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ABSTRACT 
We study the behavior of turbulent convection in deep atmospheres by numerically solving the three- 

dimensional Navier Stokes equations. Six cases with different energy fluxes, ratios of specific heats, and spatial 
resolutions were computed for contrasting and comparison. The numerical results are presented in the form of 
approximate formulae that describe the quantitative relationships among the mean variables, root-mean- 
square fluctuations, and correlations. The main results are the following: (i) The mean vertical velocity, which 
from time to time has been casually and incorrectly taken to be zero, turns out to be an important link 
between the buoyancy work and the heat flux. The mean vertical advection rates of all thermodynamical vari- 
ables can be expressed in terms of the mean vertical velocity, (ii) In a region where convection is efficient, the 
total flux is composed of two main components : the enthalpy flux, and the flux of kinetic energy. The enth- 
alpy flux can be roughly computed from the superadiabatic gradient, and vice versa. The flux of kinetic energy 
points downward in most of the convection zone, and its magnitude can reach the same order as the total 
flux. Its size is not simply related to the atmospheric structure, but is proportional to the total flux and 
inversely proportional to the specific heat under constant pressure, (iii) The production and dissipation of 
kinetic energy behave differently. The production depends mainly on the local variables and the flux, but the 
dissipation is nonlocal. A substantial amount of kinetic energy is carried away from the location of pro- 
duction, to be dissipated in lower regions. 
Subject headings: convection — stars: atmospheres — Sun: atmospheric motions — turbulence 

I. INTRODUCTION 
The series of papers of which this is a part studies the behav- 

ior of deep, turbulent convection relevant to solar and stellar 
applications by means of numerical simulations. In Papers I 
(Chan, Sofia, and Wolff 1982) and II (Sofia and Chan 1982) of 
this series, two-dimensional cases were studied. They showed 
that both deep stratification and realistic stellar fluids can be 
handled, and indication was found that the sizes of the convec- 
tive cells may indeed be scaled by the pressure or density scale 
height, a previously unjustified assumption of the mixing 
length theory (MLT). In Paper III (Chan and Sofia 1986) of 
this series, we started to study three-dimensional cases. We 
tested our numerical approach by varying the numerical tech- 
nique, the grid resolution, the size of the domain, and the 
viscosity. This exercise, in addition to increasing our con- 
fidence on the method, has increased our understanding of the 
qualitative behavior of turbulent compressible convection. We 
have already discussed the general pattern of the three- 
dimensional (3D) convecting flows, the most prominent fea- 
tures being the breakup of vertical motions in scales less than 
the total depth of the convection zone and the long, funnel-like 
columns of strong downflows. We have noticed that an 
impenetrable side boundary tends to attract downflows, which 
is not a desirable effect. Since then, the numerical codes have 
been changed to a Cartesian configuration, and all the side 
boundaries have been made periodic in order to avoid such 
problem. Aside from the disappearance of the constant down- 
flow near solid walls, the principal qualitative features of the 
flow have not changed. In this paper, we present a summary of 

the quantitative aspects of the results of our numerical study. 
However, we do not propose to follow here all the implications 
of the information. This will be done in subsequent papers. 

For a quasi-stationary turbulent system such as a convect- 
ing atmosphere, all the statistical information is contained in 
the set of first-order, second-order, etc., correlation functions. If 
all these functions were found, the whole problem could be 
considered as solved. This is obviously impractical and may 
not even be desirable, since it would not lead to physical 
insights. In general, it is more beneficial to study the low-order 
correlations and examine their interrelations; the hope is to 
find closures which express certain correlation functions in 
terms of lower order correlations in order to avoid the infinite 
hierarchy of higher and higher order correlations. Along this 
line of thinking, the results of our numerical study of turbulent 
convection are presented through a list of formulae that 
describes the interrelations of various correlation functions. 

The mixing length theory of convection obtains a closure by 
assuming that the velocity and the temperature fluctuation of 
the turbulence are simple functions of the mean structure of the 
atmosphere (the superadiabatic gradient) and that the flux of 
kinetic energy is negligible. Then the energy flux that is gener- 
ated from the interior of a star can be used to determine the 
structure of the convective envelope. In a recent paper (Chan 
and Sofia 1987: hereafter CS), we have shown that the 
turbulence-structure relationships proposed by MLT are in 
approximate agreement with our numerical results. However, 
the assumption concerning the flux of kinetic energy turns out 
to be grossly incorrect. 
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The significant size of the flux of kinetic energy was first 
discussed by Massaguer and Zahn (1980) in their modal calcu- 
lation of compressible convection, but the direction of this flux 
was uncertain because solutions with opposite flux directions 
were found. The predominantly downward direction of this 
flux was affirmed by the two-dimensional (2D) finite-difference 
computation of the Navier-Stokes equations performed by 
Hurlburt, Toomre, and Massaguer (1984). In this paper, we 
discuss the behavior of this flux in the light of our 3D results. 
While we have obtained more quantitative information, we 
have not been able to find a closure to handle this flux. 
However, our numerical results repudiate the validity of some 
popular closures. 

