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ABSTRACT 
Detailed numerical calculations are made for the temperature fluctuations in the cosmic background radi- 

ation for universes dominated by cold dark matter. It is shown that the limit on temperature fluctuations 
measured by Readhead et al at 7! 15 yields the strongest constraint on such universes. A low-density universe 
with Q0 < 0.3 is allowed only when ilb < 0.03(0.001) for H0 ä 100(50) km s_1 Mpc-1, if galaxies trace the 
mass distribution. 
Subject headings: cosmic background radiation — cosmology — dark matter 

I. INTRODUCTION 

The isotropy of the cosmic microwave background radiation 
(CBR) provides an important constraint on models of the for- 
mation of structure in the universe (Peebles and Yu 1970; 
Wilson and Silk 1981; Wilson 1983; see Kaiser and Silk 1986 
for a review). It has been shown by Bond and Efstathiou (1984) 
and by Vittorio and Silk (1984) that in the presence of the cold 
dark matter one can develop a gravitational clustering theory 
in which the structure observed at a few megaparsec scale is 
consistent with the limit on small-scale temperature fluctua- 
tions in the CBR. They have shown at the same time that a 
large cosmological mass density (Q0 > 0.3) is necessary to 
drive the growth of perturbations sufficiently fast to make the 
observed structure consistently with the CBR anisotropy limit 
of Uson and Wilkinson (1984a, b) (ÖT/T < 3 x 10"5) at 4!5. 
An even larger density Q0 > 0.5 is inferred from the null obser- 
vation of Readhead et al (1989) (ÔT/T <2.1 x 10"5) at 7Í15 
(Sugiyama 1989). Such a large mass density, however, is not 
supported by the analysis of the dynamics of galaxy clustering, 
which rather indicates Q0 ä 0.1-0.3. 

It has been shown by Fukugita and Umemura (1989) that 
the limit on Q0 is correlated with the baryon mass density Qb, 
and a low-mass density universe is allowed if one assumes a 
sufficiently small Qfe, while all previous authors assumed it to 
be a fixed value of Qfc = 0.03. The work by Fukigita and 
Umemura is based on the observation that the Silk damping 
scale that controls dominantly the evolution of fluctuations 
in baryons involves and Q0 in a different way: Às ~ 
8 Mpc Q6"1/2Qo 1/4^ 2/3 or #s ~ 5'Qb"1/2Qo/4/i_1/2 in terms of 
the angular scale with the Hubble constant h normalized by 
100 km s"1 Mpc"1. An approximation scheme was employed 
in their paper to calculate the CBR fluctuations using the 
transfer function formalism with its form taken from the simu- 
lation of cold dark matter-dominated universes. 

In this paper we report the result of a quantitative analysis1 

1 See also Holtzman (1989), for a recent calculation of the anisotropy with 
extensive choices of model parameters. 

for the constraint inferred from the limits on the small-scale 
anisotropy of the CBR in the cold dark matter-dominated 
universe. We calculate the growth of primordial density fluc- 
tuations by numerically integrating the evolution equation for 
baryons, photons, massless neutrinos, and the hypothetical 
cold dark matter. The CBR fluctuations predicted from the 
observed cosmic structure are then compared with the obser- 
vational limits. In particular, we carry out an analysis with an 
extensive variety of parameter sets and attempt to derive con- 
straints on the model parameters Q0, Qfc, and the Hubble con- 
stant h. We consider only the adiabatic perturbations of the 
Harrison-Zeldovich type spectrum, the advantage of which has 
been discussed in the literature. For evolution equations we 
adopt the gauge-invariant formalism of Bardeen (1980) as 
further developed by Kodama and Sasaki (1984). This method 
was already used to calculate CBR anisotropies by Gouda and 
Sasaki (1986) and Gouda, Sasaki and Suto (1989) for baryon- 
dominated universes and extended by Sugiyama (1989) to the 
case for universes with the dark matter. 

