REPORT OF THE IAU/IAG/COSPAR WORKING GROUP ON CARTOGRAPHIC COORDINATES AND ROTATIONAL ELEMENTS OF THE PLANETS AND SATELLITES: 1988

M. E. DAVIES*

The RAND Corporation, Santa Monica, California, U.S.A.

V. K. ABALAKIN

Institute for Theoretical Astronomy, Leningrad, U.S.S.R.

M. BURŠA

Astronomical Institute, Prague, Czechoslovakia

G. E. HUNT

PACTEL, London, England

J. H. LIESKE

Jet Propulsion Laboratory, Pasadena, California, U.S.A.

B. MORANDO

Bureau des Longitudes, Paris, France

R. H. RAPP

The Ohio State University, Columbus, Ohio, U.S.A.

P. K. SEIDELMANN

U.S. Naval Observatory, Washington, D.C., U.S.A.

A. T. SINCLAIR

Royal Greenwich Observatory, Sussex, England

and

Y. S. TJUFLIN**

Central Research Institute of Geodesy, Air Survey, and Mapping (TsNIIGAik), Moscow, U.S.S.R.

(Received 4 January 1989; accepted 4 January 1989)

1. Introduction

The IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites was established as a consequence of resolutions adopted by Commissions 4 and 16 at the IAU General Assembly at Grenoble in 1976. The first report of the Working Group was presented to the General Assembly at Montreal in 1979 and published in the *Trans. IAU*, 17B, pp. 72–79, 1980. The report with appendices was published in *Celestial Mechanics*, 22, pp. 205–230, 1980. The guiding principles and conventions that were adopted by the Group and the rationale for their acceptance are presented in that report and its appendices and will not be reviewed

- * Chairman
- ** Consultant

Celestial Mechanics and Dynamical Astronomy 46: 187-204, 1989.

© 1989 Kluwer Academic Publishers. Printed in the Netherlands.

188 M. E. DAVIES ET AL.

here. The second report of the Working Group was presented to the General Assembly at Patras in 1982 and published in the *Trans. IAU*, **18B**, pp. 151–162, 1983, and also in *Celestial Mechanics*, **29**, pp. 309–321, 1983. The third report of the Working Group was presented to the General Assembly at New Delhi in 1985 and published in *Celestial Mechanics*, **39**, pp. 103–113, 1986.

In 1984 the International Association of Geodesy (IAG) and the Committee on Space Research (COSPAR) expressed interest in the activities of the Working Group and, after reviewing alternatives, the Executive Committees of all three organizations decided to jointly sponsor the Working Group.

This report incorporates revisions to the tables giving the directions of the north poles of rotation and the prime meridians of the planets and satellites since the last report. New tables giving the sizes and shapes of the planets and satellites are presented.

2. Definition of Rotational Elements

Planetary coordinate systems are defined relative to their mean axis of rotation and various definitions of longitude depending on the body. The longitude systems of most of those bodies with observable rigid surfaces have been defined by references to a surface feature such as a crater. Approximate expressions for these rotational elements with respect to the J2000 inertial coordinate system have been derived. The J2000 coordinate system is defined by the FK5 star catalog and has the standard epoch of 2000 January 1.5 (JD 2451545.0), TDB. The variable quantities are expressed in units of days (86400 SI seconds) or Julian centuries of 36525 days.

The north pole is that pole of rotation that lies on the north side of the invariable plane of the solar system. The direction of the north pole is specified by the value of its right ascension α_0 and declination δ_0 , whereas the location of the prime meridian is specified by the angle W that is measured along the planet's equator in an easterly direction with respect to the planet's north pole from the node Q (located at right ascension $90^{\circ} + \alpha_0$) of the planet's equator on the standard equator to the point B where the prime meridian crosses the planet's equator (see Figure 1). The right ascension of the point Q is $90^{\circ} + \alpha_0$ and the inclination of the planet's equator to the standard equator is $90^{\circ} - \delta_0$. Because the prime meridian is assumed to rotate uniformly with the planet, W accordingly varies linearly with time. In addition, α_0 , δ_0 and W may vary with time due to a precession of the axis of rotation of the planet (or satellite). If W increases with time, the planet has a direct (or prograde) rotation and if W decreases with time, the rotation is said to be retrograde.

In the absence of other information, the axis of rotation is assumed to be normal to the mean orbital plane; Mercury and most of the satellites are in this category. For many of the satellites, it is assumed that the rotation rate is equal to the mean orbital period.

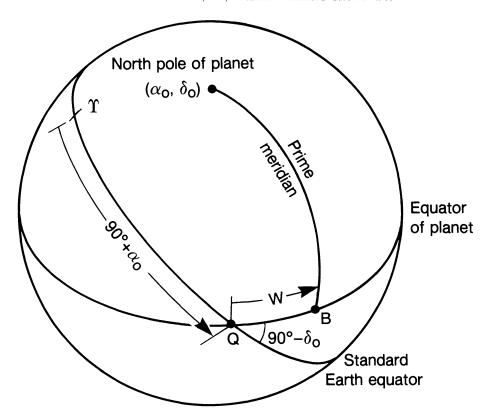


Fig.1. Reference system used to define orientation of the planet.

The angle W specifies the ephemeris position of the prime meridian, and for planets or satellites without any accurately observable fixed surface features, the adopted expression for W defines the prime meridian and is not subject to correction. Where possible, however, the cartographic position of the prime meridian is defined by a suitable observable feature, and so the constants in the expression $W = W_0 + Wd$, where d is the interval in days from the standard epoch, are chosen so that the ephemeris position follows the motion of the cartographic position as closely as possible; in these cases the expression for W may require emendation in the future.

Recommended values of the constants in the expressions for α_0 , δ_0 and W are given for the planets and satellites in Tables I and II for the standard equatorial coordinates with equinox J2000 at epoch J2000. In general, these expressions should be accurate to one-tenth of a degree; however, two decimal places are given to assure consistency when changing coordinate systems. Zeros are added to rate values (W) for computational consistency and are not an indication of significant accuracy. Three decimal places are given in the expressions for the Moon and Mars, reflecting the greater confidence in their accuracy. Expressions for the Sun are given to a similar precision as those of the other bodies of the solar system and are for comparative purposes only. The recommended coordinate system for the Moon is the mean Earth/polar axis system (in contrast to the principal axis system).

