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Summary. We present detailed calculations of the structure and the spectrum of 
massive, geometrically thin, ‘bare’ accretion discs. The calculations are for an 
a-disc, with various assumptions about the viscosity and full relativistic 
corrections. The radiative transfer equations are solved using the Eddington 
approximation for an atmosphere with a vertical temperature gradient. All 
significant sources of opacity, for T> 104 K, are included, and all models are 
found to be optically thick throughout. The requirement of a geometrically thin 
disc forces a limit on the accretion rate, of L<0.3Ledd. Several previous disc 
calculations violate this limit and their results are questionable. All discs 
considered in this work are found to be radiation pressure dominated 
throughout the region where self-gravity dominates. Spectral changes due to 
electron scattering (modified blackbody and comptonization) are not 
significant in most models. The surface temperature is close to the effective 
temperature, even for regions where electron scattering effects are significant, 
due to the vertical temperature gradient, in contradiction to earlier findings. 
The upper limit on the accretion rate indicates that thin discs, with no corona, 
may not have enough soft X-rays to explain the observations of bright quasars. 
Relativistic effects modify the spectrum, considerably, at large viewing angles. 
We show several examples for this and calculate the angular dependence of the 
ionizing radiation and photons flux. This may have important implications on 
the modelling of AGN emission lines. 

1 Introduction 

A likely mechanism for powering Active Galactic Nuclei (AGN), is the release of gravitational 
energy by accretion on to a massive compact object (see review and references in Rees 1984 
and Begelman 1985). A possible configuration is that of a geometrically thin accretion disc 
around a central black hole (BH). 

The theory of accretion discs is described in Shakura & Sunyaev (1973, hereafter SS73) and 
Novikov & Thorne (1973, hereafter NT73), and is reviewed by Pringle (1981). Throughout 
this paper we refer to it as ‘the standard disc theory’. Stellar accretion discs, i.e. those around a 
solar mass white dwarf, neutron star or BH, have been studied extensively. Theoretical spectra 
for such systems have been computed by means of adding stellar atmospheres (Herter et al 
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1979; Wade 1984), or by calculating specific models for the disc atmosphere (Wilhams, King 
& Brooker 1987; Kriz & Hybeny 1987). Less attention has been paid to massive discs, i.e. 
those around massive BH. Some models have been calculated by Callahan (1977) and 
Sakimoto & Coroniti (1981), and a time-dependent structure was investigated by Lin & 
Shields (1986). 

Shields (1978), Malkan & Sargent (1982) and Malkan (1983) suggested that the 
blue-ultraviolet continuum in quasars and other AGN is due to thermal emission from the sur- 
face of an accretion disc. Verification of this idea depends on accurate calculations of the disc 
spectrum that were not available at the time. Currently there are some simplified calculations, 

based on the local blackbody approximation (Malkan 1983; Bechtold et al 1987; Wandel 
1987), or the combination of stellar spectra (Kolykhalov & Sunyaev 1984; Sun & Malkan 
1987). The most detailed calculation known to us is by Czerny & Elvis (1987) who include the 
effects of electron scattering. 

In this paper we present new calculations for thin discs around massive BH. We use the 
Eddington approximation and a full treatment of electron and bound-free opacities to 
calculate the local spectrum. We integrate over the disc surface to obtain the observed 
spectrum at different viewing angles, taking into account all relativistic corrections. We assume 
a ‘bare disc’ - i.e. no corona or other scattering material above the disc. The calculations cover 
a large range in luminosity and demonstrate, in detail, the spectral dependence on the mass of 
the central source, the accretion rate and other parameters. 

The plan of the paper is as follows: in Section 2 we introduce the basic equations and the 
standard solution, and calculate the local and the observed spectrum. We also discuss the 
requirements for a self-consistent model, and compare stellar and massive discs. In Section 3 
we present disc spectra for a large range of parameters, and in Section 4 we discuss the 
implications of our results. A detailed comparison with the observed spectrum of AGN is 
deffered to another paper. 

2 Calculations 

2.1 BASIC EQUATIONS 

The disc structure equations are taken from NT73 and Page & Thorne (1974, hereafter 
PT74), and include general relativistic treatment of non-rotating and rotating BH. In the 
following equations M is the mass of the central BH, R is the radial distance, i?ms is the radius 

of marginal stability (the inner radius of the disc), M is the accretion rate, is the surface flux, 
20 is the surface mass density, Vr is the radial drift velocity of matter and W is the vertically 
integrated shear stress. The equations for the radial structure are: 

angular momentum conservation: 

W=M/2jt 
1/2 GMQC 

R3 BD 
(1) 

energy conservation: 

7 3GMM Q 

SjiR3 BC'12 ’ 

and rest mass conservation: 

M^IjiRHqVD112. (3) 
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Here A, B, C, D, E and Q are the general relativistic correction factors defined in NT 7 3 and 
PT74, all approaching 1 at > Æms. For example, in equation (2) the correction factor Q/BCl/2 

replaces the Newtonian factor 1 - {R/Rms)~
l/2 (see SS73). As a result the Newtonian efficiency 

for a non-rotating BH is 0.0825 while the true efficiency is 0.0572. 

The vertical (z-coordinate) structure equations are: 

the pressure balance: 

dP_pGMzB2DE 

dz~ R3 A2C ’ ( ) 

the energy generation: 

dq = 3 ¡GM D 

dz~2\l R3 tr*C’ 
(5) 

and the radiative energy transfer: 

q{z)= - 
c du 

3kp dz 
(6) 

Here Pis the pressure, tr¿ the viscous stress, q the vertical radiation flux, u the radiation energy 
density, k the opacity (in equation 6 k is the Rosseland mean) and p the mass density. 

