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Abstract

One-armed corrugation waves (one-armed warps) are very low-
frequency modes of oscillations in relativistic, geometrically thin disks. It
is shown that some modes of such one-armed corrugation waves can be
trapped in the innermost region of accretion disks. The necessary con-
ditions for trapping to occur are that (i) a pressure maximum exists in
the inner region of the disks, as in geometrically thick disks, and (ii) the
rotation of the central object is slow. In the case of low-mass X-ray bi-
naries (LMXB’s), the frequencies of these trapped oscillations can become
comparable with those of observed quasi-periodic oscillations (QPQ’s) for
reasonable values of parameters. The trapped oscillations are, however,
generally leaked toward the central object, because the trapped region is
too close to the inner edge of the disks. This leakage makes the oscilla-
tions quasi-periodic, and also will induce time variations in X-rays from
the neutron star surface.

Key words: Low mass X-ray binaries; One-armed corrugation waves;
QPQ’s; Trapping of waves.

1. Introduction

Quasi-periodic oscillations (QPQO’s) are frequently observed in X-rays from low-
mass X-ray binaries (LMXB’s). Roughly speaking, they are divided into two classes.
One class comprises low-frequency QPO’s the frequencies of which are around 6 Hz
(which occur in a normal branch of the spectral hardness-intensity diagram); the other
comprises high-frequency QPQO’s whose frequencies are 20 Hz—50 Hz (which occur in
a horizontal branch) (e.g., Hasinger 1988).

The X-ray spectra from LMXB'’s consist of two components. One is a hard black-
body component of ~2 keV and the other is a softer component of ~1 keV. The
black-body component of ~2 keV is usually thought to represent thermal radiation
from the gas hitting the neutron star surface, while the soft component of ~1 keV
represents radiation from the accretion disk.

The time variations of QPQO’s are known to occur in the hard black body com-
ponent of ~2 keV (Mitsuda et al. 1984). The thermal time scale in the neutron star

99

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990PASJ...42...99K

A D42 T B0K,

[al}
(=]
(=]

!

100 S. Kato [Vol. 42,

atmosphere is, however, much shorter than the period of QPQO’s. Hence, it is difficult
to consider that the origin of time variability of QPQO’s is intrinsic on the neutron star
surface. This suggests that the origin of QPQO’s is in the inner part of accretion disks:
the accretion rate of the gas hitting the neutron star surface changes quasi-periodically
as the result of some instability in the inner part of the accretion disks (Inoue 1988).
The problem is the origin of such quasi-periodic variations in the inner part of accre-
tion disks. If we focus our attention on low-frequency QPQ’s, the required time scale
of the variations is 0.16 s, much longer than the dynamical time scale of disks, the
latter being about 1 ms in the case of accretion disks around neutron stars.

In relation to this problem we emphasize here that relativistic accretion disks
can oscillate at very low frequencies. Such low-frequency oscillations are one-armed
corrugation waves (Kato 1989). In some disks such one-armed corrugation waves can
be trapped in the innermost region of the accretion disks when the central object
is not rotating much. This trapping is, however, generally incomplete, because the
trapped region is so close to the inner edge of the disk that the oscillations are leaked
toward the central object. Because of this leakage the oscillations are quasi-periodic;
further, the gas accretion onto the central object becomes non-axisymmetric. The
latter means that the surface region of the neutron stars that is heavily struck by gas
rotates very slowly when observed from some outer fixed system. This indicates that
the X-ray luminosity from the neutron star surface varies with a long period and with
small amplitude, when observed from an outer fixed system. This might be QPO’s
observed in LMXB’s.

Considering the above possible application, we examine in this paper the con-
ditions of trapping and the conditions for the frequencies of trapped oscillations to
become of the order of those of observed QPQO’s.

2. One-Armed Corrugation Waves

Corrugation waves are wavy oscillations of disks (a kind of warp) by which the
disk plane deviates from the original equatorial plane in the vertical direction with
some wavelength in the radial direction.

