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ABSTRACT 
We describe results of numerical radiation-hydrodynamics simulations of the nonlinear evolution of insta- 

bilities in radiatively driven stellar winds. For computational tractability, the wind is idealized as a spherically 
symmetric, isothermal flow driven by pure absorption of stellar radiation in a fixed ensemble of spectral lines. 
The simulations indicate that, because of the sensitive velocity dependence of the line force, there is a strong 
tendency for the unstable flow to form rather sharp rarefactions in which the highest speed material has very 
low density. Accordingly, line-shadowing effects that played a prominent role in previous models are of greatly 
reduced importance here. The growth of wave perturbations thus remains nearly exponential well beyond the 
linear regime, until the waves are kinematically steepened into strong shocks. Unlike in previous models, 
where forward shocks were assumed to abruptly accelerate ambient wind material as it is rammed by a dense, 
strongly driven flow, the strongest shocks here are reverse shocks that arise to decelerate high-speed, rarefied 
flow as it impacts slower material that has been compressed into dense shells. The subsequent wind evolution 
shows a slow decay of the shocks and the gradual thermal decompression and interaction of the dense shells. 
Since the wind properties have been simplified and rescaled, the results are not quantitatively applicable to 
actual stars. Nonetheless, their qualitative features agree well with the requirements of displaced narrow 
absorption components in UV lines, and possibly also of observations of soft X-rays, enhanced infrared flux, 
and nonthermal radio emission. In addition, gross wind properties like the terminal flow speed and the time- 
averaged mass-loss rate appear in good agreement with values inferred from previous steady wind models, 
despite the presence of extensive wind structure. 
Subject headings: hydrodynamics — instabilities — radiative transfer — stars: winds 

I. INTRODUCTION 
The brightest, hottest, most massive stars, the ones referred 

to as types O, B, and WR, have been revealed by rocket and 
satellite ultraviolet spectroscopy (Morton 1967; Lamers and 
Morton 1976) to be the sources of very strong stellar winds. 
These winds are thought to be driven by the line absorption of 
the star’s continuum radiative momentum flux (Lucy and 
Solomon 1970; Castor, Abbott, and Klein 1975, hereafter 
CAK); indeed, theoretical models (Abbott 1980, 1982) based 
on this line-driving mechanism yield predictions of such mean 
wind properties as the total mass-loss rate and terminal flow 
speed that are in good agreement with values inferred from 
observation (Abbott 1978, 1982; Cassinelli 1979). However, 
such smooth, steady wind models seem inherently incapable of 
explaining several other observational characteristics of these 
stars that indicate a high degree of wind structure and variabil- 
ity. Furthermore, linear stability analyses (MacGregor, Hart- 
mann, and Raymond 1979; Martens 1979; Carlberg 1980; 
Owocki, and Rybicki 1984, 1985, 1986) have now demon- 
strated quite convincingly that such a line-driven wind should 
be extremely unstable, and if is widely supposed that the non- 
linear growth of this instability is responsible for much of the 
wind structure. Nonetheless, until recently no method for 
dynamically calculating the nonlinear evolution of initially 
small amplitude perturbations has been available, and this has 

severely limited our ability to build a clear physical picture of 
the wind structure. This series of papers is devoted to develop- 
ment and application of numerical radiation-hydrodynamics 
methods for systematically studying the nonlinear evolution of 
this instability. This paper reports on initial results from apply- 
ing the code described in Castor, Owocki, and Rybicki (1988, 
hereafter Paper II) to a simulation of the nonlinear evolution 
of instabilities in a simplified model in which the wind is driven 
by pure absorption lines. 

The empirical evidence for extensive structure in hot star 
winds includes observations made in the radio, infrared, X-ray, 
and ultraviolet. Radio observations of these stars made with 
the VLA often show a distinctly nonthermal emission (Abbott, 
Bieging, and Church well 1981,1984) thought to originate from 
synchrotron radiation by particles accelerated in shocks 
(White 1985). The observed infrared emission is often larger 
than expected from a smooth wind with the mass loss rate 
inferred from radio or UV (Abbott, Telesco, and Wolff 1984), 
perhaps reflecting a dumpiness that increases the mean square 
density, and hence the emission measure, of the regions of 
infrared emission. (The same effect could also explain a similar 
observed enhancement in the emission in the blue wing of the 
Balmer-alpha line.) In soft X-rays, these stars were found with 
the Einstein Observatory to be surprisingly strong sources 
(Harnden et al. 1979; Seward et al 1979), and the detailed 
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character of this X-ray emission supports the idea that it orig- 
inates from shock-heated gas in the wind. The X-ray lumin- 
osity is observed to scale with the bolometric luminosity as 
Lx « 10-7Lbol, suggesting that the X-ray producing mecha- 
nism, like the wind, is directly coupled to the star’s radiative 
energy output. Furthermore, the observed proportion of soft 
X-rays (Cassinelli and Swank 1983) is greater than would result 
if the X-ray emission were confined to a narrow corona at the 
base of the wind (Cassinelli and Olson 1979), suggesting that 
they are instead emitted in an extended region, such as from 
shocks spread throughout the wind. (However, subsequent cal- 
culations by Waldron 1984 that include the effect of X-ray 
photoionization indicate that the base corona model may still 
be viable.) 