In § II we briefly summarize the formalism and present the 
method of calculations. Numerical results are given in § III, 
and constraints on cold dark matter universes are derived in 
§IV. 

II. CALCULATIONS 

We write the perturbed Robertson-Walker metric in the 
form 

ds2 = —a2(l + 2AY)dr¡2 - 2a2BYidr¡dxi 

+ a2(y¡j + 2Hl Yy¡j + 2HT YJdx1 dx>, (1) 

where r¡ is the conformal time and a is the cosmic scale factor; 
the harmonic function Y satisfies the equation 

/%;= -/C2Y, (2) 
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and Yi and are given by 

Y‘=-k
Y'‘ 

1 
^ij j^2 Y\ij 3 ^ü ^ ’ 

(3) 

(4) 

Zeldovich form 

\A(rihk)\2 cckn (n = 1) . (14) 

At that time the universe was radiation dominated, and hence 
for the adiabatic initial condition we take 

A(rjh k)cca2 . (15) 

with “ I ” the covariant derivative, and their coefficients A, B, 
Hl, and Ht stand for the amplitudes of metric perturbations in 
the lapse function, the shift vector, and the spatial coordinates. 
There are two independent gauge-invariant combinations for 
the perturbations, the intrinsic spatial curvature O, and the 
gravitational potential 'F as expressed by 

^ A+ ak\B kHT) + k 

(5) 

(6) 

The perturbed energy momentum tensor is given by 

Vo= -/>,(!+<5, r), 

t)°7 = (/>« + PJK - B)Yj , 

T^o = ~(Pa + Y‘, 

TUj = P*(0ij + KLolY0i
J + nTalY

i
j), 

where pa and p(X denote unperturbed energy density and pres- 
sure, and <5a, va, nLa, and nT(X are perturbations with respect to 
energy density, velocity, and isotropic and anisotropic stresses 
with the subscript a referring to x (cold dark matter), 
b (baryons), r (photons), and v (massless neutrinos). We then 
introduce the gauge-invariant perturbation variables for the 
matter; for each component of a we define density pertur- 
bations Aa, shear velocity perturbations entropy pertur- 
bations Fa and anisotropic stress perturbations II(Z, all relative 
to the total-matter rest frame, to be 

Ax = <5* + 3(1 + wa) — (v — B), 

V<z — va — T H't , 

(8) 

(9) 

Y a = 71 La — ^ ’ 
"a 

na = 7üra, 

(10) 

(ii) 

where v is the total-matter center of mass velocity, wa = pjpa, 
and cl = p'Jp'a. The gauge-invariant density perturbations and 
the shear-velocity perturbations for the total matter are 

A = 

V = E (/>» + pJK 
E(Pa + P«) 

(12) 

(13) 

The initial data of perturbations are given at the epoch when 
the photon temperature is sufficiently high, T = 108 K in the 
present calculation. The spectrum of total density pertur- 
bations A^f, k) at the initial time rji is taken to be the Harrison- 

For the amplitude of entropy perturbations 

SbÂVi) — Ab — ^Ar — 0 , (16) 
from the solution of the general growing mode for an early 
stage. 

We carry out the numerical calculation of the evolution 
equation for each component of the perturbation variables. 
The detailed form of the equation is given in the paper by 
Sugiyama (1989; see also Kodama and Sasaki 1984 and Gouda 
and Sasaki 1986). The outline of our method is as follows. 
Until the photon temperature falls down to 6000 K, we treat 
baryons and photons as a single viscous fluid strongly coupled 
through Thomson scattering. For 6000 K > T > 1000 K we 
treat baryons and photons separately. We follow Peebles 
(1968), and Jones and Wyse (1985) to calculate ionization. The 
collisional Boltzmann equation is then solved for baryons 
(treated as pressureless dust) and for the distribution function 
of photons f(xß, qß) (xß and qß are the four-coordinate and 
four-momentum of photons). We define the frequency- 
averaged gauge-invariant brightness function by 

