or run is over. 

The random errors introduced by the procedure are 
hard to evaluate quantitatively. When repeat observa- 
tions for particular stars are intercompared (many fields 
were observed a dozen or more times during the run), the 
observed scatter in the individual corrected magnitudes 
is found to exceed the raw read and shot noise by amounts 
in the range 0.000-0.005 mag (rms)—that is, these are 
the standard deviations which must be added in quadra- 
ture with the (j(rn*Uj) defined above to reproduce the 
observed scatter. This estimate of 0.000—0.005 mag in- 
cludes all sources of observational scatter besides readout 
noise and Poisson photon errors including, e. g., flat-field- 
ing errors, wispy clouds and other extinction variations, 
and shutter-timing errors, in addition to any scatter intro- 

duced by inadequacies in the growth-curve analysis. This 
is as good as or better than the results seen in previous 
studies (e.g.. Stetson et al. 1985; Smith et al. 1986; Mc- 
Clure et al. 1987; Hesser et al. 1987) where classical 
growth-curve analyses were performed manually and is 
comparable to the results achieved by Stetson and Harris 
(1988), who employed a process similar to that described 
here but with much more manual intervention. M. Bolte 
(private communication) estimates that DAOGROW re- 
duces the scatter in his photometry by as much as a factor 
of 2 in comparison with his own hand-sketched growth 
curves. I therefore conclude on the basis of the currently 
available evidence that his growth-curve methodology 
produces results no poorer than those obtainable by more 
tedious methods. 

Figure 1 illustrates the analytic-model differential 
growth curves for the best- and poorest-seeing frames of 
the three nights and also for three intermediate values of 
R. The actual computed values of are plotted as open 
circles, and these are connected by smooth curves to 
make the separate growth curves clearer. The radii of the 
12 apertures formed a geometric sequence from ^ = 3.0 
to rl2 = 20.0 pixels, with 

rk = V20/3 · rk_1, k = 2,...12 

Note that the growth curves in Figure 1 still have a 

ι 

0 
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-0.16 — 
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(rk + ^)/2 

Fig. 1-Five selected analytic model growth curves from an observing run in 1988 at the prime focus of the Cerro Tololo 4-m telescope. Shown are the 
model curves for the individual frames with the best and poorest seeing of the entire three-night run and curves for three intermediate seeing values. 
The points represent the model-predicted magnitude differences for aperture magnitudes from consecutive concentric apertures, plotted as a 
function of the mean radius of the two apertures. Solid lines connect the magnitude differences corresponding to each individual growth curve. 
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slightly nonzero value even at the largest radius. That is 
because of the large radial extent of the outer tail of the 
profile: The geometric increase in the aperture radii 
partly compensates for the power-law falloff to produce a 
perceptible increment of flux even in the largest aper- 
tures. The effects of seeing—at least on these three 
nights—appear to have faded away by the radius rn = 
16.8 pixels ~ lO'.'l, since some frame-to-frame differences 
are still barely perceptible in the model bn = (rrin — m10) 
values but not in = {m^ — mu). 

Figure 2(a) shows as open circles the raw observed 
magnitude differences for the frame with the best seeing; 
note that some artificial scatter has been introduced in the 
abscissae of these points to reduce overlap. The model 
growth curve is shown as short dashes, the empirical 
growth curve is shown as long dashes, and the adopted 
growth curve is shown as a solid line; it may be seen that 
all three curves coincide at small radii, while at large radii 
the empirical curve becomes poorly determined and wan- 
ders off, while the adopted curve remains faithful to the 
smooth analytic model. This frame has a seeing parameter 
R = 0.650 pixel, and the total magnitude correction from 
ri rT (arbitrarily defined as 2rn) is —0.0625 ± 0.0027 
mag; that is, 94.4% of the total flux of a star within 40 
pixels = 24" is inside 3 pixels = I'.'S, and the growth-curve 
correction contributes < 0.003 mag estimated uncer- 
tainty to the total flux of a star as extrapolated from the 
measurement in the smallest aperture. For comparison, 
Figure 2(b) shows the raw data and the three curves for 
the poorest-seeing frame, which has R = 1.856 pixels. 
Here the analytic model does not appear to match the raw 
data perfectly at small radii (r ^ 8 pixels); accordingly, the 
adopted curve follows the empirical one at small radii, 
transferring its loyalty to the analytic model only for the 
largest apertures (r ^ 13 pixels). According to the adopted 
curve, the total correction from the three-pixel aperture 
to rT = 40 pixels is —0.4942 ± 0.0220 magnitude: Less 
than two-thirds of the light of a star falls within the Γ.'8 
aperture in this case, and a total magnitude estimated on 
the basis of the smallest aperture would be uncertain by at 
least 2% after application of the growth-curve correction. 
However, the correction from aperture 5, with r5 = 6.0 
pixels = 3"6, to rris —0.0981 ± 0.0051; hence, some 91% 
of the flux is within a radius of 6", and the program (and 
the astronomer) would be more inclined to prefer cor- 
rected magnitudes from these larger apertures where the 
uncertainty in the correction is smaller. 