In the present paper the radiative transfer is solved by means of the Eddington 
approximation for a grey atmosphere. This is valid when electron scattering dominates the 
opacity. We neglect convective energy transport which, according to Shakura, Sunyaev & 
Zilitinkevich (1978), amounts to less than half the total energy transport in the radiation 
pressure dominated part of the disc. For the viscous stress, tr(j), we use the conventional a-disc 
model assumption: tr(f) = aP. We consider three possible cases; (a) P = Pr + Pg, (b) P = Pg, and (c) 
P=>/PgPr, where Pg is the gas pressure and Pr the radiation pressure. The first of these is 
probably thermally unstable in the inner, radiation pressure dominated part (SS76; Piran 
1978). Cases (b) and (c) have been proposed for the case of turbulences generated by magnetic 

fields (Sakimoto & Coroniti 1981; Burm 1985; Lin & Shields 1986). In such cases energy 
production by dissipative processes may not be distributed throughout the disc, and could be 
concentrated, for example, in a thin corona. This may be inconsistent with the standard a-disc 
model. 

Throughout this paper we assume Px> Pg and that electron scattering opacity [*:(es)] 
dominates true absorption [/¿(ab)] everywhere (the so-called region a in SS73). These 
assumptions are discussed below and in Sections 2.2.2, 2.3.2 and 2.4.1. In all calculations we 

assume the following chemical composition: A =0.75, Y = 0.25 and Z = 0. 
In the solution for the vertical density profile we use the simplifying assumption that energy 

generation by viscosity is proportional to the density (SS73 and NT73, a more accurate 
relation, within the a-disc model, is given in equation 5 ). This gives: 

i(z)=2f02(Z)/20, (7) 

where 

2(z) = p{z) dz 
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900 A. Laor and H. Netzer 

using equation (4) with P = Pn equations (6) and (7) we get: 

Z(z)= GMc z. (8) 

The assumption of a constant opacity inside the disc, k = 7c(es), makes the density independent 
of z. Alternatively, if energy transfer by convection is included, we get the density profile as 
calculated by Bisnovatyi-Kogan & Blinikov (1977) and Shakura et al. (1978). 

The base of the photosphere (z0) is found by equating the pressure exerted by the outgoing 
radiation to the local gravity: 

FvKv j GMzq 
——dv = —-j-cT. 

} c R3 

For 7c(ah) < 7c(es), we get: 

F0K(ts)R3 

Zo ^r* 
cGM 

(9) 

(10) 

Where F0 = JFV dv and cr = B2DEA "2C~1 (see equation 4). The above expression can also be 
deduced directly from equation (8). An approximate expression for z0, for the case 
^(ab) > 7c(es), is given in Section 2.3.2. 

The standard solution for the thin a-disc (SS73; NT73) is given in terms of the dimension- 
less parameters: 

M 
mQ- 

109M, 
r = —- and 

M 
m — 

38.8m9M0yr -1> 

where Fg= GM/c2= 1.4761014m9 cm. The Eddington luminosity for pure hydrogen, 
Ledd= 1.25 x 1047m9 erg s“1, is related to Medd by Ledd= ^Meddc

2, or Medd = 2.22m9/rj MQ 

yr"1, where rj is the efficiency. We consider only two cases: a non-rotating and a maximally 
rotating BH (see Thorne 1974). We also neglect radiation absorption by the BH (see 
Cunningham 1976). For a non-rotating BH rj = 0.0572 and thus Medd = 38.8m9 M0 yr~ \ and 
for a maximally rotating one ^ = 0.324 and Medd = 6.85m9 MQ yr-1. With the above 

definitions L = rhLedd for a non-rotating BH and L = 5.66mL edd for a maximally rotating 
one.* 

The standard solution for the local energy flux is: 

F0(r)= 1.2x lO^mm^V“3^ ergs-1 cm'2 (11) 

and for the disc half-thickness: 

z0(r) = 3.9x 1015mm9c2(r)cm, (12) 

Cj-Cg are general relativistic correction factors that are functions of the parameters A-Q 
introduced earlier. Cj-c4 are defined in NT73 (equation 5.9.10) and c5-c8 are given by: 

c5 = Bl2/5EDl/5A~2Q~2/5, 

c6 = Q2/5F-2/5Z)-1/5, 

c1 = B4DEul9Q~l0/9A~2619, 

c8 = F - 1/9Q - 2/9 A - 2/9. 

*The above definitions of rand m are different from those given by SS73. This results in different coefficients in 
equations (11), (12), (13a) and (14a) compared with their equations (2.8)-(2.11). 
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Massive thin accretion discs 901 

All these factors approach unity for r> l. The local nucleon number density, N(r\ and the 
local temperature at the centre of the disc, Tc(r), depend on the viscosity law. Referring to the 

three possibilities introduced earlier we find that in case (a) a(Pr+Fg)] 

A(r) = 2.4x 107a lm 2m9
lrX5c1)cm 3 (13a) 

rc(r) = 2.8xl05m9'l/4a‘1V3/8c4K; (14a) 

in case (b) (tr^= aPg) 

iV(r) = 2.9 x 1015a~0'8/n<)0'8w~0'V_0'6C5 cm~3 (13b) 

Tc{r) = 2.9 x 107mOAmg °'2a ~02r~°'9c6 K; (14b) 

and in case (c) (tr¿= a-JPgPT) 

N(r) = 73 x 101'm9’0'88a_0'88/ñ_1'lV0'33c7 cm"3 (13c) 

rc(r) = 3.7xl06m9"0'22«'0'22w0-2V-°'66c8K. (14c) 

Note that the density in the inner part of the disc is about two to three orders of magnitude 
greater in case (b) compared with case (a) and the central temperature is about one order of 
magnitude greater. The values of N{r) and Tc(r) in case (c) are intermediate between those two 
cases. 

2.2 A COMPARISON OF MASSIVE AND STELLAR DISCS 

There are many detailed calculations for stellar discs (e.g. Meyer & Meyer-Hofmeister 1982; 
Cannizo & Wheeler 1984). Below we describe some of the important differences distinguish- 

ing a ‘light’ ( ~ 1 Mq central BH) for a ‘massive’ ( 109Mo central BH) disc. 