The ultraviolet spectral line observations of hot stars like- 
wise have several characteristics that seem to point to the exis- 
tence of extensive structure within the wind itself. First, some of 
the strongest observed lines are from ions with ionization 
stages (e.g., C iv, N v, O vi) much higher than characteristic of 
the stellar temperature (Rogerson and Lamers 1975); these are 
believed to be produced via the Auger ionization process by 
the above-mentioned soft X-rays (Cassinelli 1979). (A dis- 
senting view is given by Pauldrach 1987, who claims these high 
ionization stages can indeed be achieved in radiative equi- 
librium, steady wind models.) Second, the blueshifted absorp- 
tion cores of strong resonance lines are nearly “black,” with 
almost none of the forward-scattered residual emission predict- 
ed by steady wind models; this is thought to result from the net 
backscattering that arises when line photons resonantly scatter 
in a highly nonmonotonic velocity field, such as in a wind with 
numerous strong shocks (Lucy 1982a). Finally, superposed 
upon the broad P-Cygni profiles of strong but unsaturated 
lines there often appear variable “ narrow absorption 
components” (Lamers, Gathier, and Snow 1982; Henrichs 
1984; Prinja and Howarth 1986, 1988); these are likely to be a 
direct manifestation of dense clumps propagating through the 
wind. The persistence of similar narrow components in obser- 
vations separated by several months has been seen as problem- 
atical, since this is much longer than a characteristic wind flow 
time, which is less than a day. However, more recent high-time- 
resolution IUE observations show that narrow components do 
vary over a few hours and recur about every day (Prinja, 
Howarth, and Henrichs 1987; Prinja and Howarth 1988). 
Often they first appear as broad absorption enhancements at 
relatively low velocities («0.57^) that then gradually narrow 
and shift to higher velocities (äO.SF^), as might be expected 
from dense clumps that are accelerated outward with the wind. 

There are several alternative semiempirical models for this 
inferred wind structure, including, for example, episodic mass 
ejection from the stellar surface (Henrichs 1984; Henrichs et al 
1983), or corotating interaction regions between fast and slow 
wind streams (Mullan 1984a, b, 1986). A more widely held view 
is that much or all of this observationally inferred structure 
may be the consequence of the known strong instability of the 
line-driven flow. Small scale increases in the wind flow speed 
shift the local line absorption, by the Doppler effect, out of the 
shadow of intervening material, leading to an increased radi- 
ation force that further increases the flow speed. Detailed sta- 
bility analyses (Owocki and Rybicki 1984, 1985) show that in 
the supersonic portion of the wind, perturbations with a scale 
length small compared with a Sobolev length (over which the 
background flow speed increases by an ion thermal speed) 
have an initial linear growth rate 50-100 times a typical wind 

expansion rate. This implies that even very small amplitude 
fluctuations at the wind base will quickly grow to nonlinear 
amplitude as they propagate outward into the wind, perhaps 
leading to shocks and dense shells that give rise to the observa- 
tional signatures. 

Until now no calculation of the nonlinear evolution of per- 
turbations has been available, and so previous models have 
simply assumed, or guessed, that the instability will lead to a 
specific form of wind structure that includes shocks. For 
example, in Lucy’s (1982h) periodic shock model, this assumed 
flow structure consists of a periodic train of shocks whose 
strength and separation are controlled by the competition 
between the line-driven flow instability and the effect of shad- 
owing by shocks closer to the star; given this scenario, one can 
work out approximate solutions to the flow equations and 
even derive predictions for observational signatures such as the 
luminosity and spectrum of X-ray emission. Another example 
is the Krolik and Raymond (1985) episodic shell model, in 
which the flow structure is assumed to consist of a single, 
isolated shell bounded by a shock; this model treats in detail 
the ionization, recombination, and cooling behind the shock, 
but its account of the flow dynamics is more approximate than 
in Lucy’s model. One goal of a numerical simulation of this 
instability would be to determine what the likely character of 
the resulting nonlinear wind structure is, and whether it resem- 
bles either of these two pictures. 

The instability of a line-driven flow has been recognized for 
a long time (Milne 1926; Lucy and Solomon 1970), and, given 
the observational evidence cited above for extensive structure 
in line-driven winds, one may wonder why no such calculation 
of its nonlinear evolution has been done before now. The 
answer lies in the extreme difficulty of the problem. Since the 
instability occurs at scales near and below the Sobolev length, 
one cannot use the usual Sobolev approximation to calculate 
the line force. Instead one must, at least in principle, compute 
the force from detailed radiative transfer calculations for the 
several hundred strong lines important in driving the wind. 
This must be done repeatedly in time steps a fraction of the 
instability growth time over a much longer time scale of many 
wind expansion times. It also must be done over a spatial scale 
of several stellar radii at a resolution smaller than a Sobolev 
length, which is typically only a few percent of a stellar radius. 
Finally, the calculation must accurately contend with possible 
nonmonotonic velocity variations more than 100 times the 
thermal width of the driving lines ! 