er(»?, *, r) = J dq(f-f)q3 + ^ (i> - B)(^ Y - kfY^j , 

(17) 

where y is the direction vector of the three-momentum, q the 
energy of the photons and / the blackbody distribution. Fol- 
lowing Wilson (1983), we then carry out the multipole expan- 
sion for €r(r¡, x, y) : 

eÁri, x,y)= £ -*)-%,... À" V, V), (18) 
1 = 0 

where Ptf)' '11 are Ith rank tensors defined by recursion equa- 
tions 

^(0) = i > ^(d = yl > 

p‘d+lr
i = ,',+,) - tyt y<íli2n3-¿)'+1) • (!9) 

Parentheses for indices i indicate symmetrization. The photon 
perturbation variables are related with the harmonic com- 
ponents er(1) as Ar = er(0), Vr = (¿)cr(1) + V and II,. = (f)€r(2). 
The evolution equation is solved by induction. The cold dark 
matter and massless neutrinos are treated as dust and a colli- 
sionless fluid, respectively. 

Below T = 1000 K we use the analytic growing mode solu- 
tion to calculate the evolution of matter (Weinberg 1972). For 
the photon propagation we solve the free-streaming equation 
for an optically thin universe, 

íx{\‘- + 'r-ív-"y)-í,l'r-<s')- (20) 

with A the conformal affine parameter along the photon trajec- 
tory. We finally obtain the brightness function at the present 
epoch rj0 measured in the rest frame of the matter (see, e.g., 
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Gouda, Sasaki, and Suto 1989): 

©mfao, y) = ^ er(th, y) + 'Pfaj) - ^ V(th) - 

x e-w - T^o) + f- V(r,0) + ßV(Vo) (21) 

where fi = k • y/k and is the conformal time at some epoch 
arbitrarily chosen after recombination, at which numerical sol- 
ution is switched into the free-streaming formula. We choose 
this epoch to be T = 1000 K. For a flat universe, À' = r¡0 — rj1 
and for an open universe 

A' ^ (-K)-1'2 sinh [( — K)1,2(tj0 - fh)] 

for a small angular separation with K given by 
K = -a2H(l - Q). 

In calculating the anisotropy of CBR we note that the 
monopole component of 0m does not contribute to the aniso- 
tropy and the dipole component contributes only to the bulk 
motion of the total matter relative to the CBR. We then sub- 
tract these components from 0m, and define 

© = {©m(>/0, y) - + £ V(r/o) + j ifc/U' 

= ^ ertoi, y) + vfai) - £ v(t?i) - /¿v(>ii), (22) 

where the second and third terms represent the Sachs-Wolfe 
(1967) effect. For a small angular separation we calculate the 
intrinsic temperature correlation function as 

cm = (y (y) y (Y) 

-4'í 
dkk2wk)\Lj0(m (23) 

where ôT/T(y) is the photon temperature fluctuation brought 
from the last scattering surface and 9 = \ y — y' \. 

To compare the prediction with actual observations, we 
have to take account of the effect of the antenna beam width cr 
(as defined by FWHM). The effective correlation function 
C(0, a) is expressed by (Wilson and Silk 1981) 

C(0, a) = 
2 

(cr/1.2)2 j dd'e'C(0') 

x exp 
(92 + 0f2~] [ 299' 1 
(a/1.2)2 _r0L(a/1.2)2J , (24) 

with I0 the modified Bessel function. The mean square tem- 
perature anisotropy given by a triple beam (double switching) 
measurement reads 

ÔT 
(6, a) = I C(0, a) - 2C(8, <7) + ^ C(20, a) . (25) 

We fix the normalization of perturbations by assuming the 
second moment of the two-point mass correlation function, 

J3W 
-f 

-4"} 

drr2i(r) 

Cr 
dkk21 A(f/0, fe) I2 j drr2j0(kr) (26) 

at the present epoch to agree with that for the galaxy-galaxy 
correlation. We take J3(R = 10/i-1 Mpc) ^ 280/z-3 Mpc3 in 
agreement with the data from the CfA redshift survey (Davis 
and Peebles 1983a). Alternatively, we try to normalize the per- 
turbation by 

= 4tc dkk2W(kR) I Afro, k)|2 - 1 , 

(27) 

with the assumption that light traces mass, where W(x) = 
[3/i(x)/x]2. We found that the difference in the result between 
two normalizations is small; it is typically 10%-20% in ÔT/T. 