We first emphasize that one-armed corrugation waves have a particular position
among various disk oscillation modes in relativistic disks, in the sense that they are
extremely low-frequency modes of oscillations. The cause of this low frequency is
related to the fact that the frequency of vertical oscillations of disks is roughly equal
to the angular frequency of disk rotation. How is the closeness of these two frequencies
related to the slowness of one-armed corrugation waves? This comes from the following
situations (Kato 1989).

Let us tentatively consider a zero-temperature disk rotating with the relativistic
Keplerian angular velocity, {2¢(r), around a non-rotating central object, where r is the
radial distance from the rotation axis of the central object. (We employ cylindrical
coordinates (r, ¢, z), where the origin is at the center of the central object and z = 0 is
the unperturbed disk plane(the equatorial plane)). Let us consider the displacement
of a particle from the equatorial plane in the vertical direction (z-direction). The
particle feels a gravitational restoring force toward the equator. Since this force is
proportional to the vertical displacement when the displacement is small, the particle
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harmonically oscillates around the equator with a certain frequency. This frequency
is equal to the relativistic Keplerian angular velocity, {2y, of the disk when the central
object is not rotating. That is, the vertical oscillation period of the particle coincides
with the rotation period of the particle around the central object.

We now consider a bunch of particles with the same angular momentum. They
are assumed to have been at the same position A (not on the equatorial plane) at an
initial time and to have started to turn around the disk center with circular orbits at
the same time; however, the speed is different in the vertical direction. After one turn
around the disk center, they again gather at the initial point A at the same time. This
implies that the one-armed pattern is maintained without any time change (w = 0) in
a zero-temperature disk rotating around a non-rotating central object.

Mathematically speaking, this represents the following situation. Let us consider
a small-amplitude perturbation of m-arms in the azimuthal direction, i.e., the per-
turbation is assumed to be proportional to exp[i(wt — m@)]. Then, the frequency of
warps of zero-temperature disks in the vertical direction can be described by

(w—m)? =02, (2.1)

where (2, is the frequency of vertical oscillations of particles around the equatorial
plane, and is equal to {2 in the present problem. This dispersion relation shows that
w = 0 for perturbations of m = 1.

In the limit of zero temperature, the oscillations at various places on the equator
are independent. If pressure exists, however, they become coherent modes of oscilla-
tions with some wavelengths in the radial direction. In other words, the one-armed
perturbations of w = 0 considered above become coherent oscillations when the disk
has temperature. The frequency of the oscillations is, however, very low in thin disks
for the following reason. If the restoring force of disk rotation contributes to make the
motion oscillatory, the frequency of the oscillatory motion is generally of the order of
the angular velocity of disk rotation (or epicyclic frequency). In the present problem,
however, the restoring force making the motion oscillatory is the gas pressure alone:
The rotation has no primary contribution. This implies that the frequency of the
one-armed oscillations is very low.

To estimate the frequency of the one-armed corrugation waves somewhat gener-
ally, the rotation of the central object is hereafter taken into account. That is, the
gravitational potential due to the central object is not always assumed to be spheri-
cally symmetric. If no pressure exists, vertical oscillations of disks and disk oscillations
in the equatorial plane are independent as

(w—ma)? - 022 =0 (2.2)

for vertical oscillations and

(w—ma)?2 —k2=0 (2.3)

for radial oscillations, where §2(r) is the angular velocity of disk rotation and « is the
epicyclic frequency, defined by
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If pressure exists, however, these two oscillation modes are coupled to give the following
dispersion relation (cf. Okazaki et al. 1987 and Kato 1989):

[(w—m82)? — kK?)[(w — mN)? — 2%] = k22 (w — mN)2. (2.5)

This relation has been obtained by assuming that the disks are isothermal in the
vertical direction and that the perturbations are local in the radial direction. Here,
¢s is the sound speed and k is the radial wavenumber of perturbations. That is,
perturbations are approximated to be proportional to exp[i(wt — m@)] exp(ikr).