TABLE I Recommended values for the direction of the north pole of rotation and the prime meridian of the Sun and planets (1988).

 α_0, δ_0 are standard equatorial coordinates with equinox J2000 at epoch J2000. Approximate coordinates of the north pole of the invariable plane are $\alpha_0 = 273^{\circ}85$. $\delta_0 = 66^{\circ}99$.

T = interval in Julian centuries (of 36525 days) from the standard epoch.

d = interval in days from the standard epoch.

The standard epoch is 2000 January 1.5, i.e., JD 2451545.0 TDB.

Sun	$ \alpha_0 = 286^{\circ}13 $ $ \delta_0 = 63^{\circ}87 $ $ W = 84^{\circ}10 + 14^{\circ}1844000 d $	
Mercury	$ \alpha_0 = 281.01 - 0.003 T $ $ \delta_0 = 61.45 - 0.005 T $ $ W = 329.71 + 6.1385025 d $	(a)
Venus	$ \alpha_0 = 272.69 $ $ \delta_0 = 67.17 $ $ W = 160.39 - 1.4813291 d $	
Earth	$ \alpha_0 = 0.00 - 0.641 T $ $ \delta_0 = 90.00 - 0.557 T $ $ W = 190.16 + 360.9856235 d $	(b)
Mars	$ \alpha_0 = 317.681 - 0.108 T $ $ \delta_0 = 52.886 - 0.061 T $ $ W = 176.868 + 350.8919830 d $	(c)
Jupiter	$ \alpha_0 = 268.05 - 0.009 T $ $ \delta_0 = 64.49 + 0.003 T $ $ W = 284.95 + 870.5360000 d $	(d)
Saturn	$ \alpha_0 = 40.58 - 0.036 T $ $ \delta_0 = 83.54 - 0.004 T $ $ W = 38.90 + 810.7939024 d $	(d)
Uranus	$ \alpha_0 = 257.43 $ $ \delta_0 = -15.10 $ $ W = 203.81 - 501.1600928 d $	(d)
Neptune	$\alpha_0 = 298.72 + 2.58 \sin N - 0.04 \sin 2N$ $\delta_0 = 42.63 - 1.90 \cos N + 0.01 \cos 2N$ $W = 313.66 + 483.7625981 d - 1.75 \sin N + 0.04 m$ $N = 359.28 + 54.308 T$	sin 2N
Pluto	$ \alpha_0 = 311.63 $ $ \delta_0 = 4.18 $ $ W = 252.66 - 56.3640000 d $	

Note: (a) The 20° meridian is defined by the crater Hun Kal.

- (b) The expression for W might be in error by as much as 0.2 because of uncertainty in the length of the UT day and the TDT-UT on 1 January 2000.
- (c) The 0° meridian is defined by the crater Airy-O.
- (d) The equations for W for Jupiter, Saturn, and Uranus refer to the rotation of their magnetic fields (System III). On Jupiter, System I ($W_I = 67^{\circ}.1 + 877^{\circ}.900 \ d$) refers to the mean atmospheric equatorial rotation; System II ($W_{II} = 43^{\circ}.3 + 870^{\circ}.270 \ d$) refers to the mean atmospheric rotation north of the south component of the north equatorial belt, and south of the north component of the south equatorial belt.

Recom	mended values fo	or the d	lirection	on of the north p	oole of	Recommended values for the direction of the north pole of rotation and the prime meridian of the satellites (1988).	orime m	eridian of the sate	llites (1	988).	
α_0 , δ_0 , T, and d h	nave the same me	anings	as in	Table I (epoch 2	3000 J	T, and d have the same meanings as in Table I (epoch 2000 January 1.5, i.e., JD 2451545.0 TDB)	24515	45.0 TDB).			
Earth:	Moon	α_0	11 11	270:000	1 + +	3°878 sin E1 0.070 sin E3 1.543 cos E1	1 1 + 1	0°120 sin E2 0.017 sin E4 0.024 cos E2			
		¥	11	38.314	+ + +	0.026 COS L2 13.1763581 d 0.121 sin E2 0.016 sin E4	+++++	3.558 sin E1 0.064 sin E3 0.025 sin E5			
where $E1 = 125^{\circ}.045 - E3 = 196^{\circ}.694 - E5 = 358^{\circ}.219 - E5 = 25 = 358^{\circ}.219 - E5 = 25 = 358^{\circ}.219 - E5 = 25 = 25 = 25 = 25 = 25 = 25 = 25 =$	E1 = 125°045 - 0°052992 d, E2 = 2 E3 = 196°694 - 13°012000 d, E4 = 1 E5 = 358°219 - 0°985600 d	d, E2 = d, E4 = d	249°3	249°390 — 0°105984 d, 176°630 + 13°340716 d,	á, á,						
Mars: I	Phobos	$\alpha_0^{\alpha_0}$	11 11 11	317°68 52.90 35.06	+	- 0°108 T - 0.061 T +1128.8445850 d - 1.42 sin M1	+ 1 + 1	1.79 sin M1 1.08 cos M1 8.864 T ² 0.78 sin M2			
п	Deimos	$\chi_0^{\alpha_0}$	11 11 11	316.65 53.52 79.41	1 1 + 1	0.108 <i>T</i> 0.061 <i>T</i> 285.1618970 <i>d</i> 2.58 sin <i>M</i> 3	+ +	2.98 sin <i>M</i> 3 1.78 cos <i>M</i> 3 0.520 T ² 0.19 cos <i>M</i> 3			
where $M1 = 169$.	where $M1 = 169.51 - 0.4357640 d$, $M2 =$	d, M2 =		93 + 1128°40967	+ p 00	$192^{\circ}93 + 1128^{\circ}4096700 \ d + 8^{\circ}864 \ T^2, M3 = 53^{\circ}47 - 0^{\circ}0181510 \ d$	3:47 – (0:0181510 d			
Jupiter: XVI	Metis	\$ °°°	11 11 11	268.05 64.49 302.24	+ +	- 0.009 T + 0.003 T +1221.2489660 d					
XX	Adrastea	\$°°°	11 11 11	268.05 64.49 5.75	+ +	- 0.009 <i>T</i> + 0.003 <i>T</i> +1206.9950400 <i>d</i>					
>	Amalthea	K_{\circ}°	11 11 11	268°05 64°49 231°67	1 + +	0°009 T 0°003 T 722°6314560 d	+	0°84 sin J1 0°36 cos J1 0°76 sin J1	+ 1	0:01 sin 2J1 0:01 sin 2J1	