ÔM 
M 

(R = 8/z “1 Mpc) 

III. NUMERICAL RESULTS 

We have made the calculation for varieties of the parameters 
Q0, Q&, and h as shown in Table 1. The result for ST/ 
T = Q ôT/T(9, a)|2>1/2 is presented in Figure 1 for sample 
choices of parameters for the beam width a = l'.5(a) and a = 8° 
(b). The observational limits of Uson and Wilkinson (1984a, b) 
(ÔT/T < 3 x KT5, 0 = 4:5, a = i:5) and of Readhead et al 
(1989) (ÔT/T < 2.1 x 10“5, 9 = 7Í15, a = 1!8) are marked in 
Figure la, and the value reported by Davies et al (1987) (ôT/ 
T = 3.1 x 10“5, 0 = 8°, a = 8°) in Figure lb. We found an 
agreement between our result and that of Bond and Efstathiou 
(1984; hereafter BE) to an accuracy of 30%-40% with our 
result of ST/T always larger. We consider the origin of this 
discrepancy due to the neglect of Sachs-Wolfe terms and the 
dipole term 2it rj = r¡1 (see eq. [22]) in BE as clear from their 
equation (2b). To demonstrate the contribution of these terms 
we show in Figure 2 the angular correlation function C(0) and 
C'(0) obtained by subtracting the Sachs-Wolfe and dipole 
terms for the model Q0 = 1.0, ilb = 0.03, and h = 0.5. While the 
Sachs-Wolfe effect is known to be important at large scales, it 
modifies substantially C(0) also at small scales and increases 
ÔT/T by an appreciable amount. We found that our corre- 
lation function shows a very good agreement with that of BE, 
once the Sachs-Wolfe and the dipole terms are subtracted from 
C(0). 

For convenience we made a fitting in the form 

C(0) = 
1 

1 + mr 
C(0) (28) 

and present resulting parameters in Table 1. 
We also compared our calculation with that of Vittorio and 

Silk (1984). We found that our result agrees with theirs within 
20%-30%, their ÔT/T being always larger. We did not attempt 
to locate the origin of this discrepancy further, for there is no 
sufficient detail given in their paper. Our C(0) agrees with the 
value recently reported by Holtzman (1989) to an accuracy of 
10%. This slight discrepancy is mostly due to the different 
normalization for the two-point mass correlation function. 

Let us make a comment on the difference seen in the present 
result and that by the simple treatment of Fukugita and 
Umemura (1989). In their work the brightness function is 
assumed essentially to take the form 

0(/c) = Ak1/2e-ms)2T(rj0, k), (29) 

with ks the wave number corresponding to the Silk damping 
scale and T the transfer function for the cold dark matter. We 
found in our calculation, however, that 0(k) does not damp as 
fast as exp [—(k/ks)2] but ~exp [—(k/ks)1'2] f°r the range of 
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TABLE 1 
Model Parameters and the Result of the Calculation 

ÔT/T x 105 C(0) 

4:5 7:5 10' 8° C(0) x 101 
ec0 

h= 1.0 

1.0. 
1.0. 
1.0. 
1.0. 
1.0. 
0.8. 
0.6. 
0.6. 
0.6. 
0.4. 
0.4. 
0.4. 
0.4. 
0.4. 
0.3. 
0.3. 
0.2. 
0.2. 
0.2. 
0.2. 
0.1. 