Raw data and growth curves for some other frames are 
shown in Figures 3-5. These have been selected to illus- 
trate particular points and should be regarded as patho- 
logical rather than typical. Figure 3 is from a frame of a 
globular-cluster field with such a short exposure time 
that, even though there are many stars in the frame, 
nearly all of them are quite faint. As a consequence the 
outer parts of the growth curves are poorly defined. Nev- 

ertheless, there is a sufficient number of stars whose inner 
profiles are reasonably distinct that the program can use 
its experience of the growth curves from similar frames to 
select the physically reasonable data points and produce a 
suitable growth curve out to large radii. Figure 4 shows 
data from a long-exposure globular-cluster frame. The 
field is so crowded that every star has many neighbors. 
Although these neighbors have been subtracted to the 
extent possible, the subtractions introduce additional 
noise into the cleaned frame. In some pixels the neighbor 
stars have been oversubtracted, leaving behind a blemish 
which causes the truncation in the growth curve of the 
star; in other pixels there has been under subtraction, 
giving the effect of excess flux at large radii. Such a frame 
could hardly be touched with a traditional one-frame-at-a- 
time empirical growth-curve analysis. As in Figure 3, 
however, DAOGROW can use the concordant observa- 
tions at small radii to select the appropriate member of 
the one-parameter family of model growth curves, based 
on its experience of less-crowded frames with similar 
seeing, and use it to produce the full set of cumulative 
corrections. Finally, Figure 5 shows the most extreme 
example I have ever seen of a frame whose empirical 
growth curve does not resemble any member of the one- 
parameter family of model curves of its observing run. 
This frame contains several Landolt (1973) standards, 
most of which are both well exposed and completely 
uncrowded. Faced with these data, DAOGROW adopts 
the empirical growth curve out to a radius ~ 6 pixels. 
Here, where the raw data become noticeably fewer and 
noisier, it begins to transfer its allegiance from the empiri- 
cal curve to that model curve which best—albeit 
poorly—matches the overall profile. From r ~ 10 pixels 
~ 6" outward DAOGROW relies on the model curve 
alone. 

The fourth night of my observing run at Cerro Tololo 
had much poorer and highly variable seeing, and it 
clouded up toward the end of the night. The seeing was so 
poor that in some frames a 3-pixel (Γ/8) aperture con- 
tained ~ 10% of the total flux. When the innermost 
apertures reach this far into the stellar core, the current 
version of DAOGROW has revealed itself to be not en- 
tirely trustworthy: It tends to play the Gaussian, expo- 
nential, and Moffat functions off against each other, occa- 
sionally driving a parameter or two up against the limits in 
a desperate attempt to match details of the inner core 
profile. Therefore, I reduced the data of this night with a 
different set of apertures. Here I used ^ = 5 pixels, r12 = 
20 pixels, and a different progression of intermediate 
radii: 

rk = rk-i +{k-l) ■ br ,where = ^ · 

This produced the family of analytic model growth curves 
shown in Figure 6, where again I have shown the model 
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Fig. 2-(a) Observed magnitude differences and growth curves for the frame with the best seeing from my 1988 CTIO observing run. Points represent 
the raw magnitude differences actually observed for the two usable stars in the frame, plotted as a function of the mean radius of the two apertures 
involved in each difference; artificial scatter has been introduced into the abscissae of these points to minimize overlap. The best-fitting analytic 
growth curve is shown as a short-dashed line (not distinguishable in this plot); the empirical growth curve derived by averaging the raw observations 
is shown as a long-dashed line; and the adopted growth curve, which represents a compromise between the empirical growth curve (most reliable at 
small radii) and the analytic model curve (most reliable at large radii), is shown as a solid line, (b) Same as the upper panel but for the frame with the 
poorest seeing of the three-night run. The adopted growth curve departs visibly from the analytic model at radii r < 8 pixels and from the empirical 
curve at radii r > 13 pixels. 

curves for the frame with the best seeing {R = 1.529 
pixels, 90.5% of the flux within 3'Ί), the frame with the 
poorest seeing (R = 2.962 pixels, 92.0% of the flux within 
5'/9), and for three intermediate values of R. The raw data 

for the best- and poorest-seeing frames are reproduced in 
Figure 7. In Figure 6 some seeing dependence is still 
perceptible out at least to aperture 11 {rn = 17.50 pixels 
~ ΙΟ'Ή), since a range of values is seen for δ12 = — 
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Fig. 3-Observed magnitude differences and growth curves for a shallow exposure of a crowded globular-cluster field. Symbols and line types have 
the same meaning as in Figure 2. 
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Fig. 4-Observed magnitude differences and growth curves for a deep exposure of a crowded globular-cluster field, where before performing the 
concentric-aperture photometry for individual bright stars the neighbors were subtracted out to the extent possible using results from model-profile 
fits. Symbols and line types have the same meaning as in Figure 2. 
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Fig. 5-Observed magnitude differences and growth curves for a frame where, although there are several bright, uncrowded stars, the empirical 
growth curve is not well matched by any member of the one-parameter family of analytic curves which match the remainder of the frames from the 
observing run. The departure of the best analytic model (short-dashed curve) from the actual data is quite pronounced at small radii. Accordingly, the 
adopted growth curve follows the empirical curve out to a comparatively large radius, making a full transition to the analytic model curve only for r 
10 pixels = 6". 

mn). With such an odd progression of aperture radii and 
only hand-drawn graphs and empirical mean magnitude 
differences, it might be tricky to extrapolate a correction 
for the seeing-dependent part of the profile beyond the 
largest aperture; more likely the frames would have to be 
rephotometered with larger apertures to get out into the 
invariant part of the profile. The signal-to-noise ratio 
would be very poor in these larger apertures and the 
correct curves correspondingly difficult to draw. With the 
help of best-fitting analytic models, the extrapolation is 
straightforward. 