2.2.1 Radiation versus gas pressure* 

The ratio of radiation to gas pressure, for a completely ionized gas and r> rms, is: 

Pr/Pg = 7.3xl09w;/4w2a1/V'21/8. (15) 

This ratio is 180 times larger in a massive disc, for similar values of m, a and r. The radius 
where Pr = Pg is: 

rprg = 5700m9
/2W6/21a2/21. (16) 

This is larger by a factor of 7 in a massive disc, compared with the light one. Thus Px dominates 
over a larger part of massive discs. 

2.2.2 Self-gravity 

The self-gravity of the disc is 2jtG20, where 20 = 2p0z0. The ratio of self-gravity to central 
gravity, Q', is: 

Q' = 4jrp0/(M/F3)= 1.0 x 10_15m9m
_2r4-5a_1 (17) 

and the self-gravity radius, defined by Q' = 1, is: 

rsg = 2150mg2/9m4/9a219. (18) 

*The discussion in Section 2.2 is for the case of P = PX + P„. Similar results can be obtained for the case of P = P„ 
and P= 
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A. Laor and H. Netzer 902 

Equation (18) is only approximate for rprg < rsg since rsg does not include the effects of gas 
pressure. Q' is proportional to m9 and is thus larger by a factor of ~ 109 in massive discs, for 
similar values of m, a and r. The r4 5 dependence in equation (17) results in a rapid increase of 
Qf beyond rsg and to the probable disintegration of the disc. Whether this happens at Q' = 1 or 
10 would only change rsg by less than a factor of 2. The tendency of massive discs to become 
self-gravitating was discussed by Sakimoto & Coroniti (1981) and Shore & White (1982). 
Equation (18) suggests that rsg decreases for smaller accretion rates and larger central masses. 
This has important consequences on the disc’s spectrum, as we shall see in Section 3. 

We can compare rsg to rprg, assuming rsg is the outer edge of the disc. The ratio of these 
quantities depends only on L and a. For L> 2 x 1045 erg s-1 and cc^O.l we get rprg/rsg> 1. 
This means that the high luminosity discs are radiation pressure dominated out to the radius 
where they become self-gravitating. 

SS73 noted that the transition from Px> Pg to Pr<Pg results in the disc becoming concave 
(i.e. z0°c with ö > 1). This does not occur in massive discs for r<rsg which we assume to be 
the outer boundary of the disc (see also Shore & White 1982). Thus there is no heating of the 
outer cool regions by the inner hot part, as suggested for example by O’Dell, Scott & Stein 
(1987). General relativistic bending of the paths of light rays is another effect connecting 
different parts of the disc. According to Cunningham (1976) and Thorne (1974) the change in 
the local effective temperature and in the total efficiency of the disc due to this is less than 5 
per cent. Obviously the presence of some scattering material above the ‘bare disc’ assumed 
here can cause radiative connection and significant heating of some parts. This is beyond the 
scope of our paper. 

2.2.3 Opacity 

The absorption opacity, ?c(ab), is proportional to NT~ß (l/2<ß<3/2), while the electron 
scattering opacity, *:(es), is independent of TV and T. Since NT~ß°t we find that K(ab)/ 
7c(es) is smaller in massive discs. This lead to the suggestion (e.g. Callahan 1977; Begelman 
1985) that comptonization and modified blackbody spectrum, both known to be significant in 
stellar discs (Rees 1984, SS73), are very important in massive discs (for a description of these 
processes see Rybicki & Lightman 1981). Later we show that more accurate treatment of the 
radiative transfer shows this effect to be small in most of our models. 

Next, consider the different contributions to *:(ab). For hv> kT ^f_f/^b_f«: T, and since 
Teff °c m9

1/4 (assuming T- Teff) the relative bound-free contribution is much larger in massive 
discs and can become the dominant absorption process. For example, bound-free absorption 
by /z = 1 of hydrogen is greater than the free-free absorption for 7X3 x 105 K. Neglecting 
bound-free absorption in calculating the structure of massive discs is thus not justified. In 
particular, the optically thin disc, suggested by Sakimoto & Coroniti (1981) and Callahan 
(1977) for viscosity case (a) and f-f absorption only is avoided when the bound-free 
contribution is taken into account [viscosity cases (b) and (c) always result in an optically thick 
disc, as was demonstrated by Sakimoto & Coroniti 1981]. 

2.3 REQUIREMENTS FOR A THIN DISC 

2.3.1 Constraints on rh and a 

We define geometrically thin discs to be those where z0< 0.1 r throughout. From equation (12): 

Îî.aiéîa ,19) 
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903 Massive thin accretion discs 

RADIUS 

Figure 1. Disc profiles for non-rotating BH with different accretion rates. The luminosity, in units of the 
Eddington luminosity, is marked on the curves. The radius and the thickness are in units of Rg. Rh is the radius 
inside which half the total luminosity is emitted. 

where c2lr reaches a maximum of 0.015 (0.073) at r= 19 (r = 2) for a non-rotating (rotating) 
BH. The condition for a thin disc is thus rh < 0.25 (L < 0.25Ledd) for a non-rotating BH, and 
m< 0.033 (L<0.29Ledd) for a maximally rotating one. A disc radiating at the Eddington 
luminosity is definitely thick (see Fig. 1) and the standard disc theory, as developed by SS73 
and NT73, cannot be used to calculate its spectrum. Some of the models calculated by Malkan 
(1983), Bechtold et al (1987) and Czerny & Elvis (1987) have rh which is too large to be 
consistent with the thin disc model. 

A similar conclusion was reached by Bisnovatyi-Kogan & Blinikov (1977) who calculated 
the trajectories of particles leaving the surface of the disc. For L>0.3Led these particles 
remain appreciably above the disc surface, and for L>0.5Led the disc is disrupted as the 
particles escape. The above limit on rh also guarantees that the dynamical effect of radiation 
pressure is unimportant. Maraschi, Reina & Treves (1976) give the critical accretion rate, 
Mc = 2RmsLedd/GM, above which the radial gradient of radiation pressure results in non- 
Keplerian velocities. This can be translated to rh>2rmsrj, which does not occur in our thin 
discs. 