0.3 
0.1 
0.06 
0.03 
0.01 
0.03 
0.18 
0.03 
0.01 
0.2 
0.1 
0.06 
0.03 
0.01 
0.1 
0.02 
0.03 
0.01 
0.006 
0.003 
0.002 

0.91 
0.41 
0.33 
0.26 
0.17 
0.35 
1.2 
0.53 
0.38 
2.9 
1.5 
1.2 
0.98 
0.73 
2.6 
1.4 
3.2 
2.4 
2.1 
1.6 
3.8 

1.9 
0.76 
0.59 
0.47 
0.34 
0.60 
2.1 
0.86 
0.66 
5.0 
2.4 
1.8 
1.5 
1.2 
4.0 
2.1 
4.4 
3.4 
3.0 
2.5 
6.6 

2.9 
1.1 
0.80 
0.63 
0.48 
0.77 
3.0 
1.1 
0.85 
7.2 
3.0 
2.1 
1.7 
1.4 
4.9 
2.3 
4.6 
3.7 
3.4 
3.0 
8.0 

0.48 
0.34 
0.31 
0.28 
0.27 
0.32 
0.63 
0.38 
0.34 
1.4 
0.76 
0.61 
0.51 
0.45 
1.1 
0.60 
1.1 
0.84 
0.77 
0.75 
1.8 

44 
7.4 
3.8 
2.0 
1.3 
2.6 

44 
3.8 
2.4 

220 
37 
16 
8.2 
5.1 

90 
13 
51 
26 
22 
18 

120 

15 
21 
23 
28 
38 
25 
15 
21 
24 
13 
15 
16 
16 
17 
13 
13 
11 
10 
11 
12 
9.6 

2.6 
1.8 
1.6 
1.3 
1.0 
1.3 
2.4 
1.3 
1.1 
2.7 
2.1 
1.7 
1.4 
1.2 
2.2 
1.3 
1.5 
1.3 
1.4 
1.4 
1.3 

h = 0.75 

1.0. 
0.4. 
0.4. 
0.3. 
0.2. 
0.2. 

0.03 
0.03 
0.01 
0.03 
0.03 
0.003 

0.35 
1.5 
1.1 
2.6 
5.4 
2.5 

0.64 
2.3 
1.8 
3.6 
7.2 
4.0 

0.85 
2.6 
2.2 
4.0 
7.7 
4.8 

0.35 
0.65 
0.63 
0.86 
1.4 
1.1 

3.0 
16 
11 
34 

110 
48 

28 
13 
15 
11 
8.7 

11 

1.1 
1.4 
1.3 
1.5 
1.5 
1.5 

h = 0.5 

1.0. 
1.0. 
1.0. 
1.0. 
0.9. 
0.8. 
0.8. 
0.6. 
0.6. 
0.6. 
0.6. 
0.6. 
0.5. 
0.5. 
0.4. 
0.3. 
0.2. 
0.2. 
0.2. 

0.1 
0.06 
0.03 
0.01 
0.2 
0.08 
0.03 
0.2 
0.08 
0.03 
0.01 
0.008 
0.1 
0.006 
0.03 
0.09 
0.03 
0.01 
0.003 

0.85 
0.73 
0.55 
0.32 
1.2 
1.2 
0.81 
2.8 
1.9 
1.4 
0.84 
0.75 
2.9 
0.93 
2.9 
8.0 

11 
7.4 
4.7 

1.4 
1.3 
1.0 
0.65 
2.0 
1.9 
1.5 
4.3 
3.0 
2.3 
1.6 
1.4 
4.4 
1.8 
4.4 

11 
15 
11 
7.7 

1.8 
1.7 
1.4 
0.98 
2.5 
2.3 
1.9 
5.1 
3.5 
2.8 
2.1 
2.0 
5.0 
2.4 
5.1 

12 
16 
12 
9.7 

0.60 
0.55 
0.50 
0.50 
0.79 
0.69 
0.62 
1.3 
0.91 
0.74 
0.74 
0.74 
1.2 
0.82 
1.1 
2.4 
2.5 
2.1 
1.6 