(P)

(a)

ΧIX	Thebe	$\overset{\alpha}{\delta}_{0}$	11 11 11	268°05 64°49 9°91	+ +	0:009 T 0:003 T 533:7005330 d	! +	2°12 sin J2 0°91 cos J2 1°91 sin J2	+ +	0°04 sin 2J2 0°01 cos 2J2 0°04 sin 2J2
П	Io	$\delta_0^{\alpha_0}$	11 11 11	268°05 64.50 200.39	+ +	0:009 <i>T</i> 0.003 <i>T</i> 203.4889538 <i>d</i>	+ +	0°094 sin J3 0.040 cos J3 0.085 sin J3	+ +	0.024 sin J4 0.011 cos J4 0.022 sin J4
II	Europa	α_0	11 11 11	268°08 64.51 35.72	1 + +	0:009 T 0.003 T 101.3747235 d	++++11	1°086 sin J4 0°015 sin J6 0.468 cos J4 0.007 cos J6 0.980 sin J4 0.014 sin J6	++++11	0.060 sin J5 0.009 sin J7 0.026 cos J5 0.002 cos J7 0.054 sin J5 0.008 sin J7
Ħ	Ganymede	α ₀ α ₀	11 11 11	268.20 64.57 43.14	۱ + +	0.009 T 0.003 T 50.3176081 d	1 + 1 + + 1	0.037 sin J4 0.091 sin J6 0.016 cos J4 0.039 cos J6 0.033 sin J4 0.082 sin J6	+ + !	0.431 sin J5 0.186 cos J5 0.389 sin J5
N	Callisto	α_0	11 11 11	268.72 64.83 259.67	1 + +	0.009 T 0.003 T 21.5710715 d	+ +	0.068 sin J5 0.010 sin J8 0.029 cos J5 0.004 cos J8 0.061 sin J5 0.009 sin J8	+ +	0.590 sin J6 0.254 cos J6 0.533 sin J6
$J1 = 73^{\circ}3$ $J4 = 355^{\circ}8$ $J7 = 352^{\circ}2$	where $J1 = 73.32 + 91472.9 T$, J J4 = 355.80 + 1191.3 T, $J5J7 = 352.25 + 2382.6 T$, $J8$	2 = 198 $= 119$ $= 113$:54 + 90 + 2 35 + 6	7, J2 = 198°54 + 44243°8 T, J3 = 283°90 + 4850 T, J5 = 119°90 + 262°1 T, J6 = 229°80 + 64°3 T, T, J8 = 113°35 + 6070°0 T	$3 = 283^{\circ}$ 229° 80 -	T, $J2 = 198°54 + 44243°8$ T, $J3 = 283°90 + 4850°7$ T, T, $J5 = 119°90 + 262°1$ T, $J6 = 229°80 + 64°3$ T, T, $J8 = 113°35 + 6070°0$ T				
Saturn: XV	Atlas	$\alpha_0^{\alpha_0}$	11 11 11	40°58 83°53 137°88	+	- 0:036 T - 0:004 T +598:3060000 d				
XVI	Prometheus	χ°_{\circ}		40.58 83.53 296.14	1 +	 0.036 T 0.004 T +587.2890000 d 				

where $S1 = 177^{\circ}40 - 36505^{\circ}5$ *T*, $S2 = 300^{\circ}00 - 7225^{\circ}9$ *T*, $S3 = 345^{\circ}20 - 1016^{\circ}3$ *T*, $S4 = 29^{\circ}80 - 52^{\circ}1$ *T*, $S5 = 316^{\circ}45 + 506^{\circ}2$ *T*

	(p)	(e)	((g)	(h)		(E)
	44.85 sin S5		2.23 sin S5					
	1		+					
	13°56 sin S1 1.53 cos S1 13.48 sin S1		9.66 sin S2 1.09 cos S2 9.60 sin S2			3.10 sin S3 0.35 cos S3 3.08 sin S3	2°66 sin S4 0.30 cos S4 2.64 sin S4	
	+		+			+	+	
$\begin{array}{rrr} - & 0.036 \ T \\ - & 0.004 \ T \\ + 572.7891000 \ d \end{array}$	 0°036 T 0.004 T +381.9945550 d 	 0.036 T 0.004 T +262.7318996 d 	 0.036 T 0.004 T +190.6979085 d 	 0.036 T 0.004 T +190.6979330 d 	 0.036 T 0.004 T +131.5349316 d 	$\begin{array}{rcl} & 0.036 \ T \\ & 0.004 \ T \\ & + 79.6900478 \ d \end{array}$	 0°036 T 0.004 T + 22.5769768 d 	 3.949 T 1.143 T 4.5379572 d
40.58 83.53 162.92	40°66 83.52 337.46	40.66 83.52 2.82	40.66 83.52 10.45	50.50 84.06 56.88	40.66 83.52 357.00	40.38 83.55 235.16	36°41 83.94 189.64	318°16 75.03 350.20
11 11 11	11 11 11	11 11 11	11 11 11	11 11 11	11 11 11	11 11 11	11 11 11	11 11 11
$\alpha_0^{\alpha_0}$	α_{0}^{α}	$lpha_o^{lpha_o}$	$\alpha_0^{\alpha_0}$	$lpha_0^{lpha_0}$	$\delta_0^{\alpha_0}$	$^{\alpha_0}_{\delta_0}$	$\alpha_0^{\alpha_0}$	χ_{\circ}^{α}
Pandora	Mimas	Enceladus	Tethys	Telesto	Dione	Rhea	Titan	Iapetus
XVII	I	II	Ħ	XIIIX	IV	>	VI	VIII

© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System

in U1	$0.03~{ m sin}~U2$	$0.04 \sin U3$	in U4	in US	in U6	in <i>U</i> 7	in U8	in <i>U</i> 9	O # 1 #
0° 04 sin $U1$	0.03 s	0.04 s	$0.01 \sin U4$	0.04 sin U5	0.02 sin U6	0.02 sin U7	0.08 sin U8	0.01 sin U9	0 00 die 1710
1	1	1	1	ł	1	1	l	İ	I
0°15 sin U1 0°14 cos U1 1074°5205730 d	0.09 sin U2 0.09 cos U2 956.4068150 d	0.16 sin <i>U</i> 3 0.16 cos <i>U</i> 3 828.3914760 d	0.04 sin <i>U</i> 4 0.04 cos <i>U</i> 4 776.5816320 <i>d</i>	0.17 sin U5 0.16 cos U5 760.0531690 d	0.06 sin U6 0.06 cos U6 730.1253660 d	0.09 sin U7 0.09 cos U7 701.4865870 d	0.29 sin U8 0.28 cos U8 644.6311260 d	0.03 sin U9 0.03 cos U9 577.3628170 d	0.33 sin <i>U</i> 10 0.31 cos <i>U</i> 10
1 + 1	+	+	+	+	+	1 + 1	1 + 1	+	+
257:31 -15:18 127:69	257.31 -15.18 130.35	257.31 -15.18 105.46	257.31 -15.18 59.16	257.31 -15.18 95.08	257.31 -15.18 302.56	257.31 -15.18 25.03	257.31 -15.18 314.90	257.31 -15.18 297.46	257.31
	11 11 11	11 11 11	11 11 11	11 11 11	11 11 11	11 11 11	11 11 11	11 11 11	11 11 1
χ°_{\circ}	χ°_{\circ}	χ^{α}_{\circ}	χ°_{\circ}	δ_{\circ}^{α}	Z %	\$°° 8	£ 00 8	£%&	$\mathcal{L}^{\circ}_{\circ}$
Cordelia	Ophelia	Bianca	Cressida	Desdemona	Juliet	Portia	Rosalind	Belinda	Puck
VI	VII	VIII	×	×	IX	IIX	XIII	XIX	×
Uranus:									

0.15 sin 2 <i>U</i> 12 0.09 sin 2 <i>U</i> 11	0.08 sin <i>U</i> 13	0.06 sin <i>U</i> 14				1.75 sin 3N1	0.00 SIM OIV I	$0.48 \cos 3N1$	$0.01 \cos 6N1$	6.01 sin 2 <i>N</i> 1	$0.21 \sin 5N1$	$0.01 \sin 8N1$
+ 1	+	+				I	İ	+	+	+	+	+
0.04 sin 2 <i>U</i> 11 0.02 cos 2 <i>U</i> 11 1.27 sin <i>U</i> 12 1.15 sin <i>U</i> 11	0.05 sin U12	0.09 sin U12	0.08 sin U15	0.04 sin <i>U</i> 16		5°58 sin 2N1	0.21 sin 3/v1 0.01 sin 8N1	1°91 cos 2N1	$0.04 \cos 5N1$	20°81 sin N1	$0.59 \sin 4N1$	0.03 sin 7N1
+	+	1	+	+	27°35 T, 78°41 T, 72°63 T, 63°96 T, 75°32 T,	1		+	+	+	+	+
+ 4°41 sin U11 + 4.25 cos U11 - 254.6906892 d	+ 0.29 sin <i>U</i> 13 + 0.28 cos <i>U</i> 13 - 142.8356681 <i>d</i>	+ 0.21 sin <i>U</i> 14 + 0.20 cos <i>U</i> 14 - 86.8688923 d	+ 0.29 sin <i>U</i> 15 + 0.28 cos <i>U</i> 15 - 41.3514316 d	+ 0.16 sin U16 + 0.16 cos U16 - 26.7394932 d	$U3 = 135^{\circ}03 + 29927^{\circ}35 T$, $U6 = 43^{\circ}86 + 22278^{\circ}41 T$, $U9 = 101^{\circ}81 + 12872^{\circ}63 T$, $U12 = 316^{\circ}41 + 2863^{\circ}96 T$, $U15 = 340^{\circ}82 - 75^{\circ}32 T$,	- 30°72 sin N1	- 0:03 sin 4/v1 - 0:03 sin 7/v1	+ 21°79 cos N1		- 61°2572675 d	$+ 1.73 \sin N1$	+ 0.08 sin 6N1
$ \alpha_0 = 257^{\circ}43 + \delta_0 = -15.08 + W = 30.70 - 10.00 $	$ \alpha_0 = 257.43 $ $ \delta_0 = -15.10 $ $ W = 156.22 $	$ \alpha_0 = 257.43 $ $ \delta_0 = -15.10 $ $ W = 108.05 $	$ \alpha_0 = 257.43 \delta_0 = -15.10 W = 77.74 -$	$ \alpha_0 = 257.43 $ $ \delta_0 = -15.10 $ $ W = 6.77 $	$U2 = 141^{\circ}69 + 41887^{\circ}66 T$, $U5 = 249^{\circ}32 + 24471^{\circ}46 T$, $U8 = 157^{\circ}36 + 16652^{\circ}76 T$, $U11 = 102^{\circ}23 - 2024^{\circ}22 T$, U $U14 = 308^{\circ}71 - 93^{\circ}17 T$,	$\alpha_0 = 298^{\circ}72$		$\delta_{\rho} = 40^{\circ}59$		$W = 297^{\circ}14$	•	•
V Miranda	I Ariel	II Umbriel	III Titania	IV Oberon	where $U1 = 115^{\circ}.75 + 54991^{\circ}.87 T$, $U4 = 61^{\circ}.77 + 25733^{\circ}.59 T$, $U7 = 77^{\circ}.66 + 20289^{\circ}.42 T$, $U10 = 138^{\circ}.64 + 8061^{\circ}.81 T$, $U13 = 304^{\circ}.01 - 51^{\circ}.94 T$, $U16 = 259^{\circ}.14 - 504^{\circ}.81 T$	e: I Triton						
					where L	Neptune: I						

196

δ ₀	II							. 6000
		67:22	ı	6°67 cos N2	+ +	$0.11 \sin 4N2$ $0.47 \cos 2N2$	1 1	0:03 sin 5N2 0:07 cos 3N2
	= 2	237°22	+	0:9996465 d	+ +	0.01 cos 4N2 16.48 sin N2	ı	2°57 sin 2N2
			+	$0.51 \sin 3N2$	1	0°11 sin 4 <i>N</i> 2	+	0:02 sin 5N2
where $N1 = 179^{\circ}28 + 54^{\circ}308 T$ $N2 = 45^{\circ}06 + 3^{\circ}650 T$								
Pluto: Charon $\alpha_0 = \delta_0 = M$	 	312°98 8°49 56°11	1	56°3624607 d				

The 182° meridian is defined by the crater Cilix. The 128° meridian is defined by the crater Anat. Note:

The 326° meridian is defined by the crater Saga. The 162° meridian is defined by the crater Palomides. The 5° meridian is defined by the crater Salih. The 299° meridian is defined by the crater Arete.