In § II, we describe our numerical model and specify the 
parametric values of the cases computed. In § III, we discuss 
the behavior and relationships among the low-order (mostly 
second-order) correlations of the velocity and the thermody- 
namical variables. The relationships are expressed as analytical 
approximations which make the physical connections clear 
and can be used in future analytical work. In § IV, we discuss 
topics of key interests to stellar structure theory, namely, the 
relationships among the fluxes, the turbulence, and the struc- 
ture of the convection zone. Particular attention is paid to the 
flux of kinetic energy. In § V, we summarize our findings and 
discuss necessary improvements for future computation. 

II. THE NUMERICAL MODEL 

The detailed description of our numerical approach has 
been given in Paper III. Here we only outline the most impor- 
tant or distinctive features. Unless otherwise stated, the 
symbols used here will be the same as those in that paper. 

We solve the Navier-Stokes equations for an ideal gas in 
Cartesian coordinates (x, y, z), where z is along the vertical 
direction. For later reference, the equations are 

dp/dt = -V • pV, (1) 

dp V/dt = -V-pFF-Vp +V-<7 + ps, (2) 

ÔE/Ôt= - V[(£ + p)F- V-a+ß+pV-g, (3) 

where p is the density, p is the pressure, V is the velocity, g is 
the gravitational acceleration, E = e + (j)pV2, e is the internal 
energy, a is the viscous stress tensor, and fis the diffusive flux. 
A bold symbol denotes a vectorial (or tensorial) quantity, and a 
corresponding nonbold symbol denotes its scalar magnitude. 

The domain of computation is a rectangular box with 
periodic boundaries on the four sides and impenetrable, stress- 
free boundaries at the top and bottom. A constant flux Fb is fed 
in from the bottom; at the top, the entropy is held fixed. The 
aspect ratio (width/depth) of the box is 1.5. 

The viscosity is computed by a sub-grid-scale tubulence 
(SGST) viscosity formula, as discussed in Paper III; the adjust- 
able coefficient for this viscosity is fixed at 0.20. The diffusive 
flux of thermal energy carried by the SGST is assumed to be 
proportional to the gradient of the entropy, and the Prandtl 
number is taken to be The initial distribution of the gas 
is polytropic and slightly superadiabatic (polytropic 
index = 0.99y/[y — 1], where y is the ratio of specific heats). 
The vertical grid spacing is roughly in scale with the local 
pressure scale height, and the horizontal grid is uniform. 
Second-order spatial accuracy is maintained through center 
differencing of the differential equations in strong conservation 
form. 

TABLE 1 
Characteristics of the Computed Cases 

Case y Fb Depth Grid 

A  5/3 0.125 5.0 20 x 20 x 37 
B  20/17 0.125 5.7 20 x 20 x 37 
C  20/17 0.125 4.7 20 x 20 x 46 
D  20/17 0.333 4.3 20 x 20 x 46 
E  5/3 0.250 4.5 28 x 28 x 46 
F  5/3 0.125 4.8 28 x 28 x 46 

For convenience, all the quantities are made dimensionless 
hereafter. The scalings are chosen to make the total depth of 
the domain and the initial values of the density, temperature, 
and pressure at the top equal to 1. 

The evolution of the fluid is first computed by the ADISM 
method which can take large time steps and saves computer 
time for relaxing the convecting fluid to self-consistent thermal 
equilibrium (see Paper III). After the flow reaches a statistically 
equilibrium state, which is usually indicated by a balance of the 
input energy from the bottom and the outgoing energy from 
the top (to within 1% for cases A-E, and 2.2% for case F), the 
calculation is switched to an Adams-Bashforth type method 
which gives much better time accuracy. After a few more turn- 
over times, statistical averages are taken for the quantities of 
interest. The period of averaging exceeds 10 turnover times. 
For an arbitrary quantity q, (q} denotes its combined horizon- 
tal and temporal mean, q' denotes the deviation from the mean, 
and q" denotes the root mean square (rms) fluctuation from the 
mean. The correlation coefficient of two quantities and q2 is 
expressed as C[^l5 g2]- 

Six cases have been computed and their characteristics are 
specified in Table 1. The first column gives the case identifier; 
the second column gives the ratio of specific heats (y); the third 
column gives the input flux (Fb); the fourth column gives the 
depth of the thermally relaxed fluid in pressure scale heights; 
and the fifth column gives the number of grids (horizontal 
times horizontal times vertical). Cases with different gas 
properties, fluxes, and resolutions are considered for compari- 
son, and they are roughly ordered with increasing number of 
grid points. 

III. BEHAVIOR AND RELATIONSHIPS AMONG THE 
FLUCTUATING VARIABLES 

In this section, we discuss the interrelations of Vx, Vy, Vz, p\ 
p\ T\ and S', where Vx and Vy are the two horizontal velocities, 
Vz is the vertical velocity, T is the temperature, and S is the 
entropy. We shall concentrate our attention on the mid-region 
of the convection zone, one pressure scale height away from 
the upper and lower boundaries, so that the ideal behavior of 
deep convection can be studied with little influence from these 
boundaries. 