12 
9.6 
7.3 
5.9 

29 
17 
11 
95 
33 
21 
16 
15 
66 
21 
55 

310 
430 
260 
180 

22 
22 
20 
28 
21 
19 
19 
16 
15 
15 
19 
19 
14 
18 
11 
9.8 
7.5 
8.6 

10 

1.3 
1.3 
1.4 
1.2 
1.7 
1.3 
1.3 
1.7 
1.4 
1.4 
1.4 
1.4 
1.5 
1.4 
1.5 
1.6 
1.6 
1.7 
1.8 

Note.—Root mean square fluctuations ÔT/T at 4!5 {o = P5), 715 (a = P8), 10' {a = 3') 
and 8° (a = 8°) are shown in cols. (4)-(7). Cols. (8)-(10) are fitting parameters for the two- 
point correlation function (eq. [28]). 

parameters concerning our interest. This behavior contrasts 
to the case of baryon-dominated universe, where the 
exp [ —(/c/fcs)2] behavior is clearly observed (Gouda and 
Sasaki 1986). Therefore, we suppose that this moderate 
damping is a characteristic of cold dark matter-dominated 
universes. Quantitatively the result of Fukugita and Umemura 
is correct up to a factor of 2 as remarked in their paper. A 
typical perturbation spectrum at the epoch of T = 1000 K is 
exhibited in Figure 3. We observe the Silk damping in 0 on the 

short-wavelength side. On the other hand, the perturbations in 
baryons Ab have already caught up with those in the cold dark 
matter (ÁJ. 

IV. CONSTRAINTS ON COLD DARK 
MATTER-DOMINATED UNIVERSES 

Constraints are derived by comparing the prediction of 
ÔT/T with the limits by Uson and Wilkinson (1984a, b) and by 
Readhead et al. (1989). The result is displayed on the Q0 — Qb 
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32 FUKUGITA, SUGIYAMA, AND UMEMURA Vol. 358 

Fig. 1.—Root mean square temperature fluctuations èT/T = ((ôT/T)2)112 as a function of 0. The beam width is assumed to be <r = i:5 (FWHM) for (a) and 8° 
for (b). The models are (1) £)0 = 1.0, fi, = 0.03, h = 1.0; (2) £20 = 1.0, Qb = 0.03, h = 0.5; (3) ii0 = 0.2, £2,, = 0.03, h = 1.0; (4) £20 = 0.2, £2, = 0.03, h = 0.5; 
(5) £20 = 0.2, £2,, = 0.003, h = 1.0. The upper limits by Uson and Wilkinson (1984a, 6) at 0 = 4:5 and by Readhead et al. (1989) at 0 = 7:15 are also shown in (a) and 
the value reported by Davies et al. (1987) at 0 = 8° in {b). 

plane in Figure 4a for h = 1.0 and in Figure 4b for h = 0.5. We 
also added a line corresponding to the fluctuations ÔT/ 
T = 1.0 x 10“5 at 6 = 10!0 and a = 3!0. The most stringent 
limit is placed by the observation of Readhead et al (1989). The 
constraint is particularly strong for low-density universes; for 
Q0 < 0.3, for example, we are led to Qb < 0.03 for /t = 1 and 
Q& < 0.001 for h = 0.5. 

For convenience we present empirical laws for ÔT/T, which 
are valid approximately for Qb <^Q0 : 

ST 
T 

ST 
T = 

ST 
T 

= 5.9 x 10“6Qo 0 = 4!5, a = I'.S , (30) 

= 8.0 X 10“6Qo 1-6Q?-24/i"1-6, e = 7:i5, <7 = i:8 , (31) 

= 8.8 X 10“6Qo 1-6^'23^-1-7, o = 10:0, (7 = 3:0 . (32) 

Fig. 2.—The normalized temperature correlation function C(0)/C(O) vs. 0. 
The dashed line [C'(0)] represents the correlation function with the Sachs- 
Wolfe and dipole terms subtracted from C(0) [normalized by C(0)]. The model 
parameters are Q0 = 1.0, Qb = 0.03 and h = 0.5. 