The requirement for quasi circular orbits can be translated to VJV^KO.l, where is the 
local Keplerian velocity and Vr is calculated from equation ( 3 ). This condition is: 

V 
— <225 

rh2 ac 
(20) 

Using the maximum value of c9/r
2 we find that the limit on Vr! implies rh2a< 0.36 (0.04) for 

a non-rotating (rotating) BH. Note that Sakimoto & Coroniti (1981) find Vr/V^> 1 for r<8. 
This results from their neglect of the correction factor c9 or its Newtonian equivalent, 

The requirement for local energy release, combined with the assumption of radiative energy 
transfer, leads to another constraint on m (see also Begelman, Blandford & Rees 1984, p. 305). 
The vertical radiation diffusion velocity is c/r, where r = [;c(es) + 7c(ab)]20/2 is the optical half 
thickness of the disc. The condition Vr<c/rputs a limit on the accretion rate of: 

rh<rjrDl/2. (21) 
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904 A. Laor and H. Netzer 

For this to hold down to the inner radius of the disc one needs L < 0.28Ledd (0.07Ledd) for a 
non-rotating (rotating) BH. Consider for example L - 0.3Ledd and a rotating BH. Equation (21 ) 
holds down to r=2, while radiation generated at the discs midplane at a* = 1.5 will be drifted 
beyond the radius of marginal stability, and probably trapped inside the BH, before reaching 
the surface. This results in a small correction to the spectrum from the inner part. According to 
Begelman (1985) there is a lower limit on m of ~ 10~3. Below this value an ion-suppofted 
torus, rather than a disc, will be formed. 

For a - 1 the turbulent velocity is comparable to the sound speed, and fluctuations in the 
discs structure could become significant (SS73 and NT73). Canuto, Goldman & Hubickyj 
(1984) have shown that if the viscosity is generated by subsonic convective turbulence, than a 
is smaller than 0.01. In view of all the above we only consider a^O.l and L^0.3Ledd. 

2.3.2 Vertical structure 

The standard solution for N{r) (equation 13) is obtained for k — /¿(es), instead of the more 

appropriate Rosseland mean opacity. We used the opacity calculation of Cox & Giuli ( 1968) to 
find the range of temperature and density for which /¿ross<2/c(es). For log p < - 11 and T> 104 

this is always the case. For -11<logp< —1 we find that the approximate relation, 
log p = 3.2 log T- 23.8, divides cases of /¿ross < 2/¿(es) from cases of zcross > 2?c(es) in the ( T,p) 
plane. Using equations (13) and (14) we can convert this to a radial dependence to find the 
radius, res, beyond which /¿ross> 2/¿(es). We find res/rsg-2.1L47

3a015, where rsg is the self- 
gravity radius. Thus /¿ross = /¿(es) is a good approximation for r^0.2/*sg, and our density profile 
calculations, in the inner regions of the disc, are adequate. Note, however, that close to the 
surface of the disc the radiation field becomes significantly unisotropic and the hydrostatic 
equation ought to be modified to include this effect. Also, true absorption can dominate over 
electron scattering, due to the drop in temperature. In such a case equation (10) cannot be 
deduced from equation (9) and more sophisticated solutions are required. 

Self-consistent calculation for the top layer has been carried out for stellar discs (e.g. Meyer 
& Meyer-Hofmeister 1982; Faulkner, Lin & Papaloizou 1983). Such calculations depend, 
critically, on the assumed viscosity mechanism, which is not known, and are not necessarily 
closer to reality than the rough approximations used by us. 

The standard solution for the value of z0 (the base of the photosphere) was obtained by 
assuming /¿ = /¿(es). As seen in Fig. 2, this is not the case in some models beyond a certain 
radius. Equation (9) with a flux weighted mean of /¿^ replacing /¿(es) (see Pounds et al. 1987), 
may result in such cases in an overestimation of z0. More accurate atmospheric solution is 
required in this case. We can still get an approximate scale height for the disc by using the 
hydrostatic equation with a constant density: 

P(z = 0)-P(z = Za)=G^ß. (22) 

The central pressure is (using equations 6 and 7): 

P(2.0),Î!ïl£!l«5), 

and the assumption of P (z = z0) = 0 gives: 

F0ic{es)R3 

Zo = 
cGM 

(23) 

(24) 

which is identical to equation (10) (relativistic corrections were neglected). 
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Massive thin accretion discs 905 

RADIUS 
Figure 2. The flux-weighted mean absorption opacity at the disc’s surface for different viscosity cases (see text) 
as marked on the curves. The model is of a rotating BH with m9 = 0.27, L = 0.3Lcdd, and a = 0.1. The lower 
curve (marked f-f) shows, for comparison, the case of free-free absorption only. The horizontal line marks the 
electron scattering opacity. 

2.4 THE LOCAL SPECTRUM 

In this section we explain our method of calculating the locally emitted spectrum. We pay 
special attention to electron scattering processes, and to the differences from previous 
calculations of this nature. 

2,4.1 Opacity 

We consider the following sources of opacity: free-free from hydrogen and helium, bound-free 
from hydrogen n = l to n-5, bound-free from He0 «=1,2, and bound-free from He+ 

« = 1,2. These are the main opacity sources for T> 104 K except for line opacity, which we do 
not consider. For T< 104 K we make a smooth transition to an arbitrary opacity of 100. The 
contribution of heavier elements to the opacity is neglected in order to simplify the calcula- 
tions. This contribution can be significant for A < 100 Â (see Ferland & Rees 1988), but most 
of our models have very small flux at these wavelengths. LTE level population is assumed 
although this may not be strictly correct for the lowest densities considered. Our calculated 
flux-weighted mean of /c(ab), for the three viscosity cases, is shown in Fig. 2. 