A summary of the numerical results in the form of approx- 
imate relations is given in Table 2. Before discussing individual 
relations, we describe how this table is organized. The first 
column of the table provides the identifier for the relation. The 
second column shows the relation. For an arbitrary formula of 
the form q1 = crq2, the numerical coefficient cr is obtained by 
averaging over all the cases with the following procedure : 

Cr = {Z [(<ZiA?2)a + (4l/<?2)B] 

+ Z [(ii/ï2)c + ' ' ' + (4iA?2)f]}/138 , (4) 
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TABLE 2 
A List of Approximate Relationships Obtained 

from the Numerical Results 

Standard 
Identifier Approximation Deviation 

R1   F" (or Vy) « 0.61 F" 0.05 
R2  p7<p> ^ o.89r7<r> o.04 
R3  p7<p> « o.57r7<r> 0.07 
R4  s" ^ o.94cp ry< r> 0.03 
R5  p7<p> ^ 0.26F"7<r> 0.01 
R6  p" « 0.51pF"2 0.03 
R7  r'-0.90F"2 0.10 
R8  C[r, S'] ^ 0.99 0.01 
R9   C[p', S'] «-0.89 0.06 
R10  C[p', T'] «-0.82 0.05 
Rll  C[p',r]-0.49 0.05 
R12  C[F2,T']^ 0.81 0.03 
R13  C[F2, S'] «0.81 0.03 
R14  C[FZ, p'] «-0.74 0.03 
R15  <^P')= -<^><p> 
R16  <Fzp> « 1.24<Fz><p> 0.08 
R17  <Fzr> « L26<FZ><T> 0.08 
R18  <FZS'> « 1.20Cp<Fz> 0.08 
R19  <FZ> ~ 0.58F;'7<T> 0.07 
R20  Fep«1.25Cp<p)<Fz> 0.08 
R21  Fep « 0.72Cp<p> F"3 0.06 
R22  r7<T> - 1.05AV + 0.0027 0.0008a 

R23  F;'7<r> - 1.17AV + 0.0032 0.0011a 

R24  AV ~ 0.9[F/(0.8Cp<p>T1/2)]2/3 - 0.002 0.0007a 

R25  <FzpF2) « 1.03<p><FzF
2> 0.03 

R26  <FZF
2)« 1.13<FZ

3> 0.05 
R27  <p'V • F> « <Fzp')//fp 0.01 

a These are standard deviations of the least-squares fits. 

where the subscripts A to F identify the cases. Since cases A 
and B have a smaller number of grids, the first summation is 
over vertical grid levels ranging from 8 to 28 (counted from the 
bottom of the domain), and the second summation is over 
levels 11 to 34. With these limits, grid levels within one pres- 
sure scale height from the upper and lower boundaries are 
excluded. This reduces the contamination by boundary effects. 
In a similar fashion, one can define the standard deviation of 
the ratios {qjq^ from the mean cr. Such standard deviations 
are listed in the third column of Table 2. They do not have 
physical meanings, but are listed here to provide some measure 
of the spreads of the results from the ideal relationships. The 
spreads may be due to numerical truncation errors, or con- 
tamination by boundary effects, or inadequacy of the formula; 
no attempt is made to differentiate them here. 

A rather arbitrary ranking of the goodness of fit of a relation 
is shown by the symbol used between the left-hand side and 
right-hand side of the expression. The symbol “ ^ ” is used for 
cases where the relative deviation (standard deviation/cr) is less 
than 5%, and the fit can be considered as good; the symbol 
“ « ” is used if the relative deviation is between 5% and 10% 
and the fit is fair; the symbol “ ~ ” is used if the relative devi- 
ation is between 10% and 15%, and the relation should be 
considered only as suggestive. 

a) The General Behavior of the rms Fluctuations 
Figure 1 shows two examples (cases C and F) of the distribu- 

tions of the vertical and horizontal rms velocities versus In 
«P)/<Ptop»; Ptop is the pressure at top of the thermally relaxed 

fluid. The solid and dashed curves represent cases C and F, 
respectively; the thick and thin curves show F" and F", respec- 

tively. The distributions of F" and F" for the same case coin- 
cide with each other in this figure. These cases have the same 
Fb but different y. Since the specific heat under constant pres- 
sure Cp[ = y/(y — 1)] is smaller for larger y, the velocities of 
case F (with a larger y) are substantially larger than those of 
case C. At both the upper and lower boundaries, F" goes to 
zero and the horizontal velocities become large as the vertical 
motions are turned into horizontal motions by the rigid 
boundaries. In the mid-region, F" is larger than the horizontal 
velocities, and the ratio between F" (or F") and F" is roughly 
equal to 0.6. The uniformity of this ratio holds better in the 
case with a smaller y, but it is quite independent of Fb. This 
approximate scaling relationship between the horizontal and 
vertical rms velocities is represented by relation R1 in Table 2. 

An example (case F) of the distributions of the relative fluc- 
tuations of the thermodynamical variables p,,Kp'), and 
T"/(T} are shown in Figure 2. In general, p'Kp} and T"/(T} 
are close to each other, but they are larger than p"/(p}. The 
ratios (p"Kp"MT"KT}) and (p7<P»/(^7<^» are almost 
uniform for all cases, and are given by R2 and R3, respectively. 
Given this information, one can deduce a proportional 
relationship between the fluctuation of entropy and the relative 
fluctuation of temperature, using the following equation for an 
ideal gas: 

5 = Cp(lnT-Valnp), (5) 

where Va( = [d In (p)/d In (T)]a) is the adiabatic gradient. The 
fluctuation of the second term on the right-hand side of equa- 
tion (5) can be neglected since T"/(Ty is large compared to 
VaP"Kpy- A more accurate expression of the relationship is 
given by R4 in Table 2. 