The 63° meridian is defined by the crater Palinurus.

The 276° meridian is defined by the crater Almeric. The 340° meridian is defined by the crater Tore.

Satellites for which no suitable data are yet available have been omitted from this table.

3. Definition of Cartographic Coordinate Systems

In mathematical and geodetic terminology, the terms 'latitude' and 'longitude' refer to a right-hand spherical coordinate system in which latitude is defined as the angle between a vector and the equator, and longitude is the angle between the vector and the plane of the prime meridian measured in an eastern direction. This coordinate system, together with Cartesian coordinates, is used in most planetary computations, and is sometimes called the planetocentric coordinate system.

Because of astronomical tradition, planetographic coordinates (those used in the preparation of maps) may or may not be identical with traditional spherical coordinates. Planetographic longitudes of a solar system body will increase with time when the body is viewed from a distance such as with a telescope. Thus, with prograde rotation, where W is positive, west longitude is used, and with retrograde rotation, where W is negative, east longitude is used. Also because of tradition, the Earth, Sun, and Moon do not conform with this definition. Their rotations are prograde and longitudes run both east and west 180° instead of the usual 360°.

Latitude is measured north and south of the equator; north latitudes are designated as positive. The planetographic latitude of a point on the reference surface is the angle between the equatorial plane and the normal to the reference surface at the point. In the planetographic system, the position of a point (P) not on the reference surface is specified by the planetographic latitude of the point (P') on the reference surface at which the normal passes through P and by the height (h) of P above P'.

The reference surfaces for some planets (such as Earth and Mars) are ellipsoids of revolution for which the radius of the equator (A) is larger than the polar semiaxis (C). The reference surface for Mars was defined for the Mariner 9 mapping program (de Vaucouleurs *et al.*, 1973) and has an equatorial radius of 3393.4 km and a polar radius of 3375.8 km. For some planets (such as Mercury and Venus) and most satellites, the reference surface is a sphere (A = C). Planetographic latitudes are then numerically identical to the mathematical latitude.

Calculations of the hydrostatic shapes of some of the satellites (Io, Mimas, Enceladus, Miranda) indicate that their reference surfaces should be triaxial ellipsoids. Triaxial ellipsoids would render many computations more complicated, especially those related to map projections. Many projections would lose their elegant and popular properties. For this reason spherical reference surfaces are frequently used in mapping programs.

Many small bodies of the solar system (satellites, asteroids, and comet nuclei) have very irregular shapes. Sometimes spherical reference surfaces are used to preserve convenient projection properties. Orthographic projections often are adopted for cartographic portrayal as these preserve the irregular appearance of the body without artificial distortion.

With the introduction of large mass storage to computer systems, digital cartography has become increasingly popular. These data bases are particularly important to the

198 M. E. DAVIES ET AL.

irregularly shaped bodies where the surface can be described by a file containing planetographic longitude, latitude, and radius for each pixel. In this case the reference sphere has shrunk to a point. Other parameters such as brightness, gravity, etc., if known, can be associated with each pixel. With proper programming, pictorial and projected views of the body can then be displayed by introducing a suitable reference surface.

Table III contains data on the size and shapes of the planets. The first column gives the mean radius of the body (i.e., the radius of a sphere of approximately the same volume as the spheroid). The standard errors of the mean radii are indications of the accuracy of determination of these parameters due to inaccuracies of the observational data. Because the shape of a rotating body in hydrostatic equilibrium is approximately a spheroid, this is frequently a good approximation to the shape of planets, and so the second and third columns give equatorial and polar radii for 'best fit' spheroids. The origin of these coordinates is the center-of-mass with the polar axis coincident with the spin axis. The fourth column is the root-mean-square (RMS) of the radii residuals from the spheroid and is an indication of the variations of the surface from the spheroid due to topography. The last two columns give the maximum positive and negative residuals to bracket the spread.

TABLE III
Size and shape parameters of the planets (in kilometers).

Planet	Mean Radiu. (km)	Equatorial Radius (km)	Polar Radius (km)	RMS Deviation From Spheroid (km)	Maximum Elevation (km)	Maximum Depression (km)
Mercury	2439.7 ± 1.0	same	same	1	4.6	2.5
Venus	6051.9 ± 1.0	same	same	1	11	2
Earth	6371.00 ± 0.01	6378.14 ± 0.01	6356.75 ± 0.01	3.57	8.85	11.52
Mars	3390 ± 4	3397 ± 4	3375 ± 4	3.1	27	6
Jupiter*	69911 ± 6	71492 ± 4	66854 ± 10	62.1	31	102
Saturn*	58232 ± 6	60268 ± 4	54364 ± 10	102.9	8	205
Uranus*	25362 ± 7	25559 ± 4	24973 ± 20	16.8	28	0
Neptune*	25112 ± 15	25269 ± 10	24800 ± 30			
Pluto	1162 ± 20	same	same			

^{*}The radii correspond to a one bar surface.

Table IV (see pp. 200–201) contains data on the size and shape of the satellites. The first column gives the mean radius of the body. The standard errors of the mean radii are indications of the accuracy of determination of these parameters due to inaccuracies of the observational data. Because the hydrostatic shape of a body in synchronous rotation about a larger body is approximately an ellipsoid, that shape has been selected as a reference figure for the satellites. The next three columns (2–4) give the axes of the best-fit ellipsoids in the order equatorial subplanetary, equatorial along orbit, and polar. The origin of these coordinates is the center-of-mass with the polar axis coincident with the spin axis. The fifth column is the RMS of the radii residuals

from the ellipsoid and is an indication of the variations of the surface from the ellipsoid due to topography. The last two columns give the maximum positive and negative residuals to bracket the spread.