Dispersion relation (2.5) is a simple generalization of that obtained by Kato (1989)
for the case where the central object is not rotating to the case where it is rotating.
That is, (w — m2)? — 22 in equation (3.13) in Kato (1989) is replaced in equation
(2.5) by (w — mf2)% — 22.

It becomes obvious from physical argument and from the procedure of mathemat-
ical derivation of the dispersion relation in Kato (1989) and in Okazaki et al. (1987)
that the essential part of the effects of rotation of the central object on the dispersion
relation is taken into account by this replacement. It should also be noted here that in
deriving dispersion relation (2.5) the effects of accretion flow were neglected. Because
of this, the dispersion relation can not be applied to a region too close to the sonic
point, where accretion flow transits the sound velocity.

To have a rough image on the order of frequencies of one-armed oscillations, let
us take m = 1 and consider the case where the difference between 22 and Q_QL is so
small that we have |2w$2| > |22 — 2% |. Then, since x ~ 0 near the inner edge of the
accretion disks, we have from equation (2.5) (e.g., Kato 1989)

k%c2
Yoz
This shows that the frequency of one-armed oscillations is smaller than the dynamical
one (~ {2) by a factor of (kcs/2)%. Here, if we take k = 27 /rg, cs/c = 1072 and as 2
the Keplerian velocity at 3rg with 1 Mg , equation (2.6) gives w ~ 14 s™! or 2 Hz,
which is comparable with the frequency of low-frequency QPO’s.

] Q. (2.6)

3. Trapping of One-armed Corrugation Waves

Although we have known a rough order of frequencies of one-armed corrugation
waves, an important point to be emphasized here is that some modes of the oscillations
can be trapped within the inner region of disks. This is interesting in relation to quasi-
periodic oscillations (QPO’s) observed in X-ray sources.

The right-hand side of equation (2.5) is always positive and tends to zero when
the wavenumber & vanishes. This means that the spatial region where waves of a given
frequency can propagate on the disk is restricted to the region specified by

[(w—m0N)? - k?[(w — mN)? — 22] > 0. (3.1)
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In the inner region of disks we have 2, > . Hence, when m = 1, inequality (3.1)
is realized in the regions of (w — 2)2 — 22 > 0 or of (w — 2)2 — k2 < 0. The former
inequality is satisfied by w > 2+ 2, or w < {2 — {2, . We consider hereafter the case
of w < 2 — §2,, because this case is interesting from the point of wave trapping.

We first consider geometrically thin disks surrounding nonrotating central ob-
jects. Since the difference between {2 and §2; is small in such disks (it is noted that
2, = () in the case of non-rotating central object), the qualitative form of the radial
distribution of {2 — 2, can change much by the form of the pressure distribution in
the radial direction. As will be discussed in the next paragraph, in some disks the
radial distribution of 2 — £2, can become like that shown schematically in figure 1.
That is, the value of 2 — {2, is positive and has a maximum at a radius close to
the inner edge of the disks. In such disks, waves with frequency w somewhat smaller
than the maximum value of {2 — {2, can propagate only in a limited region near the
maximum of {2 — {2, as is demonstrated in figure 1. The region outside is an evanes-
cent region of the waves. In other words, some wave modes are trapped in the region
around the maximum of 2 — {2, . (Detailed conditions for the trapping are discussed
in subsequent sections.)