The fluctuations of the thermodynamical variables are 
related to the turbulent velocities. A dimensional argument 
based on the momentum equation (2) leads to the expectation 
that the relative pressure fluctuation is proportional to the 
square of the Mach number (Gough 1969). That turns out to 
be a rather accurate description as shown by R5. This relation 
can be reexpressed as p"Kpy = 0.26yM2, where M is the Mach 
number. The goodness of fit of R5 is demonstrated in Figure 3, 
where p"Kp} is plotted versus F"2/<T> for all the cases, F"2 

being the sum of all components of the mean square velocities. 
The cases A-F are represented by the triangles, crosses, aster- 
isks, diamonds, pluses, and squares, respectively. The same 
convention will be used in later figures when differentiation 
among cases is called for. 

Given the ratio F"/F" (Rl), the pressure fluctuation can be 
related simply to the vertical rms velocity, as shown by R6. 
This relationship is not as accurate as R5 because the ratio of 
the rms velocities is only fairly uniform. Using R3, the tem- 
perature fluctuation can also be estimated from the rms verti- 
cal velocity, as shown by R7. Figure 4 plots T" versus F"2 for 
all the cases. Comparing this figure with the previous figure 
shows the difference in goodness of fit between relations 
ranked as ~ and ^. In Figure 4, the data of case A show most 
deviation from the ideal linear relationship. This may be due to 
the low spatial resolution of case A. Some quantities are more 
sensitive to resolution than others. For the relation R7, the 
resolution of case A seems to be marginally adequate. 

b) The Correlation Coefficients 
The mean values of the correlation coefficients between pairs 

of dynamical variables are given by relations R8-R14 in Table 
2. The correlation between the temperature and entropy devi- 
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Fig. 1.—Root mean square velocities vs. depth. In this figure, like in all others, the depth is specified by In (p/pt0P), where ptop is the pressure at the top of the 
thermally relaxed fluid. Thick and thin solid lines show F" (rms vertical velocity) and F" (rms horizontal velocity) for case C; long and short dashed curves show F" 
and F" for case F, respectively. 

Fig. 2.—Distributions of the relative fluctuations (rms fluctuation/the mean) of the thermodynamical variables p"Kp} (dashed curve), p"/<p> (dotted curve), and 
ry< T) (solid curve) for case F. 
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Fig. 3.—Relative pressure fluctuation p'V^P) vs- F"2/<T) for all the cases. Cases A-F are represented by the triangles, crosses, asterisks, diamonds, pluses, and 
squares, respectively; this convention will also be used in later figures. The spread in the ratios between the ordinate and abscissa of all the data points is less than 
5%. 

Fig. 4.—The rms temperature fluctuation T" vs. the mean square vertical velocity K"2 for all the cases. The spread in the ratios between the ordinate and abscissa 
of all the data points is 11%. 
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ln(p) 

Fig. 5.—Distributions of the correlation coefficients between the density and temperature deviations, C[p', 7'], for all cases. Upper boundaries all start at 
ln «p>/<pt0p» = 0; lower boundaries have different depths (see Table 1). The endpoints that significantly deviate from the flat distribution show boundary effects. 

ations is extremely high (R8). We therefore only consider the 
behavior of T here as the representative of both. The full depth 
distributions of the correlation coefficients C[p', T], C[p\ T'], 
C[p\ p'], C[F2, T'], C[FZ, p'], and C[FZ, p'] are shown in 
Figures 5-10, respectively, for all the cases. 

The correlations between p', T', S', and Vz are generally high. 
In each of the Figures 5, 8, and 9, the curves show some varia- 
tions over depth, but the correlation coefficient stays around 
some constant value close to 1 or — 1. The signs of the correla- 
tions are compatible with those expected for a convecting fluid. 
For example, the sign of C[FZ, p'] is negative, in agreement 
with the expectation that lighter fluid elements go up and 
heavier fluid elements go down. 

The correlations between p' and other variables are not as 
well-behaved. Figure 6 shows that C[p', T'] usually has low 
values, and the variations over depth and from case to case are 
substantial. The uncertainty level of Rll is high. Figures 7 and 
10 show that the situation for C[p', p'] and C[FZ, p'] is even 
worse; they cannot be approximated by constant values. The 
effects of the impenetrable boundaries are illustrated in these 
figures. Near the lower boundary, C[FZ, p'] turns negative, 
showing that compression is associated with the downward 
moving fluid elements which run into the solid bottom; com- 
pression of the upward moving elements at the upper bound- 
ary is indicated by the positive peak of C[FZ, p'] at the top. For 
the same physical reason, C[p', p'] shows peaks near these two 
boundaries. 