We find a significant contribution from bound-free absorption in all models, especially for 
T< 105 K where hydrogen and helium are not fully ionized. This was also pointed out by 
Czerny & Elvis (1987) but the Kramers approximation for *:ross, as used by them, is inadequate 
since the temperature in the disc’s atmosphere is too low. The commonly used assumption of 
free-free only (SS73, Callahan 1977; Sakimoto & Coroniti 1981; and others) is thus a poor 
approximation for the absorption opacity in massive discs. The opacity in viscosity cases (b) 
and (c) is significantly larger than in case (a) (see also Sakimoto & Coroniti 1981). Spectral 
modification due to electron scattering is less significant in such cases, as will be demonstrated 
in Section 3. 

We verified that the disc is optically thick at T < 104 K, by comparison with published 
opacity tables (Alexander 1975). The situation described by Williams (1980) and Williams & 
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A. Laor and H. Netzer 906 

Ferguson (1982), where stellar discs can become optically thin, does not occur in our massive 
discs. Collin-Souffrin (1987) described massive discs which are optically thin in their outer 
region. This arises from assuming very large a (1-10), and from the neglect of self-gravity at 
the disc outer region. 

2.4.2 Energy transfer 

We use the Eddington approximation, for a grey atmosphere, to obtain the vertical tempera- 
ture gradient. Using equation (6) with the boundary condition u(t=0) = 2F0/c and the usual 
assumption for stars, q{ z) = const, and u =aT4, results in T4( z) — T0

4( 1 + 1.5 r). The situation in 
discs is different since the outward flux increases from the midplane to the surface. Equation 
(7), with the assumption *:=K:(es), gives: (7(r) = /r

0(r0-r)/r0, where 2r0 is the disc optical 
thickness, thus: 

Î’+H ?o + (25) 

therefore T rises more slowly with r compared with stars, and reaches a maximum at r= r(). 
The temperature gradient in discs is thus smaller than in stellar atmospheres. This approxima- 
tion breaks down in the outer part of the disc, where 7cv(abs)> *:(es) and the grey atmosphere 
approximation no longer holds (see below). 

The Eddington approximation solution for the flux in an atmosphere in which the Planck 
function has a linear variation with depth [i.e. Bv(z) = av + bvz) is given in Mihalas (1978). 
Below we give a more general solution for a quadratic dependence of Bv(z). We define the 
absorption parameter 2V= 7cv(ab)/[A:v(ab)+7c(es)] (assumed to be independent of r), and 
assume Bv{z) = av+ bvz+ cvz

2. The Eddington approximation solution for the flux at r=0, 
with the boundary condition w(0) = J3F0/c, is: 

4_ / üyyfÁ bv \ 2CV 

f3 \l+J% j3{l+JX) 3(A + ,/2) 
(26) 

The effective optical depth is r* = 71 r and the observed photons come, on the average, from 
T* — 2/3. For each frequency we calculate, using equation (25), Bv(z) at three values of r*: 0, 
2/3 and 4/3. The coefficients a^ bv and cv are found by fitting a second order polynomial 
through these points, and 2 is calculated using the temperature at r* = 2/3. 

In regions where 7cv(ab) > ?c(es) we get 2 - 1, and the value of r for r* = 2/3 is independent 
of v. The observed spectrum comes, on the average, from a region with the same temperature 
for all frequencies and Fv reduces to the Planck function. 

The case of an isothermal atmosphere, bv= cv=0, has received much attention. Here: 

I+72 
(27) 

This case with and free-free as the only source of absorption is the so-called ‘modified 
blackbody spectrum’ (e.g. Rybicki & Lightman 1981). This is considered to be important in the 
inner part of accretion discs (Eardly et al. 1978; Shapiro & Teukolsky 1983; and others). The 
emitted flux is reduced, in this case, considerably, compared with the Planck function, and T() 

can exceed Teff by a large factor (e.g. SS73). 
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Massive thin accretion discs 907 

In our calculations Tq is close to ^eff> for all cases with large optical depth, even for very 
small X. This can be explained as follows: the observed photons come, on the average, from 

r=2/3,/I,i-e.i/I<n means x> l. For large vertical temperature gradient [bv> av) the term bvr 
is the dominant part in Bv{r) and the approximation bv= cv= 0 is inadequate. As a result, 
equation 3.7 of SS73, for the surface temperature in the region of modified blackbody 
emission, can result in a significant overestimation of the surface temperature. Several models 
calculated by Czerny & Elvis (1987) are characterized by very high temperatures. In 
particular, the surface temperature in some models exceeds the disc central temperature. This 
might be avoided if one considers the vertical temperature gradient. Note also that the vertical 
temperature gradient was not considered in some previous stellar discs models (e.g. Taam & 
Meszaros 1987). 

At frequencies where r* < 1 we make a smooth transition to the flux from an optically thin 
medium, with a uniform temperature of Tc(r). There are difficulties for optically thin ct-discs 
(Callahan 1977; Sakimoto & Coroniti 1981). However, the discs in our models become 
optically thin at such high frequencies that the flux is very small and no inconsistencies are 
introduced. 

2.4.3 Angular flux distribution 

We assume: 

/r(^l)=/v7X-(l + ßyMl), (28) 
1 + a 

where a = 1.5 + 0.56( l- X), = cos 6 and 0 is measured from the normal to the surface of the 
disc. Equation (28) reduces to the standard Eddington approximation for a grey atmosphere 
(ö = 1.5) for 7cv(ab)> *:(es) and to the classical electron scattering limit (« = 2.06, see Sunyaev 
& Titarchuk 1985; Phillip & Meszaros 1986) for 7c(es)> *:v(ab). The angular distribution is 
very different for res < 10 (Phillip & Meszaros 1986), but this never occurs in our model. All 

surface elements are assumed to be parallel to the plane of the disc. This might introduce a 
small error in the inner part of the largest m-discs that are seen close to edge on. 

2.4.4 Comptonization 

This process is important for a large value of the comptonization parameter Y where: 

4kTK(csl 

mec
2 K(ab)’ 1 1 

(Rybicki & Lightman 1981). For T= 105 K, a typical temperature in massive discs, we get 
Y= 10~4K:(es)/?c(ab). Earlier studies (SS73; Begelman 1985) considered this process to be 
very important, since the local spectrum was thought to be that of a modified blackbody with 
maximum intensity at v^l.lkT/h. Saturated comptonization ( Y>1), and a large shift in 
frequency, is expected in this case, resulting in a Wien distribution in frequencies. 