Such a distribution of £2— (2, as is shown in figure 1 can really occur. We continue
to assume that the disks are geometrically thin and that the central objects have no
rotation. We additionally assume here that the specific angular momentum [(r) of gas
consisting of the innermost region of the disks is somewhat larger than the marginal
angular momentum [,,s (the angular momentum of the particles rotating just along
the marginally stable circular orbit). In such disks a steady accretion state is realized
by gas being pushed to the sonic point (r = r5) (the point beyond which the infalling
speed of gas becomes supersonic) by pressure rather than falling as the result of losing
angular momentum by viscosity. That is, the pressure maximum will occur at a radius
(say, rm) outside rs(rs < ryr,). We assume here that ry, is not so close to r that the
inertial force is negligible in the radial force balance in the region around r,. Then,
in the region r > r,, we have {2 < {2, because the pressure force is outwards; thus,
2 -0, > 0. On the other hand, in the region of r < r, we have 2 — 2, > 0;
approaching the sonic point, however, it decreases to zero, since around the sonic
point gas can fall spontaneously without being pushed from the outside. In this sense
we expect a maximum of {2 — 2, at a radius between the sonic point (r = r5) and
the pressure maximum point (r = 7). This kind of distribution of 2 — {2, (actually
{2 — () is the same as that known in thick accretion disks (Abramowicz et al. 1978),
and actually occurs in conventional a-type accretion disks when « is small and the
accretion rate is high (e.g., Matsumoto et al. 1984; Abramowicz et al. 1988)

Discussions in the above paragraph are made only for the case where the central
object is non-rotating. If it rotates rapidly, {2, deviates much from 2, and 2 — 2,
can not have a maximum in region r > 75, when [(r) is close to lys, as is discussed
in subsequent sections. Because of this, wave trapping can not be expected when the
rotation of the central object is high.

The next problem to be examined here is to quantitatively estimate the frequency
of trapped oscillations. Similar problems have been examined in problems of non-radial
oscillation of stars (e.g., Unno et al. 1989). That is, some non-radial oscillation modes
are trapped in particular regions within stars. The frequencies of such trapped oscil-
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Fig. 1. Schematic diagram showing the radial distribution of 2 — §2) in the case
where trapping of waves occurs. Two vertical lines crossing the abscissa show the
boundary radii of the region of £2 — 2, > 0; the inner boundary being denoted by
ri. Roughly speaking, r; can be regarded as the inner edge of the disk. If the central
object has rotation, r; can become larger than the radius, rg, of the maximum of
2— 62, > 0. In such cases there is no trapped oscillation mode. In the special case
of non-rotating central object, r; coincides with the inner boundary of 2—- 2, > 0.

lation modes can be estimated with good accuracy by the WKBJ method (Shibahashi
1979; Unno et al. 1989). Adopting the same procedure, we can write the eigen-value
condition in our present problem as (cf., Okazaki et al. 1987)

/Trou‘ k(r)dr = (n + %) T, (n=0,1,2,3,...) (3.2)

in
where r;;, and 7.4 are the inner and the outer radius where

w = {2 — {2, is realized (see figure 1 ); k(r) is the wavenumber determined by
dispersion relation (2.5).

The actual procedures to determine the eigen-frequency are as follow: Equation
(3.2) is written explicitely in the form

Tout K2\ /2 9 911/0dT 1
_ _ _ /220 -
/ri,, (1 ()2> [(w—02)*—027] .. (n + 2) . (3.3)

The left-hand side is calculated for a given w. In general, the calculated value is not
equal to the right-hand side for arbitrary w’s. Thus, the value of w is adjusted so that
both sides coincide.

4. Various Oscillation Frequencies in Simplified Disks
To perform the integration in equation (3.3), we need to know the radial distribu-

tions of k(r), £2, (r) and £2(r) in the disks. Though the quantity {2, (r) is obtained if
the metrics are specified, to know §2(r) and «(r) we must specify the disk structures.
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We first summarize the expressions for (2 (r), kk(r) (hereafter the subscribt k
is attached to x in order to emphasize that it is the epicyclic frequency in Keplerian
disks) and §2, (r). We adopt the Kerr metric expressed in terms of Boyer-Lindquist co-
ordinates, which is given in equation (A1) in the Appendix. In this case the Keplerian
angular velocity {2 observed at infinity,

_d¢ do/ds _ @
KT @t T dt/ds Ut
(see the Appendix for notations), is given as (e.g., Abramowicz et al. 1978; see also
the Appendix)

(4.1)

(GM)1/2
r3/2 + a(rgy/2)3/2’

where ry is the Schwarzschild radius defined by ry = 2GM/c?. Here, M is the mass
of the central object, and a (0 < a < 1) is a dimensionless parameter specifying the
amount of angular momentum of the central object [a = 0 is the case of non-rotating
central object (the case of the Schwarzschild metric), and a = 1 is the case where the
central object has the maximum rotation (the case of the extreme Kerr)|. Both here
and hereafter the upper and the lower signs are for cases where particle revolutions
are prograde and retrograde, respectively.