Practical experience thus suggests that it is worthwhile 
to give some thought to the choice of aperture radii. 
DAOGROW seems to work well as long as the innermost 
aperture contains not much less than a third of the total 
flux of a star. However, even then the utility of the results 
can be affected by the way in which the aperture radii are 
distributed between the minimum and maximum values. 
The use of a constant difference between successive aper- 
tures, rk = rk_1 + Δγ, seems to be a particularly poor 
choice, since it gives too little spatial resolution at small 
radii, where there is the most leverage on the seeing 
parameter (fíj of a frame. Conversely, a linear progres- 
sion of aperture radii makes the annuli too narrow at large 
distances, where the surface brightness is low, the signal- 

to-noise ratio of the magnitude differences is very poor, 
many stars cannot be measured at all, and things are not 
changing very fast anyway. Finally, for the faintest stars 
the signal-to-noise ratio is maximized in small apertures 
and is a strong function of aperture radius. When the 
smallest apertures are few and far between, the freedom 
to choose the very best aperture for such a star is dimin- 
ished. Even the scheme of aperture radii following a 
geometric progression (as in Figs. 1-5), which I have 
been using for several years, tends to put the apertures 
too far apart near the center and too close together near 
the edge. A scheme more like that which I used for the 
data of the fourth night as mentioned above seems to be 
preferable. Arbitrary patterns of apertures are difficult to 
interpret with traditional hand-and-eye techniques, be- 
cause it is hard to know a priori what the shape of the 
hand-drawn curves should be. DAOGROW, with its pre- 
cise knowledge of the actual aperture radii and its (I. R. 
King's) prior experience with the typical morphology of a 
stellar profile, has no problem with an arbitrary progres- 
sion of apertures. 

In Section 3 above I mentioned that I found the 
parameters D and Ε in the formulation of the analytic 
model star profile to be unimportant. To illustrate these 
points I rereduced the data for the three photometric 
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Fig. 6-Five selected analytic model growth curves from one night in 1988 at the prime focus of the Cerro Tololo 4-m telescope. This night was 
characterized by seeing which was much poorer and more highly variable than the preceding three nights (cf. Figs. 1 and 2). Shown are the model 
curves for the individual frames with the best and poorest seeing of the night and curves for three intermediate seeing values. The points represent the 
model-predicted differences between aperture magnitudes from consecutive concentric apertures, plotted as a function of the mean radius of the two 
apertures. Solid lines connect the magnitude differences corresponding to each individual growth curve. The morphology of these curves differs from 
that in Figs. 1-5 because a different rule was used to set the spacing between consecutive apertures. 

nights with the parameter D fixed at 0.9, once more with 
D free and Ε fixed at 0.0, and once again with both D and 
Ε fixed. The weighted standard deviations of the residuals 
of the raw observations about the best solutions, averaged 
over all stars and all apertures, were: five parameters free, 
0.002639 mag; D fixed, 0.002608 mag; Ε fixed, 0.002638 
mag; D and Ε fixed, 0.002604 mag. In addition, when data 
for various observing runs were reduced with Ε com- 
pletely free, it seemed as likely to come out negative as 
positive, conflicting with the common-sense expectation 
that atmospheric scattering should increase toward 
higher airmasses. Accordingly, I conclude that the forma- 
tion of the aureole is probably dominated by the optics, 
not the atmosphere, and the airmass dependence can 
probably be neglected. 

One might also suspect that it would be worthwhile to 
compute growth curves separately for different photo- 
metric bandpasses, since the strength of the aureole and 
possibly also the form of the seeing profile could depend 
on wavelength and bandwidth. During the observing run 
at Cerro Tololo I obtained data only in the Β and V 
photometric bandpasses. Reducing these data sets sepa- 
rately, I obtain standard deviations of 0.002546 mag (V) 
and 0.002603 mag (B). The root-mean-square average of 

these is 0.002575 mag, which should be compared to the 
value of 0.002639 obtained when the data were reduced 
in combination. The 2.5% reduction in the scatter seen 
when the data are reduced separately corresponds to 
about a 5% increase in weight over the combined solu- 
tion, or the equivalent of 21 observations for the price of 
20. This suggests that the advantage to be gained by 
computing separate families of growth curves for the two 
filters is not large. However, this experiment should 
certainly be repeated, especially with data for more 
widely separated bandpasses. 

I am grateful to Michael Bolte for letting me play with 
some of his data and for reading a preliminary draft of this 
paper. 
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