Some of the correlation coefficients can be derived from the 
relations among the rms fluctuations discussed in the previous 
subsection. For example, taking the square of the ideal gas 

relationship 

p'/p ^ p'/p + T'[T , (6) 

and using R2 and R3, one can obtain an estimate of —0.86 for 
C[p', T']. It is a little different from the direct result given by 
R10, but is within the range enclosed by the quoted standard 
deviation. Similarly, one can show that C[p', T'] and C[p', p'] 
are on the order of (p7<p»/(2T7<T>), relatively small. By 
multiplying V with the perturbation of equation (5) and taking 
averages, the very high correlation between T' and S' is also 
anticipated. The low correlation between p' and Vz is consistent 
with C[VZ, p'], C[FZ, T'] having opposite signs and similar 
absolute values. 

In Paper III, streamline plots have illustrated that down- 
flows tend to generate vortices. Quantitatively, this is shown by 
the correlation coefficient C[_VZ, |(V x F)z|] plotted here in 
Figure 11 which includes all the cases. Starting with a value 
around —0.1, this coefficient slightly increases its magnitude 
and reaches about —0.2 in the middle layer; due to the com- 
pression of horizontal cross sections by the density stratifi- 
cation, downdrafts amplify the intensity of the vertical 
vorticity. Near the lower boundary, however, the vertical vor- 
ticity is amplified by the updrafts that pull neighboring fluid 
into smaller areas, and the correlation coefficient turns positive 
to about +0.1. Although the general behavior is similar, the 
distributions shown in Figure 11 do not agree quite well, even 
for cases with the same Fb and y (the pairs [A, F] and [B, C]). 
This may be due to the sensitive dependence of the vorticity on 
grid resolution; cases with smaller grid spacing produce higher 
values of rms vorticity. 
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Fig. 6.—Correlation coefficient between the pressure and temperature deviations, C[p', T'], vs. depth for all cases. Even though the values of the correlation 
coefficient are not high, the pressure and temperature deviations are generally positively correlated. However, C[p', 7'] turns negative near the lower boundary 
where the cooler downdrafts hit the bottom and get compressed. 

Fig. 7.—Correlation coefficient between pressure and density deviations, C[p', p'], vs. depth for all cases. The correlation is generally low, except near the lower 
boundary where the compression of downdrafts produces large positive values. 
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Fig. 8.—Correlation coefficient between the vertical velocity and temperature deviation, C[V2, T'], vs. depth for all cases. The correlation is generally quite high 
and uniform ; hotter fluid elements tend to move upward at all depths. 

Fig. 9.—Correlation coefficient between the vertical velocity and density deviation, C[V2, p'], vs. depth for all cases. Lighter fluid elements tend to move upward 
at all depths. 
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InCp) 
Fig. 10.—Correlation coefficient between the vertical velocity and pressure deviation, C[V2, p'], vs. depth for all cases. Fluid elements with a positive pressure 

deviation generally tend to move upward, except near the bottom where the compression of downdrafts due to the lower boundary is again evident. 

InCp) 
Fig. 11.—Correlation coefficient between the vertical velocity and the vertical vorticity, C[VZ, | (V x F)21 ], vs. depth for all cases. Starting around a level of —0.1 

at the top, this correlation grows slightly in magnitude in the middle region ; the downdrafts usually amplify the vertical vorticity due to the compression of 
horizontal cross sections. Near the lower boundary, the vertical vorticity is amplified by the updrafts pulling the neighboring fluid into a smaller area. 
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c) Covariances ofVz with theThermodynamical Variables 
These covariance functions describe the mean vertical 

advection of the thermal quantities and are important for esti- 
mating the buoyancy work and the heat flux to be discussed in 
the next section. A list of relations that reduce these functions 
to lower order means are given by R15-R18 in Table 2. Each 
covariance can be expressed as a product of the mean thermo- 
dynamical variable with the mean vertical velocity. 

R15 is an identity derivable from the mass conservation 
equation (1): 

<pv2y = o, (?) 

by substituting p with <p> + p'; therefore, no estimate of stan- 
dard deviation needs to be given. R16 implies that (Vzp'} is 
small compared to <J^<p>>. Given R16, the relation R17 can 
be derived by replacing p with (p/<T)Xl — V/(T}) in equa- 
tion (7). Figure 12 plots (VzT'y versus <JO<T> to show the 
goodness of fit of this fair relation. Contrary to the situation 
with pressure, R17 shows that one cannot make the approx- 
imation <1^(<T> + T')> ~ <JO<T> by arguing that T is 
much smaller than <T>. The relation R18 can be derived from 
R17 through equation (5). 

Using relations R7, R12, and R17, the mean vertical velocity 
can be roughly related to the rms vertical velocity as shown by 
R19. 

IV. THE FLUXES 
The mean of the terms inside the divergence of the energy 

equation (3) can be expressed as a sum of four vertical fluxes : 

+ n + (8) 

where 

Fcp = <K(e + p)> (9) 

is the enthalpy flux, 

Fk = (KdïpV2} (10) 

is the flux of kinetic energy, 

F^iv^y (ii) 

is the viscous flux, and /is the diffusive flux. The sum of these 
fluxes should be equal to the total flux through the convection 
zone (Fb). An example (case E) that shows the distributions of 
these fluxes is given in Figure 13 where F, Fep, Fk, Fv, and/are 
represented by the thick solid, solid, dashed, dotted, and dot- 
dashed curves, respectively. One can see immediately that Fv 
and/ due to SGST are very small compared to the other fluxes, 
except near the upper and lower boundaries where the advec- 
tive fluxes approach zero and the energy flow must be carried 
by the diffusive flux. The flux of kinetic energy, contrary to the 
assumptions of MLT and some other analytical theories, has 
large size and is pointing downward. Furthermore, its absolute 
magnitude increases with depth. Therefore, to make the total 
flux equal to the input flux, the enthalpy flux has to increase 
with depth. We discuss the relations of these two fluxes with 
the convective turbulence in detail in the following subsections. 