The radial distribution of the epicyclic frequency, nk(r) in the case of the Kerr
metric has been obtained by Okazaki et al. (1987). The result is

.Qk(”f‘) =+

(4.2)

GM 1 — 6(rg/2r) — 3a®(rg/2r)* = 8a(rg/2r)*/?
Kig(r) = [T a(ry /2077 :

In the case of the Schwarzschild metric, ki vanishes at r = 3rg, as is well-known. In
the case of the extreme Kerr (a = 1), equation (4.3) gives kx = 0 at 7 = r¢/2, as is
expected.

To derive an expression for {2, (r), some calculations are necessary. The procedure
is given in the Appendix. Rearranging the expression given by equation (All), we
have

(4.3)

P (r) = 02 [1$4(%)3/2a+3(;—g)2a2]. (4.4)

r

The next problem is to determine the angular velocity of disk rotation, {2(r); To
obtain it we must specify the disk structure. Here, as the simplest case, we adopt disks
with constant specific angular momentum (i.e., [ = —c?U,/U; = const.). In general,
the definitions of | and {2 give the relation

Q)= U? Ut = ~ St law (4.5)
9o + lggt

In the case of the Kerr metric, it can be written explicitly as

4c 2(l/erg)(r/rg — 1) +a
E (2r/rg)3 +2(1 +7/rg)a® — 4al/cry

Qr) = (4.6)
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Fig. 2. Radial distributions of 2, 2, (= (%), kk, and 2 — 2, in the case of
Schwarzschild metric (¢ = 0). The angular velocity of disk rotation, 2, is ob-
tained by assuming that specific angular momentum of gas, !, is constant with
l/erg = 1.9. The marginal specific angular momentum Ims in the case a = 0

is (3v/6/4)crg = 1.837...crg. The inner and outer boundaries of the region of
2 — §2 > 0 are shown by vertical lines crossing the abscissa.

Hence, the assumption which we adopt here is to take ! = const. in equation (4.6).
5. Frequencies of Trapped Oscillations

Let us assume for simplicity that the disk has a constant temperature in the region
where the wave trapping occurs. Then, the dimensionless parameters specifying the
disk structure are l/crg and cs/c. Another parameter is a, specifying the degree of
rotation of the central object.

5.1. The Case of Non-Rotating Central Object

We first consider the case a = 0. As shown below, this is the case where trapping
most easily occurs.

For trapping to occur, the presence of a region where {2 > 2, is necessary, as
discussed in section 3. The region is nothing but the region of 2 > 2 (r) or I > lx(r)
in the present case. The Keplerian angular momentum [y (r) has a minimum /5 at
T = Tms(Tms being the radius of the marginally stable circular orbit and 3rg in the
present case of a = 0), and increases in the inward and outward directions of r. Hence,
if we consider a gas with [ > l,,s, the region of 2 > {2, appears around r = ry,s (see
figure 2 of Abramowicz et al. 1978). To have a rough image concerning the distribution
and magnitude of 2 — §2, , the radial distributions of 2, 2, (= 2), kx and §2 — 2,
are shown in figure 2 for {/cry, = 1.9. This value of ! is somewhat larger than [,
which is 0.75v/6crg (= 1.837117...crg) in the case of the Schwarzschild metric.

On the other hand, the inner edge of the disk exists near radius r;, where {2 = {2
is satisfied. [Radius 7; is the cusp of the equipotential surface, if the effects of accretion
flow are neglected (Abramowicz et al. 1978 ).] The inner and the outer boundaries of
the region of {2 > (2, are shown in figure 2 by two vertical lines crossing the abscissa.
One important point to be noted here is that the inner edge, r;, of the disk is the same
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Fig. 3. Frequency-temperature relation for trapped oscillations for various values of [
when a = 0. Solid curves are for the fundamental modes and broken curves are for
the first overtone.

as the inner boundary of region {2 > (2, in the present case of a non-rotating central
object. Hence, region (2 — {2, > 0 is certainly in the disk.