The values of the radii and axes in Tables III and IV are derived by various methods and do not always refer to common definitions. Some use star or spacecraft occultation measurements, some use limb fitting, others use altimetry measurements from orbiting spacecraft, and some use control network computations. For the Earth, the spheroid refers to mean sea level, clearly a very different definition from other bodies in the Solar System.

The uncertainties in the values for the radii and axes in Tables III and IV are generally those of the authors, and, as such, frequently have different meanings. Sometimes they are standard errors of a particular data set, sometimes simply an estimate or expression of confidence.

The radii and axes of the large gaseous planets, Jupiter, Saturn, Uranus, and Neptune in Table III refer to a one bar pressure surface.

The radii given in the tables are not necessarily the appropriate values to be used in dynamical studies; the radius actually used to derive a value of J_2 (for example) should always be used in conjunction with it.

Appendix

There have been many changes to the tables since the 1985 report (*Celestial Mechanics* 39, pp. 103–113, 1986). In the past Tables III and IV contained recommended reference shapes for mapping the planets and satellites. In this report Tables III and IV give the current estimates of size and shape parameters of the planets and satellites.

Expressions for the Earth have been added to Table I; these were derived by A. Sinclair. The constant term in the W equation for Mars was changed based on recent control network computations by M. Davies and F. Katayama. New equations for the direction of the pole of Neptune were derived by R. Jacobson, 1988a and modified by J. Lieske. The W equation of Neptune incorporates the rotation period of $17.86 \pm 0.02 \, \text{hr}$ reported by Hammel and Buie, 1987.

In Table II, the equations for Phobos and Deimos have been modified based on work by T. Duxbury and J. Callahan, 1988. The constant terms in the equations for Europa, Ganymede, Callisto, Mimas, Enceladus, Tethys, Dione, Rhea, and Iapetus have been changed based on recent control network computations by M. Davies and F. Katayama. The expressions for Triton have been modified by J. Lieske from Jacobson, 1987b, Jacobson, 1988b, and also for Nereid (Jacobson, 1987a). The equations for Charon were updated by D. Tholen from the report of Tholen and Buie, 1988.

Many small satellites were discovered on images taken by the Voyager spacecraft and their orbital elements determined. Expressions in defining their coordinate systems were computed by J. Lieske, assuming that they are synchronous rotation with their spin axis normal to their orbital plane. The orbital elements for the satellites of Jupiter 200

TABLE IV Size and shape parameters of the satellites (in kilometers).

			SIZE	Size and shape parameters of the satemes (in Khometers).	eters of the saten	ites (in kilomete	ers).		
Planet		Satellite	Mean Radius (km)	Subplanetary Equatorial Radius (km)	Along Orbit Equatorial Radius (km)	Polar Radius (km)	RMS Deviation from Elipsoid (km)	Maximum Elevation (km)	Maximum Depression (km)
Earth		Moon	1737.4 ± 1	same	same	same	2.5	7.5	5.6
Mars	11	Phobos Deimos	$11.1 \pm 0.15 \\ 6.2 \pm 0.18$	13.4 7.5	11.2 6.1	9.2	0.5 0.2		
Jupiter	XVI V V	Metis Adrastea Amalthea	20 ± 10 10 ± 10 86.2 ± 3	20 13 131.0	10 73.0	20 8 67.0	3.2		
	N II	i nebe Io Europa	30 ± 10 1821.3 ± 0.2 1565 ± 8	33.03 1830.0 ± 0.2 same	1818.7 ± 0.2 same	$^{4.5}_{1815.3} \pm 0.2$ same	1.4 0.5	5-10	3
		Ganymede Callisto Leda Himalia Lysithea	2634 ± 10 2403 ± 5 5 85 ± 10 12 40 ± 10	same	same same	same	0.6 0.6		
	X X X X X X X X X X X X X X X X X X X	Ananke Carme Pasiphae Sinope	15 18 14						
Saturn	XX XVII XX XX XX XX XX XX XX XX XX XX XX XX X	Atlas Prometheus Pandora Epimetheus Janus	16 ± 4 50.1 ± 3 41.9 ± 2 59.5 ± 3 88.8 ± 4	18.5 74.0 55.0 69.0 97.0	17.2 50.0 44.0 55.0 95.0	13.5 34.0 31.0 55.0 77.0	4.1 1.3 3.1 4.2		

1 2	8 4 9 7	
12	s 4 4 51	
0.6 0.4 1.7 0.6 0.5 0.7 7.4 6.1	1.9 1.6 0.9 2.6 1.3	
192.6 \pm 0.5 244.0 \pm 0.7 same 7.5 \pm 2.5 8.0 same 112.5 \pm 20 same 105 \pm 10	232.9 \pm 1.2 577.7 \pm 1.0 same same	
197.4 \pm 0.5 247.3 \pm 0.8 same 12.5 \pm 5 8.0 same 140 \pm 20 same 110 \pm 10	234.2 \pm 0.9 577.9 \pm 0.6 same same same	
210.3 ± 0.5 256.2 ± 0.4 same 15 ± 2.5 15.0 same 17.5 ± 2.5 same 180 ± 20 same 115 ± 10	240.4 ± 0.6 581.1 ± 0.9 same same same	
198.8 ± 0.6 249.1 ± 0.3 523 ± 5 11 ± 4 9.5 ± 4 560 ± 5 16 764 ± 4 2575 ± 2 141.5 ± 20 718 ± 8 110 ± 10	13 ± 2 15 ± 2 21 ± 3 31 ± 4 27 ± 3 42 ± 5 54 ± 6 27 ± 4 33 ± 4 77 ± 5 235.8 ± 0.7 578.9 ± 0.6 584.7 ± 2.8 788.9 ± 1.8 761.4 ± 2.6	1750 ± 250 345 ± 180 606 ± 20
Mimas Enceladus Tethys Telesto Calypso Dione Helene Rhea Titan Hyperion Iapetus	Cordelia Ophelia Bianca Cressida Desdemona Juliet Portia Rosalind Belinda Puck Miranda Ariel Umbriel Titania	Triton Nereid Charon
1 III XXIII	Uranus VI VIII VIII XXI XXII XXIII XXIII XIII III III III III	Neptune I II Pluto

202 M. E. DAVIES ET AL.

are given in Synnott, 1984; those of Saturn in Synnott et al., 1983, and those of Uranus in Owen and Synnott, 1987.