a) The Enthalpy Flux 
For an ideal gas, equation (9) can be rewritten as 

F„- <:/[■>,, - c/pyv,!-,. (12) 

<T><V,> 

Fig. 12.—The covariance of the temperature deviation and vertical velocity vs. the product of the mean temperature and mean vertical velocity 
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CHAN AND SOFIA 1032 

Fig. 13.—Distributions of the fluxes for case E. The thin solid, dashed, dotted, and dot-dashed curves represent Fep, Fk, Fv, and/, respectively. The sum of these 
four fluxes is represented by the thick solid curve; it is within 1 % of the input flux at all depths. 

Therefore, the enthalpy flux can be related to the mean or the 
rms vertical velocity through R16 or R19. The results are R20 
and R21, respectively. 

Can one go one step further by computing <1^> or F" from 
the mean structure of the convection zone? If that is possible, 
the enthalpy flux can be completely determined from the struc- 
ture of the convection zone, or vice versa. MLT has some 
recipes for this purpose. In CS, we discussed numerical results 
that indicate the validity of some of the relations proposed by 
MLT. The longitudinal correlation of the vertical velocity was 
shown to be scaled by the pressure scale height, independent of 
y and Fb, and the mean square vertical velocity and tem- 
perature fluctuation are proportional to the superadiabatic 
gradient, AV = Id In (T)/d In (p)] — Va. Here we substantiate 
these results further. 

First, we reexamine the scaling effects of the pressure scale 
height by looking at the two-point vertical correlation of the 
temperature deviation, in a way similar to what we have done 
for the vertical velocity. The correlation function B is defined 
as 

£ = <T;r2>/(rír¿), (13) 

where the subscripts 1 and 2 denote two depth levels. With one 
level fixed, say level 1, Figures 14a and 14b plot this function 
versus In (p2) — hi (pj and In (p2) — In respectively, for 
cases C, D, E, and F. The dependence of this function on In (p) 
is insensitive to y, but its dependence on In (p) varies for differ- 
ent y. Therefore, the vertical correlation length of temperature 
deviation is also scaled by the pressure scale height, not by the 
density scale height. Figure 15 compares the distributions of 

this function with level 1 fixed at two different depths (for case 
F). It illustrates the translational invariance of the shape of this 
correlation function in terms of In (p). A similar exercise using 
S' instead of V yields the same results. 

The relationships between F" and T" with AV are approx- 
imately linear, as already shown in Figures 3 and 4 of CS. The 
least-squares fits to these relations with data from all the 
studied cases are given by R22 and R23. These linear relations 
(also R24, to be discussed later) do not pass through the origin, 
since F" and T" do not vanish even when AV is zero. The 
standard deviations listed for them in Table 2 are not the 
standard deviations of the slopes; they are the standard devi- 
ations of the numerical data from the fits. 

For application to the study of stellar structures, the most 
important role of a convection theory is to link the total flux to 
the mean structure of the envelope. Using equation (12), and 
relations R22, R23, one can show what Fep is approximately 
proportional to AV2/3. However, that is incomplete since Fep is 
different from Fb due to the presence of Ffc. A redeeming factor 
is that Fk becomes significant only in the deep region of the 
convection zone, where AV is very small and the flux-structure 
relationship is not needed as much. By inverting the functional 
dependence of Fep on AV and ignoring the difference between 
Fep and Fb, we find a relationship R24 that expresses AV in 
terms of Fb. The distribution of the actual numerical data is 
shown in Figure 16. The spread of the data is substantial, but 
the relative accuracy improves for large superadiabatic gra- 
dients which are more relevant to stellar structure calculations. 
If MLT uses proportionality constants given by Cox and Giuli 
(1968), a mixing length ratio of 2.3 can be inferred from relation 
R24. 
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Fig. 14b 
Fig. 14.—(a) Distributions of the two-point correlation function of temperature deviation p2) for cases C-F plotted as functions of the logarithmic pressure. 

All the cases coincide with each other quite well ; the slight discrepancy at the right side of the figure may be caused by the difference in resolution, (b) Distributions of 
p2) for cases C-F plotted as functions of the logarithmic density. The distributions fall into two distinctive groups, each corresponding to a different value of y. 

Thus, this correlation function is not scaled by the density scale height. 
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Fig. 15.—Two distributions of Bip^ p2) for case F, with px fixed at different depths (about one pressure scale height apart). The two distributions are quite 
symmetric and similar to each other, showing that B is a function of | In (p2) — In (pj 1. 