We find comptonization to be of little importance because of the bound-free contribution to 
7c(ab), which was not considered by others. Yis very small in viscosity cases (b) and (c) where 
*:(ab) is large compared with *:(es) (Fig. 2). Comptonization can become significant in regions 
where the disc is optically thin to absorption, but this is not important in our models. 
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The method of calculating this process is the following: first, the local spectrum is calculated, 
ignoring comptonization. All photons with Y> 1 are counted and redistributed in a Wien 
distribution, and the total flux is recalculated. The process is iterated by changing T0 to give the 
required local flux. This is similar to the method described in Illarionov & Sunyaev (1972) and 
is accurate for Y>1. Á more accurate procedure appropriate for all Y, is described by 
Sunyaev & Titarchuk (1980). It requires excessive computations and depends critically on the 
unknown structure of the photosphere. Comptonization in a hot corona (e.g. Czerny & Elvis 
1987) which is another potentially important process, was not considered in the present 
calculations. 

2.4.5 Atmospheric calculations 

An alternative approach to the local spectrum is to use stellar atmospheres with the relevant 
effective temperature and surface gravity, either from the literature (Kolykhalov & Sunyaev 
1984; Sun & Malkan 1987) or calculated specially for this purpose (see a specific example in 
Pounds et al. 1987). Note, however, that compared with stellar atmospheres, the density in 
massive discs is very different (usually smaller) for the same gravity and effective temperature, 
and this gives a very different opacity. In addition the temperature gradient, which is largely 
responsible for the absorption features, is not the same in stars and discs. Complete 
calculations of the local spectrum require a self-consistent solution of the radiative transfer and 
the vertical structure of the disc, not only the atmosphere. Such calculations are bound to 
depend, critically, on the unknown a and viscosity law. 

2.5 THE OBSERVED SPECTRUM 

Adding up local contributions to obtain the observed spectrum requires a full general 
relativistic treatment of the propagation of radiation (Cunningham 1975,1976). The problem 
is simplified for a non-rotating BH by making the following transformations, as described by 
Mathews (1982): The first is from the local frame of an observer rotating with the gas to that of 
a local observer at rest with respect to a stationary observer at infinity. The gravitational 
potential for both observers is the same and only special relativity is required. We then 
transform from the frame of the local, non-rotating observer, to that of a stationary observer at 
infinity. This involves gravitational redshift only (we neglected the gravitational bending of light 
rays). This approximation works well for a non-rotating BH, as was verified by comparing our 
results with those of Cunningham (1975).   

The special relativistic y factor is given in NT73. For a non-rotating BH y = Jl- 2/r/ 
Jl - 3/r, and we get ymax = 1.15 at r = rms = 6. Half the total flux of the disc is radiated, in this 
case, within r-30, where y =1.02. The special relativistic correction to the angular 
distribution is given by: // = (// + /?)/( 1 + ßju') (all dashed quantities refer to the disc frame, and 
undashed to the local non-rotating observer), where ju' is the cosine of the angle between the 
direction of motion of a surface element and the direction of the emitted radiation, ju is the 
cosine of the viewing angle, and ß^V^/c. This ‘Doppler beaming’ focuses the emitted radiation 
towards the plane of the disc and is especially significant in the inner, hot parts. It results in a 
harder spectrum at large p. The relations for the frequency, time and solid angle transforma- 
tions are: v= v'y(l + v'/y{l + ßju), dt = dtfy{l - ßju) and dQ = dQ'/y2(l+ ßp’)2. For the 
surface area element ds = ds'ly{ I ~ ßp) where the y factor is from the Lorentz contraction, and 
(1 - ßp) is from the fact that photons observed simultaneously from the close and far side of 

the area element are emitted at different times in the disc. Using the above transformations we 
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Massive thin accretion discs 909 

get: 

Iv{fi) = l'v,{/u')y2(l+ßju')2, (30) 

which results in F0 = yiv 
Transformation to the frame of a distant observer (denoted by double dash) requires only 

the general relativistic redshift correction as all other factors cancel out (Mathews 1982). In 
this case l"» = Iv where v" = vjl - 2/r. The approximation is valid for a non-rotating BH, where 
gravitational beaming is negligible. 

For a rotating BH ymax = 1.22 at r= 1.8 and y = 1.1 at the half flux radius, r= 5. As expected 

the special relativistic effects are more pronounced near a rotating BH, since the disc extends 
to smaller radii. In this case gravitational beaming is comparable to the Doppler beaming, and 
the approximation used for a non-rotating BH is not valid. Instead we used the graphs and 
numerical process given by Cunningham (1975). This is not very accurate for angles greater 
than 75 degrees, where the published grid of results is not detailed enough. Note also that 
Cunningham’s flux curves (Fig. 6) are not normalized. 

To calculate the spectrum we divide the disc into 50 rings, in logarithmic steps, from the 
radius of marginal stability to a radius where self-gravity exceeds the central gravity. One 
hundred logarithmically spaced frequencies, in the range 10126-10174, are used, and the 
temperature at each radius is iterated to give the required local flux, integrated over this range. 

For the case of a non-rotating BH we divide each ring into 80 sectors, find in each and 
transform it to the local /ll'. Next we apply the limb darkening factor (equation 28) and then 
transform to /v(/¿) according to equation (30). Finally, we calculate the total flux from the 
sector and add contributions from all sectors. The total ring spectrum is then shifted in 
frequency, according to the gravitational redshift, and the process is repeated for all rings. For 
a rotating BH we followed instead the numerical process as described above. 