A substantial deviation from this law is found for Qb > 0.1Qo 
for h = 1.0 as guessed from Figure 4. We remark that the Qb 

dependence is weaker than that inferred by Fukugita and 
Umemura. We also obtain 

S T 
— = 3.1 x 10“6Qo 0-81^ 082/i'1-2, 0 = 8°, (7 = 8°. (33) 

for the angle relevant to the observation by Davies et al. (1987). 
When fitting formula (31) is combined with the limit by Read- 
head et al. (1989), we obtain a constraint on the mass density 
parameter : 

Q0 > 0.55Q$ 15h-1 , (34) 

M/M© 

Fig. 3—Perturbation spectra k3/2Ax (cold dark matter), k3/2Ab (baryons), 
and /c3/20rms (photons) as a function of k at T = 1000 K for the same model as 
Fig. 2. The normalization is arbitrary. 
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Fig. 4.—Constraints on cold dark matter-dominated universes for {a) h = 1.0 and (b) h = 0.5. The limits set by the observation of Uson and Wilkinson (1984a, b) 
at 4'.5 and that of Readhead et al. (1989) at 7! 15 are displayed together with a curve for the case of ÔT/T = 1.0 x 10"5 at 0 = 10' (a = 3Ï0). The limits on Qb and Q0 
from various observations are also plotted. 

which yields a fair approximation for the curve shown in 
Figure 4. We also comment that the value of ÖT/T reported by 
Davies et al is significantly larger than is expected in cold dark 
matter-dominated universes if n > 1 (see Fig. lb). 

Let us now discuss the implication of the limit. The analyses 
for the cosmological mass density mostly support the low- 
density universe. The observed Virgocentric infall velocity of 
~300 km s_1 provides 0.1 < Q0 ^ 0.3 with the aid of the 
spherical perturbation theory (Davis and Peebles 1983a; Yahil 
1983). (Davis and Huchra 1982 derived a larger value 0.4 < 
Q0 < 0.5 from an analysis of the local peculiar gravity, 
however.) Using the cosmic virial theorem Davis and Peebles 
(1983h) and Bean et al. (1983) obtained Q0 = 0.2e±o-4 from the 
observed peculiar velocity of correlated galaxy pairs. On the 
other hand, Yahil, Walker, and Rowan-Robinson (1986) and 
Villumsen and Strauss (1987) suggested a nearly flat cosmo- 
logical model by an analysis of the IRAS dipole moment. 
Fukugita and Ichikawa (1989) criticized, however, that the 
dipole moment constructed from the IRAS sample underesti- 
mates the dipole moment, and a correction for such an effect 
would also lead to a result in support for a low-mass density 
universe. 

There are several arguments on the baryonic matter density. 
The most familiar is the one that is derived from primordial 
nucleosynthesis (Yang et al. 1984). Under the assumption of 
homogeneous early universe the baryon to photon number 
ratio is restricted conservatively in the range of 10-10 < 
nB/ny 10" 9. This leads to the baryonic matter density: 

0.0035/1-2 < ^ 0.035/1" 2 . (35) 

A reliable constraint on Qfc is that estimated from the abun- 
dance of the observed luminous matter in the universe. The 
luminosity density is estimated using the number of observed 
galaxies correcting for unseen ones with the aid of the lumin- 
osity function, which leads to ~(l-2) x 108/i L0 Mpc"3 in the 

blue band (Davis and Huchra 1982; Kirshner et al. 1983; 
Felten 1985). This luminosity density is converted to the lumin- 
ous mass density using the average luminous mass-to-lumin- 
osity (MlutJLB) ratio of each galaxy. If we take this to be 
MiuJLb ^ 3 from the value for the disk of the Galaxy in the 
solar neighborhood (Faber and Gallagher 1979), we obtain 
Qb ^ 0.0025/1"1 when combined with the luminosity density. 
We may take this value as a firm lower bound on the baryonic 
matter density in the universe. 