Tables III and IV are new. Frequently the RMS deviation from a spheroid or ellipsoid, and the maximum elevation and depression are not available or are based on partial coverage. Often the values presented have been derived from data presented in the references. Authors of new work in this field are encouraged to produce new results in the form of these tables.

The radius and topography measurements of Mercury came from Harmon et al., 1986. The radius of Venus came from P. Ford and is an update of the data presented in Pettengill et al., 1980. Bills and Kobrick, 1985 report a mean radius of 6051.45 ± 0.04 km based on altimetric measurements presented in Pettengill et al., 1980 (where a mean radius of 6051.5 ± 0.1 km is reported). The radii for the Earth were supplied by R. Rapp. The radii of Mars were computed by M. Davies and T. Colvin from the Mariner 9 occultation measurements (Kliore et al., 1972), the Viking occultation measurements (Lindal et al., 1979), and the Viking lander radii (Michael, 1979). Bills and Ferrari, 1978 computed a sixteenth-degree harmonic series model of the Martian global topography based on occultation, radar, spectral, and photogrammetric measurements. They reported ellipsoidal radii of 3399.2 ± 0.3 km, 3394.5 ± 0.3 km, and 3376.1 ± 0.4 km. The origin of the ellipsoid was translated from the center of mass, and a mean radius of 3389.92 ± 0.04 km was reported.

The radii of the one bar surfaces of Jupiter, Saturn, and Uranus were reported in Lindal et al., 1981, Lindal et al., 1985, and Lindal et al., 1987, respectively. Also presented were graphs of the radii as a function of latitude; from these data M. Davies and P. Rogers computed the RMS deviation from the spheroid and the maximum elevation and depression. The radii of Neptune at the 1- μ bar pressure level were presented in Hubbard et al., 1987. W. Hubbard was kind enough to convert the radii to the one bar pressure level for this report.

The radius of the Moon was computed by M. Davies and T. Colvin from the Apollo altimeter measurements. Kaula et al., 1974 analyzed this same data and reported a mean radius of 1737.7 km with a center-of-mass to center-of-figure offset of 2.55 km. Bills and Ferrari, 1977 expanded the data set to include photogrammetry and limb profiles and computed coefficients for a 12 degree spherical harmonic model. The radii for the ellipsoid were 1738.43 km, 1737.50 km, and 1736.66 km with a mean radius of 1737.53 \pm 0.03 km with a center-of-figure offset from the center-of-mass of 1.98 \pm 0.06 km.

Thomas, 1988b measured the radii of Phobos and Deimos by limb fitting and Duxbury and Callahan, 1988 computed the radii from their control network. The results were essentially the same.

The radii of Metis, Adrastea, and Thebe are from S. P. Synnott, personal communication, 1988. The radii of Amalthea are contained in Thomas, 1988b. The radii and topography of Io come from Gaskell *et al.*, 1988. The radii of Europa, Ganymede, and Callisto are based on recent control network computations by M.

Davies and F. Katayama. The radii of the distant satellites of Jupiter came from Morrison, 1977.

The radii of Prometheus, Pandora, Epimetheus, Janus, and Calypso are taken from Thomas, 1988b. The radii of Atlas, Telesto, and Helene come from Thomas *et al.*, 1983b. The radii of Mimas are given in Dermott and Thomas, 1988. The radii of Enceladus are from P. C. Thomas, personal communication, 1988. The radii of Tethys, Dione, Rhea, and Iapetus were measured in recent control network solutions by M. Davies and F. Katayama. The radius of Titan was measured by the Voyager 1 radio occultation (Lindal *et al.*, 1983). The radii of Hyperion are from Thomas and Veverka, 1985 and the radii of Phoebe are from Thomas *et al.*, 1983a.

The radii of Cordelia, Ophelia, Bianca, Cressida, Desdemona, Juliet, Portia, Rosalind, and Belinda are from P. C. Thomas, personal communication, 1988. The radius of Puck is from Thomas *et al.*, 1987. Data on Miranda, Ariel, Umbriel, Titanic, and Oberon are contained in Thomas, 1988a.

The radii of Triton and Nereid are given in Cruikshank, 1984 and the radius of Charon is from Tholen and Buie, 1988.

The Working Group would like to thank Peter Thomas of Cornell University for furnishing many of the numbers contained in Table IV. Without his help, there would be many more empty spots.

References

- 1. Bills, B. G. and Ferrari, A. J.: 1977, 'A Harmonic Analysis of Lunar Topography,' Icarus 31, 244-259.
- 2. Bills, B. G. and Ferrari, A. J.: 1978, 'Mars Topography Harmonies and Geophysical Implications,' J. Geophys. Res. 83, B7, 3497-3508.
- 3. Bills, B. G. and Kobrick, M.: 1985, 'Venus Topography: A Harmonic Analysis,' J. Geophys. Res. 90, B1, 827-836.
- 4. Cruikshank, D. P.: 1984, 'Physical Properties of the Satellites of Neptune,' *Uranus and Neptune*, NASA Conference Publication 2330, 425-436.
- 5. Dermott, S. F. and Thomas, P. C.: 1988, 'The Shape and Internal Structure of Mimas,' Icarus 73, 25-65.
- 6. deVaucouleurs, G., Davies, M. E., and Sturms, Jr., F. M.: 1973, 'Mariner 9 Aerographic Coordinate System,' J. Geophys. Res. 78, 20, 4395-4404.
- 7. Duxbury, T. C. and Callahan, J. D.: 1989, 'Phobos and Deimos Control Networks,' Icarus 77, 275-286.
- 8. Gaskell, R. W., Synnott, S. P., McEwen, A. S., and Schaber, G. G.: 1988, 'Large-scale Topography of Io: Implications for Internal Structure and Heat Transfer,' *Geophys. Res. Letters* 15, 581-584.
- 9. Hammel, H. B. and Buie, M. W.: 1987, 'An Atmospheric Rotation Period of Neptune Determined from Methane-Band Imaging,' *Icarus* 72, 62–68.
- 10. Harmon, J. K., Campbell, D. B., Bindschadler, D. L., Head, J. W., Shapiro, I. I.: 1986, 'Radar Altimetry of Mercury: A Preliminary Analysis,' J. Geophys. Res. 91, B1, 385-401.
- 11. Hubbard, W. B., Nicholson, P. D., Lellouch, E., Sicardy, B., Brakic, A., Vilas, F., Bouchet, P., McLaren, R. A., Millis, R. L., Wasserman, L. H., Elias, J. H., Matthews, K., and McGill, J. D.: 1987 'Oblateness, Radius, and Mean Stratospheric Temperature of Neptune from the 1985 August 20 Occultation,' *Icarus* 72, 635–646.
- 12. Jacobson, R. A.: 1987a, Updated Pole and Prime Meridian of Nereid, Interoffice Memorandum 314.6-890, Jet Propulsion Laboratory.
- 13. Jacobson, R. A.: 1987b, Updated Pole and Prime Meridian of Triton in the Voyager System, Interoffice Memorandum 314.6-882, Jet Propulsion Laboratory.