3 Results 

Figs 3-8 illustrate some of our results. Fig. 3(a) shows the spectra of discs with different sizes. 
To illustrate this case we assumed local blackbody emission for a face-on disc around a non- 
rotating BH. The 100 disc shows practically no flat part (i.e. Fv - v°) in its spectrum. 
The larger disc, with rout/rms = 1000, produces a flat Fv over about one octave in frequency (see 
also Frank, King & Raine 1985; Wade 1984) but the slope is different from the commonly 
assumed v1/3 law. The reason for this is the correction factor c1 [1 -{r/rms)~

i/2 in the Newto- 
nian case], which influences the surface temperature distribution. Note that discs around white 

dwarfs, where the inner radius is much larger than Rg, can show a v1/3 spectrum over a certain 
frequency range. 

Fig. 3(b) compares rotating and non-rotating BH. In the first case, the disc extends much 
closer to the BH, and this results in a hotter atmosphere and a harder spectrum. 

Fig. 3(c) illustrates the «-dependence. Smaller a means higher density and less electron 
scattering modification of the spectrum. The spectrum for a = 0.001 is very close to the local 
blackbody approximation. The differences among different «, at the low-frequency end, are 
due to the fact that the larger density discs have a smaller rout. A similar effect is seen in Fig. 
3(d) where we show the three viscosity cases considered in this paper. The density in cases (b) 
and (c) is higher and the electron scattering effects smaller compared with case (a). The 
spectrum in case (b) is very close to the local blackbody approximation. 

Fig. 4 shows spectra obtained with various approximations on the temperature structure. 

The constant temperature atmosphere (curve a) exhibits a large emission jump caused by the 
sudden increase of A and F0(v) beyond the absorption edge. This is most noticeable in cases 
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Log i/ ( Hz ) 

Figure 3. Spectral dependence on model parameters. Flux units here and in all following diagrams are erg s-1 

cm-2. All cases are for m9 = 0.27 and L = 0.3Lcdd (L= 1046 erg s_1). (a) A face-on non-rotating BH, with local 
blackbody emission and different rouJrms as marked. The upper curve represents the non-physical situation of 
c, = 1. This is the only situation where the spectrum resembles the ‘classical’ v1/3 power law. (b) A comparison of 
rotating (R) and non-rotating (N) BH for 0 = 60° discs, a = 0.1 and viscosity case (a) (the former has rms= 1.23 
compared to /*ms = 6 for the latter), (c) «-Dependence for a face-on disc around a non-rotating BH and viscosity 
case (a). For comparison, the dash-dot line gives a disc with local blackbody emission, (d) Comparison of the 
different viscosity cases, as marked, for a face-on disc, a = 0.1 and a non-rotating BH. The dash-dot line is the 
same as for (c). 

where the bound-free opacity is significant. The introduction of a vertical temperature 
gradient (curve b) reduces this jump considerably, since the increase in k results in a decrease 
in r, thus the radiation comes from a cooler region. There is only a small difference between 
the cases of linear and quadratic dependence oí B{r) and we show only one of them here. Note 
again that the exact shape of the features depends, critically, on the nature of the transfer 
approximation used. 

Fig. 5 shows spectra of discs with given L and different combinations of m9 and rh. The 
largest m(L = 0.3Ledd) results in the hardest and flattest spectrum. Increasing ra9 and 
decreasing rh reduces the disc temperature and the self-gravity radius. The spectrum, in this 
case, is narrower and softer. 

Fig. 6 shows the hottest discs (L = 0.3Ledd) over a large range in luminosity. As L increases, 
the disc becomes cooler, due to the increase of m9. 

Fig. 7(a and b) demonstrates the angular dependence of the spectrum, caused by limb- 
darkening and relativistic focusing. The first of these is more significant in a non-rotating BH 
and the second in a rotating one, because the disc extends closer to the BH. As explained by 
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Massive thin accretion discs 911 

Figure 4. Flux calculations under different assumptions. Curve a: a constant temperature atmosphere. Curve b: 
an atmosphere with a temperature gradient. Curve c: a local blackbody approximation. All are for a face-on disc 
around a non-rotating BH with rh = 0.3ra9 = 0.27 a = 0.1 and viscosity case (a). 

Figures. A face-on disc around a non-rotating BH with L= 1046 erg s \ The curves show different 
combinations of central masses and accretion rates, marked as resulting in the above luminosity. 

Cunningham (1975), the more extreme disc becomes progressively ‘hotter’ as we move from 
face-on to edge-on. 

Fig. 8 gives another view of the angular dependence, relevant to photoionization models of 
the Broad Line Region (BLR) in AGN (Netzer 1987). We show the angular dependence of the 
ionizing flux and the number of ionizing photons for ‘hot’ (ra9 = 0.027, L = 0.3Ledd) and ‘cold’ 
(m9 = 2.7, L = 0.3Ledd) discs. In the ‘hot’, non-rotating BH case, Doppler focusing diverts 
radiation towards the plane of the disc, which reduces the effect of limb-darkening. In the ‘hot’,, 
rotating BH case, relativistic focusing is more pronounced, and the //-dependence almost 
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912 A. Laor and H. Netzer 

Figure 6. The hottest discs (m = 0.3) for different central masses and luminosities, marked as (m9,L). All are 
face-on discs around non-rotating BH. 

Figure 7. Viewing angle dependence (the cosine of the viewing angle is marked on the curves). m9 = 0.27 and 
L = 0.3L cdd, (a) a non-rotating BH, (b) a rotating BH. 

disappears. Similar effects are seen in the ionizing photon flux diagram. In ‘cold’ discs 
relativistic effects are greater, since the ionizing radiation is emitted closer to the BH. All cases 
are compared with a simple //-dependence, expected for a uniform disc with no limb- 
darkening. 

The ionizing flux is a significant fraction of the total flux in all cases shown in Fig. 8. Some 
situations may be very different, for example if the Lyman limit is on the exponentially 
dropping part of the spectrum. In such a case a small spectral shift causes a large change in the 
ionizing flux. 