Since the maximum of {2 — {2, occurs at a radius larger than that of the inner
edge, trapping occurs for some discrete modes of oscillations whose frequencies w’s
are in the range 0 < w < (2 — ) max- To determine what oscillations are actually
trapped, equation (3.3) should be solved. The frequencies of the resulting trapped
oscillations are shown in figure 3 as a function of disk temperature for some values of [
slightly larger than /5. The solid lines are for the fundamental mode and the broken
lines are for the first overtone.

5.2. Effects of Rotation of the Central Object

The next problem to be examined is the effects of the rotation of the central object
on wave trapping. Equation (4.4) shows that the frequency of vertical oscillation of
particles around the equatorial plane, 2, (r), is generally smaller than the Keplerian
frequency §2(r), except for the case a = 0. This trend becomes stronger as r decreases
or a increases. We shall consider how this affects wave trapping.

Let us first consider the case of a non-zero a with [ close to [,s. Since ! is close
to Ims, the pressure is not so strong to change 2(r) much from 2 (r) that 2 — 2,
(which is ~ {2 — £21) increases with decreasing r by the effect of a. In other words,
{2 — {2, has no maximum in the region of » > 7;. Such an example is shown in figure
4a with [ = 1.6crg and a = 0.5. (In this case of a = 0.5, I /crg = 1.58...) Around r;
there is a sonic point and in the region of r < r; the gas falls toward the central object
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Fig. 4. The same with figure 2, except for the values of a and {. This figure is for the
Kerr metric with a = 0.5. Figure 4a is for [/crg = 1.6 and figure 4b for I/crg = 2.0.
The marginal angular momentum Iy in the case of @ = 0.5 is 1.58...crg. In the

case of figure 4a there exists no trapped oscillation, while in the case of figure 4b
the trapping will exist.

with supersonic speed. Hence, if there is no maximum of {2 > (2, in region r > rj,
there is no trapped oscillation.

On the other hand, if we consider a disk with large [, the pressure force is not
negligible in comparison with the centrifugal force. In this case, {2 — {2, can have
a maximum in the region r > r;, as is shown in figure 4b. Such a case of large
l, however, means that the disks are rather thick and are outside of our present
problem. Furthermore, the value of (2 — 2 )max is so large that the frequency of
trapped oscillations becomes too high to explain observations.

To show quantitatively the situations mentioned above, the trapped frequency-
disk temperature relation is shown in figure 5 for various values of I, with a = 0.2.

6. Discussions

We have shown the possibility that some discrete oscillation modes of one-armed
corrugation waves are trapped in the innermost region of accretion disks. The presence
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Fig. 5. The same with figure 3 except for a = 0.2. In this case the value of lys is
1.74...crg. Below the thick line there is no fundamental mode trapped.

of these trapped modes are of interest in relation to the QPO’s observed in LMXB’s
for the following reason. As shown in previous sections, the trapped region is just
outside the inner edge of disks. Hence, in actual situations the eigen-functions of
trapped oscillations penetrate until the inner edge of disks. This means that the
trapped oscillations are leaked toward the central object.

This leakage makes the oscillations quasi-periodic. Furthermore, this makes the
accretion onto the surface of the central object non-axisymmetric. This implies that
the surface region struck by much gas rotates slowly, when the phenomena are seen
from an outer fixed system. Though the greatly struck region radiates stronger than
do the other regions, this bright region flows away by the rotation of the central object.
However, since the thermal time scale on the star surface is very short, the strongly
struck region remains as the brightest region. Since the region rotates slowly, this
induces the QPO’s phenomena.

The necessary conditions for such trapped modes to exist are that (i) the disks
must have specific angular momentum [ larger than [, in the innermost region of
disks (in other words there must be the pressure maximum in the innermost region)
and (ii) the rotation of the central object must be slow.