Fig. 16.—The superadiabatic gradient AV vs. the estimate lFb/{0.SCppT1/2)y/3 for all cases. While the estimate is positive definite, the superadiabatic gradient 
can pass through 0. This estimate is only appropriate when AV is large, say > 0.005. 
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U CM CM O 

KO CO CO 
; b) The Flux of Kinetic Energy 

^ From Figure 13, we can see that the description of a convec- 
< tion zone without the consideration of Fk is extremely incom- 
S píete. While Fcp is related to the superadiabatic gradient, Fk is 
^ not. In all the cases here, Fk increases with depth until it is 

stopped by the lower boundary. It is not clear what will be the 
natural development of this flux if the convection zone 
becomes much deeper. If its magnitude keeps on increasing, it 
has serious implication on overshooting into stable regions 
below deep stellar convection zones. 

Several ways have been proposed to approximate the correl- 
ation function (VzpV2}( = 2Fk) by lower order correlation 
functions. Treating the advection of kinetic energy as diffusion, 
one way is to approximate this correlation function by 
-hVz d(pV2y/dz, where h is some sort of mixing length. This 
approximation is clearly incorrect because, as shown in Figure 
17 (for cases D and F), the kinetic energy increases with depth, 
and the negative of its gradient points upward, opposite to the 
prevalent direction of Fk. A simplification can be made, 
however, by pulling p out from the correlation function as 
shown by R25. Another step can be made by eliminating the 
appearance of Vx and Vy, as shown by R26. The problem is 
therefore reduced to finding an approximation for < V2}. 

In Figures 18a and 18h, we compare the approximations 
VzdVz

2/d In p (dotted curves), VzdVz
2/d \n p (dashed curves), 

and — K"3 (pluses) with <F3> (solid curves) for cases D and F, 
respectively. These two cases are chosen as examples with dif- 
ferent y. None of the approximations are satisfactory, even 
though the first two are able to indicate some trends (the 
second one encompasses both cases a little better) and the third 
one provides fair estimates in the lower region (<V3

Z> - 

— 1.1F"3 in the region within two pressure scale heights from 
the bottom, including the location where | Ffc | is maximum). 

Due to the inadequacy of simple approximations, we turn to 
study in detail the equation that describes the change of Fk 
with depth, so that further understanding of Fk can be obtained 
by analyzing the individual terms. The equation for kinetic 
energy, derived from equation (2), can be reduced to the form 

d(Fk + F, + Fp,)/dz = Wg — Wv+ Wp, , (14) 

where Fp. = <Kzp'> (15) 

is the flux of pressure fluctuation, 

wg= -{Vzp
fy\g\ (16) 

is the rate of buoyance work due to gravity, 

Wv = ÚK<j:sy, (17) 

where s is the strain rate tensor and the double dot denotes 
contraction to a scalar, is the rate of viscous dissipation, and 

wp, = <p'v • vy (18) 

can be identified as the work rate of the pressure fluctuation. 
On the left-hand side of equation (14), the viscous flux Fv can 

be neglected because it is very small compared to Fk (see Fig. 
13a). The quantities Fp> and Wp, are related by R27 in which Hp 
is the density scale height. For the right-hand side, a compari- 
son of the distributions of Wg, Wv, and Wp> (for case F) is shown 
in Figure 19. The magnitude of Wp, is small compared to the 
other work rates. At the upper region, Wg reaches a maximum 
and dominates over Wv. One can understand why the rate of 
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Fig. 18ft 

Fig. 18.—(a), (ft) Comparison of various approximations with the third-order moment of the vertical velocity <Kj> (solid curves) for cases D and F, respectively. 
The approximations are V" ÈV^/d In p(dotted curves), V" dV;2/d In p (dashed curves), and - Vf (pluses). 
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TURBULENT COMPRESSIBLE CONVECTION 1037 

Fig. 19.-—Distributions of the rates of buoyancy work (dotted curve), dissipation (solid curve), and work of the pressure fluctuation (dashed curve). The work of the 
pressure fluctuation is relatively small. In most of the convection zone, the buoyancy work decreases with depth. The dissipation rate peaks near the upper and lower 
boundaries. 

buoyancy work peaks near the top by using relations R15 and 
R20 to write 

Wg « 0.8(Fep/Cp)( \g\K T» . (19) 

Since Fep is only a slowly varying function, Wg is approx- 
imately proportional to 1/<T> and therefore peaks near the 
top. The distribution of Wv is rather flat in the mid-region but 
peaks at the upper and lower boundaries where the updrafts 
and downdrafts are stopped and severe dissipation of kinetic 
energy occurs. 

To proceed further, we now make some very gross approx- 
imations in equation (14) to explore the depth dependence of 
Fk. We ignore all terms except those involving Fk and Wg, and 
we approximate Wg by equation (19) with the additional 
replacement of Fep by Fb. Then, we have 

dFJdz ~ O.S(Fb/Cp)/Hp , (20) 

where Hp( = ( T}/\ # | ) is the pressure scale height. The integral 
of this equation suggests that | Fk | increases linearly with the 
number of pressure scale heights and is scaled by the factor 
Fb/Cp. Does similar behavior hold in actual situations? Figure 
20 plots Fk/(Fb/Cp) versus In p for all cases. Cases with the 
same y cluster closely with each other, and therefore the scaling 
with Fb is very good. Considering the smallness of the differ- 
ence between the two clusters and the large difference in Cp (2.5 
and 6.67), the scaling with Cp is also good. Before effects of the 
lower boundary set in, the magnitude of Fk also increases with 
the number of pressure scale heights from the top. With two 
terms in equation (14) already scaled by Ffc/Cp, it is natural to 
ask whether the other terms are also similarly scaled. Figures 

21 and 22 plot WJ(Fb/Cp) and Wp,/(Fb/Cp), respectively, for all 
the cases. Considering that Fb/Cp varies over a factor of 5, the 
clustering of the cases in both figures is remarkable. In the 
mid-region of the convection zone, Wv/(Fb/Cp) is rather 
uniform and holds values around 3.4 (standard deviation 0.6). 