4 Discussion 

Our disc model is different from previous models in several important ways. As explained in 
Section 2.3, the maximum accretion rate, which is consistent with the thin disc approximation 
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Figure 8. Ionizing radiation and photon flux at different angles. Non-rotating (rotating) BH are marked by N 
(R). Diagonal lines in all figures represent a simple ¡i dependence, (a) Flux in units of 1.2 x IQ45 (9.5 x IQ44) erg 
s~1 for a non-rotating (rotating) BH. (b) Flux in units of 5 x 1046 (6.3 x 1046) erg s- ’. (c) Photon flux in units of 
3.2x 1055)(1.8x 1055). (d) Photon flux in units of 3 x 1056(1.6 x 1057). 

is L-0.3Ledd. Some of the earlier calculations (Malkan 1983; Bechtold et al 1987; Czerny & 
Elvis 1987) exceed this limit by a large factor and are inconsistent with the thin disc 
assumption. In particular, the X-ray obscuration suggested by Czerny & Elvis (1987), to 
explain the statistics of soft X-ray excess quasars, requires rh much larger than our limit. Our 
calculations take into account the vertical temperature gradient in the disc’s atmosphere. This 
results in a surface temperature which is close to the effective temperature, while previous 
models (e.g. SS73; Czerny & Elvis 1987) are characterized by higher temperatures in regions 
where electron scattering is the dominant source of opacity. We find the effects of electron 
scattering to be less important compared with the model of Czerny & Elvis (1987). Such 
effects depend critically on the density, and are most noticeable for the viscosity case (a), large 
a and rh and small m9. They are significantly less important in viscosity case (c), and 
practically non-existent for viscosity case (b), where the local spectrum is very close to that of a 
blackbody. 

There have been several attempts to calculate the disc spectrum by means of stellar 
atmospheres with the required Tiff and gravity. One such model is shown in Pounds et al 
(1987) in relation to the soft X-ray excess observed in Mrk 335. The spectrum shows strong 
absorption edges but no relativistic or viewing angle effects were taken into account. As 
already mentioned, it is not very clear how reliable such calculations are, in view of the 
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unknown viscosity and the intrinsically different energy production mechanism in discs 
compared with stars. 

In Section 3 we demonstrated the dependence of the low-frequency end of the spectrum on 
the size of the disc. The mechanism determining the exact size of the disc is not very clear, and 
neither is the spectrum at those frequencies. Related to this are the calculations of the optically 
thin outer regions of the disc by Collin-Souffrin (1987). We suspect that the reason for the 
optically thin region is the high a assumed by her. Also, the value of r mentioned in that paper 
are, in most cases, beyond the self-gravity radius of the disc. 

Our calculations show that a relatively large value of m is needed to explain the ‘big blue 
bump’ in the spectrum of AGN. An independent constraint on rh comes from the analysis of 
the broad emission lines. Joly et al (1985) show a possible correlation between the Hß line 
width and the continuum luminosity, for a large sample of AGN. Their analysis gives 
L=10.002Ledd. Wandel & Yahil (1985) performed a similar study and found L-0.01Ledd. 
Netzer (1987) re-analysed the Joly et al. data and concluded that L-0.03Ledd is still 
consistent with the observations. All these numbers are well below the value of rh required to 
produce the observed continuum of quasars and Seyfert galaxies by thin disc emission. The 
problem is most noticeable for the luminous quasars since massive discs, with such a small rh 
and large ra9, produce a narrow and soft continuum, which is inconsistent with the 
observations. The disagreement between the required and ‘observed’ rh is an obvious problem 
for further study. 

Assuming AGN to be powered by thin accretion discs, with a small range of m, we expect 
the frequency of maximum emission to be lower for larger M and L. Preliminary work by 
Wandel (1987) indicates that this is perhaps observed. Unfortunately, his simplified vl/3 disc 
spectrum, with no angular dependence, is a very rough approximation to the disc spectrum. We 
are currently looking into this, using our improved models. 

We find the most luminous discs, those with L> 1046 erg s-1, to be too cold to emit 
significantly at A < 100 À (Fig. 6). It might thus be impossible to explain the soft X-ray excess 
in quasars as due to thermal thin disc emission. Comptonization in a hot corona, can produce a 
significant X-ray flux (e.g. Czerny & Elvis 1987) but we did not attempt to calculate it here. 

The angular distribution of the ionizing flux has important consequences for the broad line 
spectrum (Netzer 1987). As shown in Section 3, the distribution can be very different for 
different discs. The limb darkening law used by Netzer (1987) gives a good approximation in 
some cases [Fig. 8(a) non-rotating BH] and a poor one in others [Fig. 8(b) rotating BH]. Further 
modelling of the broad line spectrum, in the presence of a central disc, is a potential source of 
information that ought to be investigated further. 

Several general comments about thermal emission in AGN are in order. Short time-scale 
X-ray variability of AGN suggests the existence of a central small ionizing source (e.g. Barr & 
Mushotzky 1986). The X-ray source may be separated from the disc component. It can 
photoionize the disc’s photosphere and modify the emitted spectrum (Shields 1978). This is 
only one out of several possible configurations suggested to explain AGN ultraviolet emission. 

Thin ‘bare’ discs may well be a simplified, zero-order, approximation for a more complicated 
situation. 

An alternative approach to thermal emission in AGN was taken by Ferland & Rees (1988) 
who calculated the spectrum of small gas clouds immersed in an intense non-thermal radiation 
field. Their model produces a blue bump not too different from those calculated in some disc 
models. 

Finally, a general warning about the a disc model. Case (a) of the a disc [/^= a{Pr + Pg)], is 
known to be thermally and secularly unstable in the radiation pressure dominated region 
(Piran 1978). It is not known whether this results in a time-dependent structural change, or a 
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complete destruction of the disc. Cases (b) (t^ = aPg) and (c) = aJPrPg) are probably stable. 
A more serious limitation is the assumption of a constant a, which is an extreme simplification. 

There have been some attempts to improve the a prescription (Meyer & Meyer-Hofmeister 
1982; Canuto, Goldman & Hubickyj 1984, and others) but the main viscosity mechanism is 
still unknown. 
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