We first discuss the first point. In accretion disks the gas falls forward the cen-
tral object with supersonic velocity after passing through a sonic point, r; (critical
point). Disk models with such transonic flow have been examined in detail in cases of
conventional a-disks (e.g., Muchotrzeb 1983; Matsumoto et al. 1984; Abramowicz et
al. 1988). These studies show that the disk structures in the innermost region can be
classified into two types. The first type is the case of large o. In this case the angular
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momentum distribution {(r) in the innermost region is below the Keplerian one ly(r),
i.e., [(r) < lx(r). This is because the gas falls toward the sonic point by losing angular
momentum by viscosity, not by being pushed by pressure. The other type occurs
when the value of « is small. In this case we have I(r) > l(r) (i.e., (1) > lms) in the
innermost region, since the gas falls toward the sonic point, being pushed by pressure.
The critical a separating these two types of disks exists around a ~ 0.05 (Matsumoto
et al. 1984; see also Kato et al. 1988). Results in the text show that for QPO’s to
occur the disks must be of the latter type.

The presence of a maximum of {2 — {2, is only a necessary condition for trapping.
That is, if the maximum is too small, there is either no w which satisfies the trapped
condition (3.3), or the value of w of trapped oscillations becomes too small to explain
the QPO’s . Figure 3 shows that for trapped oscillations of 6 Hz (which correspond
to w = 2.7 x 107%(c/r) if the mass of the central object is 1.4 Mg) to occur in disks
with ¢s/c = 1073, the specific angular momentum of the gas, I, must be I/crg = 1.86
at r = 7. This value of | has been obtained by assuming that [ is constant. In
actual disks with viscosity, however, the value of [ increases outwards. Hence, the
difference between {2 and §2, remains positive until a larger radius in actual disks.
Since the eigen-frequency, w, is given by equation (3.3), this implies that in actual
disks with a viscosity the observed frequencies of QPQO’s can be explained by an
!(Tms) smaller than 1.86 crg. This effect of spatial variation of I should be studied in
detail in realistic disks in the future, since the quantitative results presented here will
be modified. Qualitatively, however, there will be no essential change. In any case,
if QPO’s really occur due to the trapped oscillations discussed here, a comparison
between the calculated frequencies of trapped oscillations and those observed provides
a good tool to determine the disk structure in the innermost region, and will contribute
much to the understanding of disk structures in real systems.

We next comment on the second point: For QPQO’s of the observed order of
frequencies to occur, the rotation of the central object must be slow. This is consistent
with the conventional image that LMXB’s are aged system.

A point which should be emphasized here is that QPO’s are not always observed in
LMXB'’s: Though they are observed in some objects they are not in some others. Even
in the same object they are observed during some epoch but not during some other
epoch. This is not surprising from the point of view of our model, since trapping is
not complete, as mentioned before. That is, the oscillations disappear when excitation
processes are ceased. Second, the presence of QPO’s depends sensitively on the disk
structure. In relation to the last point, the question exists why low-frequency QPO’s
have almost the same frequency of 6 Hz, since this requires that the innermost regions
of disks have a universal structure.

We have so far discussed the parameter dependences of w by taking ! and ¢s/c
as independent parameters. The force balance in the radial direction is —0p/pdr +
(22 — 22)r = 0. Furthermore, we treat the innermost region of disks. Hence, to
change [ under a constant cs/c is to consider a model sequence of disks in which the
scale length (in units of ry) of the pressure variation in the radial direction changes
during the sequence. This model sequence may not be suitable to evaluate parameter
dependences in real systems. We therefore discuss here the parameter dependences
of w from a somewhat different point of view. That is, the radial scale of pressure
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change in the innermost region is assumed to be constant in units of 7, independent
of disks. Then, from the force balance in the radial direction, we have

C2

s 6.1)

2 — £ .
ko{Qk’r‘g

In a rough sense the frequency of trapped oscillations in disks with non-rotating
central objects is of the order of {2 — {2, except when w becomes too small. Hence,
in a rough sense, equation (6.1) implies that

woc M (5)2, (6.2)

c

since r; < M, M being the mass of the central object. This result is equivalent with
what will be obtained from equation (2.6) for non-trapped one-armed corrugation
waves.