The last argument for ilb is based on the ionized inter- 
galactic matter using the Gunn-Peterson test. The optical 
depth of the intergalactic neutral hydrogen is given by th , oc 
&b/Jvv> where Juv is the UV background flux which is esti- 
mated from the proximity effect of the QSO Lya absorption 
system near the Lya emission line (Bajtlik, Duncan, and 
Ostriker 1988). The constraint on thi gives an upper bound on 
the baryonic matter density to be < O.l/i"1 (Ostriker and 
Ikeuchi 1983). 

Now, we discuss how a cosmological model of cold dark 
matter universes is constrained from the isotropy of CBR, 
when we use the mass density bounds given above (the limits 
are indicated in Fig. 4). The lower bound on from the lumin- 
osity density and MluJLB gives a lower bound on the mass 
density of the universe Q0 > 0.22 if /i = 1 and Q0 > 0.42 if 
h = 0.5. The lower bound on Qb from primordial nucleo- 
synthesis leads to a similar constraint Q0 > 0.23 iï h = 1 and 
Q0 <: 0.54 iï h = 0.5. We are left with a narrow range for low- 
density universes, 0.2 < Q0 < 0.3 if the Hubble constant is 
close to 100 km s"1 Mpc"1. On the other hand, we have no 
allowed region for f/0 = 50 km s "1 Mpc "1. 

This leads to the condition that the low-density universe 
with Q0 < 0.3 is viable only when the Hubble constant takes a 
value 80-100 km s"1 Mpc. It is a matter of great significance 
whether such a value of the Hubble constant is consistent with 
the age inferred from globular clusters and nucleochronology, 
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h 
Fig. 5.—Constraints on the h — Q0 plane. The constraints shown are 

derived from the combined use of the limits on CBR temperature fluctuations 
and the lower limit on from nucleosynthesis. Curves corresponding to the 
age i0 = 12 and 10 Gyr are also shown. 

i0 > 12 Gyr. Figure 5 shows the constraints on Q0 derived 
using the limit on Qb from nucleosynthesis. The restriction 
from the age of the universe is also plotted on the h — Q0 plane, 
when the cosmological constant vanishes. The Hubble con- 
stant is restricted to be /t < 0.65 from t0 > 12 Gyr. This means 
that Q0 ^ 0.4 and hence the low density universe is marginal. 

Such a stringent constraint, however, can be relaxed if gal- 
axies are formed with biasing. This is based on the idea that 
galaxies are formed preferentially in high density regions 
having the amplitude of peak density fluctuations Ö > vcr, with 
a the rms value of the fluctuation amplitude (Kaiser 1984; Silk 
1985). In Figure 6 the constraint on the Q0 — Qb plane is 
shown for the biasing parameter v = 2-3. Some N-body 
experiments have shown that the observed properties on large- 
scale distributions of galaxies can be accounted for with the 
biasing parameter v = 2-3 (Davis et al 1985). For v = 3, say, 
the constraint on Q0 becomes as weak as Q0 > 0.12/i_1 3 for 
the lower bound on Qb given from nucleosynthesis. We finally 
remark that the strong constraints from the age of the universe 
and from the isotropy of CBR are both relaxed if the cosmo- 
logical constant is non-vanishing. 

)| ^^^ i i i i I 
0.1 1.0 

Qo 
Fig. 6a 

Do 
Fig. 6b 

Fig. 6.—Constraints given by the observation of Readhead et al. (1989) are 
shown for various biasing parameters, v = 3, 2, and 1 (no biasing), (a) h= 1.0 
(b) h = 0.5. 
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