The most serious question concerning Fk is its behavior in 
deeper convective regions. At the moment, we cannot provide 
a definite answer to this question, as our numerical cases are 
not deep enough. There are some arguments that lead us to 
believe the Fk may be bounded, but they can only be con- 
sidered as suggestive, since they make use of relations extrapo- 
lated to deeper convection zones. First, suppose that Wv stays 
quite uniform even in deeper layers. Then Wg will eventually 
drop below according to equation (19), and |FJ will 
decrease; Wv will also follow. Second, if — F"3 approximates 
< F3) well in the deeper region, as indicated by Figures 18a and 
186, then, using relations R25, R26, R21 and the approx- 
imation Fep = F& + I Ffc |. 

I Ffc I ~ 0.81(F b + \ Fk\ )fCp . (21) 

This equation can be solved to obtain 

\Fk\~{FbICp)l{\2-\ICp), (22) 

which is bounded by 13 Fb/Cp since Cp is not less than 2.5. For 
cases A-F, the maximum values of \Fk\/(Fb/Cp) reach 1.13, 
1.15, 1.05, 0.96, 1.24, and 1.32, respectively. The depth of our 
computed cases may be just below what is needed to ascertain 
the deeper behavior of Ffc. 
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Fig. 20.—Distributions of FJ(FbIC^ for all cases. Aside from the spread near the bottom which is caused by the different depths of the lower boundary for 
different cases, all the distributions are close to each other. Cases with different y fall into two slightly different groups. 

Fig. 21.—Distributions of WJiFJC^ for all cases. They roughly overlap with each other and stay quite uniform in the mid-region of the convection zone. 

1038 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

. 
. .

33
 6

.1
02

2C
 

TURBULENT COMPRESSIBLE CONVECTION 1039 

V. SUMMARY AND DISCUSSION 

In this paper, we compile a collection of approximate formu- 
lae that relate the variations and correlations of the deviations 
induced by the convective turbulence. Some relations are more 
reliable than others, and some can only be considered as sug- 
gestive. All listed relations do not contain g explicitly. In a few 
occasions (e.g., C[p', T']) some dependence in y is indicated, 
but the variations are usually relatively small so that we chose 
to ignore the dependence. The two ratios of specific heats 
adopted by our numerical cases bracket the range of effective y 
that can occur in stellar convection zones quite well. 

The links among the relations are as follows : 
1. When the ratios between the magnitudes of fluctuations 

of the thermodynamical variables are known, the correlation 
coefficients between pairs of these variables can be determined. 

2. The mean vertical velocity, assumed to be zero from time 
to time, turns out to be an important quantity that describes 
the mean advection of thermal variables. In particular, it con- 
nects the rate of buoyancy work to the convective flux. 

3. Almost all the single-point, second-order correlation 
functions (rms fluctuations or covariance) of the primitive 
dynamical variables can be expressed in terms of < Fz> (or F"). 

4. In regions where the superadiabatic gradient is not negli- 
gible, say greater than 0.005, AV can be roughly computed 
from the total flux; the presence of the flux of kinetic energy 
does not introduce serious error to the estimate. 

5. The downward flux of kinetic energy cannot be treated as 
a diffusive flux of kinetic energy. To treat it as a diffusive flux of 
mean square velocity is also questionable. It is possible that 
this flux can be approximated as ( — i)<p> F"3 in deep regions. 

6. The production and dissipation of the kinetic energy do 
not parallel each other. Production is scaled by the total flux, 
and the local production rate is only a function of local mean 
variables. The dissipation is clearly nonlocal; significant 
amount of kinetic energy is carried away from the production 
region and is dissipated at the upper and lower boundaries 
where the flux of kinetic energy is forced to zero. 

Probably the local scaling relationships between turbulence 
and structure hold because they are associated with the pro- 
duction process. Standard arguments of MLT go along this 
line by considering the acceleration of bubbles, but after the 
kinetic energy of the bubbles is produced, MLT makes it disap- 
pear mysteriously after one mixing length. A more complete 
picture, given by the numerical computations, is that after pro- 
duction, significant amount of kinetic energy is transferred 
downward, to be dissipated in lower regions. 

The behavior of the flux of kinetic energy in deeper convec- 
tion zones has not been determined. Further calculations with 
deeper stratification are needed. The behavior of the dissi- 
pation rate of kinetic energy in deeper regions is also unknown. 
It is necessary to calculate models with a stable layer below the 
convection zone to determine the natural development of Fk, 
Wv, Wp, and their implication on overshooting. 

The relationship between the superadiabatic gradient and 
the total flux has not been established^ for transition regions 
where the superadiabatic gradient is on the order of 0.1 to 1 
and the effects of radiative transfer become significant. Models 
with a radiative layer on top are needed to study such a regime. 
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