We shall apply here equation (6.2) to black hole candidates. In our present paper
we have assumed that a non-axisymmetric collision of gas to the neutron star surface is
the direct cause of X-ray variations. In some black hole candidates, however, QPQO’s
are observed (e.g., Ebisawa et al. 1988). This may suggest the presence of some
mechanism which changes the flow energy before the flow hits the surface of the
central object. Bypassing this problem, however, we shall estimate the frequency of
trapped oscillations expected in black hole systems. In the case of black hole systems,
the central mass is larger than that of neutron stars. Furthermore, in conventional
a-models, the disk temperature decreases with an increase in the mass of the central
object. Hence, if equation (6.2) is applied to black hole candidates, it is not difficult
to obtain the frequencies of trapped oscillations as low as 0.08 Hz, which are observed
in a black hole candidate (LMC X-1) (Ebisawa et al. 1988). The higher harmonics
observed in LMC X-1 may represent non-linearity of oscillations.

Appendix. Frequency of Vertical Oscillations of Disks

We start from the Kerr metric expressed in terms of Boyer-Lindquist coordinates,

sin? 6
p2

2
(72 + 52)dp — bedt]? — L dr? — p2d92. (A1)

A
2 _ b an2 2 _
ds® = = [cdt — bsin® 6dg)]

Here, functions A and p are defined by

A=7r2—rrg +b? (A2)

and
p® =1%+b%cos¥, (A3)

where b is a parameter representing the angular momentum per unit mass of the Kerr
black hole and can change in the range 0 < b < rg/2.
The Euler equation of a free particle is given by

ub u® =0, (A4)
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where u* is the particle’s 4-velocity dz* /ds.

We first consider a circular motion in the equatorial plane (0 = 7/2), i.e., u* =
(U%,0,U%,0). It then follows from equation (A4) that the angular velocity, 2, of a
circular motion observed at infinity is

dp U? (GM)/?
Q= — =2 _ =+ . A5
KT d T Ut r3/2 £ b(rg /2)1/2 (A5)
Here and hereafter, the upper sign refers to the prograde orbit, while the lower sign
to retrograde orbit. The redshift factor U* is also found from equation (A4) to be

Ut — r3/2 £ b(ry/2)'/?
 r3/4(r3/2 — 3r1/2r, /2 £ 2b(rg /2)1/2)1/2°

We next consider a motion slightly perturbed from a circular orbit. The coordi-
nate velocity is written as

(A6)

dxt

—dt— = (I,UT,UG,QI('}‘UQS), (A7)
where v", v? and v? are the velocity components associated with the infinitesimal
perturbations. To derive linearized equations for v", v?, and v?®, it is convenient to

rewrite the Euler equation (A4) in the form

dz# dlnut dz* | dx¥
[( dt )W’L dzv dt } a = (A8)

Here, u! is
ut=Ut{1+Ut [(r2+b2+r7gb2)()— frg—cb] v¢}, (A9)

which is obtained from a linearized form of u,u* = 1.

Substituting equations (A7) and (A9) into equation (A8), we obtain linearized
equations for v", v%, and v®. Among them, the equations for v and v® have already
been derived by Okazaki et al. (1987) in order to calculate the epicyclic frequency
kx. Hence, we restrict our attention here to the equation for v?. After lengthy, but
straightfoward, calculations, we have

8 O\ o
(& + Qa—¢) v? = — 0260, (A10)

where

0 (A11)

2 2
22 (r) = 2 (1 +3b 2rgh ) - 2crgb

— +
r2 r3 r3

and 40 is the displacement of the particle in the #-direction. Equation (A10) shows
that the frequency of small amplitude oscillations around the equatorial plane is 2, .
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