- 14. Jacobson, R. A.: 1988a, An Approximate Expression for the Orientation of the Pole of Neptune, Interoffice Memorandum 314.6–922, Jet Propulsion Laboratory.
- 15. Jacobson, R. A.: 1988b, Revised Pole of Triton in the Voyager System, Interoffice Memorandum 314.6-947, Jet Propulsion Laboratory.
- 16. Kaula, W. M., Shubert, G., Lingenfelter, R. E., Sjogren, W. L., and Wollenhaupt, W. R.: 1974, 'Apollo Laser Altimetry and Inferences as to Lunar Structure,' *Proceedings of the Fifth Lunar Conference* 3, 3049-3058.
- 17. Kliore, A. J., Cain, D. L., Fjeldbo, G., Seidel, B. L., Sykes, M. J., and Rasool, S. I.: 1972, 'The Atmosphere of Mars from Mariner 9 Occultation Measurements,' *Icarus* 17, 484-516.
- 18. Lindal, G. F., Hotz, H. B., Sweetnam, D. N., Shippony, Z., Brenkle, J. P., Hartsell, G. V., Spear, R. T., Michael, Jr., W. H.: 1979, 'Viking Radio Occultation Measurements of the Atmosphere and Topography of Mars: Data Acquired During 1 Martian Year of Tracking,' J. Geophys. Res. 84, B14, 8443-8456.
- 19. Lindal, G. F., Wood, G. E., Levy, G. S., Anderson, J. D., Sweetnam, D. N., Hotz, H. B., Buckles, B. J., Holmes, D. R., Doms, P. E., Eshleman, V. R., Tyler, G. L., and Craft, T. A.: 1981, 'The Atmosphere of Jupiter: An Analysis of the Voyager Radio Occultation Measurements,' *J. Geophys. Res.* 86, A10, 8721–8727.
- 20. Lindal, G. F., Wood, G. E., Hotz, H. B., Sweetnam, D.N., Eshleman, V. R., and Tyler, G. L.: 1983, 'The Atmosphere of Titan: An Analysis of the Voyager 1 Radio Occultation Measurements,' *Icarus* 53, 348–363.
- 21. Lindal, G. F., Sweetnam, D. N., and Eshleman, V. R.: 1985, 'The Atmosphere of Saturn: An Analysis of the Voyager Radio Occultation Measurements,' Astron. J. 90, 6, 1136–1146.
- 22. Lindal, G. F., Lyons, J. R., Sweetnam, D. N., Eshleman, V. R., Hinson, D. P., and Tyler, G. L.: 1987, 'The Atmosphere of Uranus: Results of Radio Occultation Measurements with Voyager 2,' *J. Geophys. Res.* 92, A13, 14987–15001.
- 23. Michael, Jr., W. H.: 1979, 'Viking Lander Tracking Contributions to Mars Mapping,' *The Moon and Planets* 20, 149-152.
- 24. Morrison, D., Cruikshank, D. P., and Burns, J. A.: 1977, 'Introducing the Satellites,' *Planetary Satellites*, The University of Arizona Press, 3–17.
- 25. Owen, Jr., W. M. and Synnott, S. P.: 1987, 'Orbits of the Ten Small Satellites of Uranus,' Astron. J. 93, 5, 1268–1271.
- 26. Pettengill, G. H., Elisson, E., Ford, P. G., Loriot, G. B., Masursky, H., and McGill, G. E.: 1980, 'Pioneer Venus Radar Results: Altimetry and Surface Properties,' J. Geophys. Res. 85, A13, 8261-8270.
- 27. Synnott, S. P., Terrile, R. J., Jacobson, R. A., and Smith, B. A.: 1983, 'Orbits of Saturn's F Ring and its Shepherding Satellites,' *Icarus* 53, 156-158.
- 28. Synnott, S. P.: 1984, 'Orbits of the Small Inner Satellites of Jupiter,' Icarus 58, 178-181.
- 29. Tholen, D. J. and Buie, M. W.: 1988, 'Circumstances for Pluto-Charon Mutual Events in 1989,' Astron. J. 96, 1977–1982; also B.A.A.S. 20, 807.
- 30. Thomas P. C., Veverka, J., Morrison, D., Davies, M., and Johnson, T. V.: 1983a, 'Phoebe: Voyager 2 Observations,' J. Geophys. Res. 88, A11, 8736-8742.
- 31. Thomas, P. C., Veverka, J., Morrison, D., Davies, M., and Johnson, T. V.: 1983b, 'Saturn's Small Satellites: Voyager Results,' J. Geophys. Res. 88, A11, 8743-8754.
- 32. Thomas, P. C. and Veverka, J.: 1985, 'Hyperion: Analysis of Voyager Observations,' Icarus 64, 414-424.
- 33. Thomas, P. C., Veverka, J., Johnson, T. V., and Brown, R. H.: 1987, 'Voyager Observations of 1985U1,' *Icarus* 72, 79-83.
- 34. Thomas, P. C.: 1988, 'Radii, Shapes, and Topography of the Satellites of Uranus from Limb Measurements,' *Icarus* 73, 427-441.
- 35. Thomas, P. C.: 1989, 'Shapes of Small Satellites,' Icarus 77, 248-274.