Clearly, if we are to make progress despite these difficulties, 
it is essential to develop approximations to make the calcu- 
lation more tractable. For this initial study, we have thus 
adopted what we consider to be the simplest possible model 
that still retains the basic physics of the instability. This model 
assumes a one-dimensional, spherically symmetric, isothermal 
stellar wind that is driven radially outward through absorption 
of a point source of continuum radiation by a fixed ensemble of 
isolated, pure absorption lines. We thereby leave to future 
papers in this series consideration of such potentially impor- 
tant complications as a finite stellar disk, detailed energy and 
ionization balance, scattering line radiative transfer, and multi- 
dimensional flow. We do, however, derive the line force from 
detailed computation of the height and frequency dependence 
of the line absorption, rather than from the usual Sobolev 
approximation (Sobolev 1960; Lucy 1971; Castor 1974). This 
enables us to study how unstable perturbations on a scale near 
or below the Sobolev length grow beyond the linear regime. 
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The results obtained so far seem to confirm that recurring 
shocks do form, but the specifics of both the shock formation 
and the shock structure are quite different from previous 
expectations. 

The remainder of this paper is organized as follows. First 
(§ II) we describe the radiation-hydrodynamics code used in 
our numerical simulations. Next (§ III) we compare unper- 
turbed wind models computed with this code with previous 
analytic, steady state models based on the Sobolev approx- 
imation. (Results for time-dependent numerical models using 
the Sobolev approximation are presented in Paper II). Then 
(§ IV) we describe simulations of the nonlinear wind structure 
that arises from amplification of initially small-amplitude per- 
turbations at the wind base. Finally (§ V) we summarize our 
principal conclusions and outline directions for future work. 

II. METHOD 
In order to simulate the nonlinear evolution of this insta- 

bility, we have recently developed a time-dependent radiation 
hydrodynamics code that numerically integrates a radiatively 
driven stellar wind model forward in time. In this section we 
outline how this code works; a more detailed description can 
be found in Paper II. 

Let us first identify two principal difficulties in carrying out 
such a simulation. First, since the flow is known to be physi- 
cally unstable, we must take special care to ensure that our 
numerical method is not also numerically unstable. Indeed, 
since the instability is strongest for perturbations below a 
Sobolev length, the method must be able to suppress, or at 
least control, the physical instability on scales near that of the 
numerical grid, lest the fluctuations associated with finite dif- 
ferencing become so amplified as to invalidate the basic 
assumption of small changes between grid points. At the same 
time, the suppression must not be so strong as to eliminate the 
instability we wish to study at scales near the Sobolev length. 
The second difficulty arises from the requirements of the radi- 
ative force computation; as already alluded to in the intro- 
duction, this must be accurate, reflecting the effects of possibly 
large nonmonotonic velocity variations over spatial scales a 
tiny fraction of a stellar radius, and yet efficient, allowing 
repeated computation over time steps a fraction of a wind 
expansion time. 

In light of these difficulties, our approach has been to keep 
both the physical model and the numerical method as simple 
as possible. We thus assume a one-dimensional, spherically 
symmetric, isothermal flow that is driven radially outward 
through absorption of a point source of continuum radiation 
in a fixed ensemble of spectral lines. The hydrodynamical 
equations to be integrated describe the conservation of mass 
density p, 

dp 1 d(pvr2) 
dt r2 dt ’ 

and conservation of momentum flux density pv, 

dpv 1 d(pv2r2) dP 
dt + r2 dr “ ~~dr~P9* + Pgrad * 

(1) 

(2) 

Here t and r are the time and radial position, v is the radial 
flow speed, and g* is the effective stellar gravity (reduced by the 
effect of the radiative force on electrons). No explicit energy 
equation is currently treated, since the gas is assumed isother- 
mal. We use the perfect gas law to evaluate the pressure P, 

assuming a fixed wind temperature T. Radiation provides the 
principal driving force for the flow, and so evaluation of the 
radiative acceleration, prad, plays a central role in the computa- 
tion, as described below. 

The spatial domain of our time-dependent wind model 
extends from a lower radius at r0 = R*, the photospheric 
radius where the electron scatting optical depth is approx- 
imately unity, to an outer radius that ranges from r = 2R* to 
r = 5R*, depending on the model. Initially, the boundary con- 
ditions for the hydrodynamic variables p and pv were set as 
follows: at the lower boundary, we fixed p (and thus P), but 
allowed pv to float by requiring only that its second spatial 
derivative vanish at the boundary; at the upper boundary, we 
allowed both p and pv to vary, requiring only that the second 
derivatives of both quantities vanish. Later we experimented 
with more elaborate boundary conditions that constrain the 
Riemann invariants for the incoming characteristics. (See, e.g., 
Nakagawa and Steinolfson 1976). At the lower boundary, we 
also implemented the form of boundary condition suggested 
by Hedstrom (1979) that is meant to minimize wave reflection. 
In practice we found that the earlier, simple boundary condi- 
tions and these more elaborate ones yielded quite similar 
results. 

In calculating the radiative acceleration, öfrad, we assume 
pure attentuation in the driving lines, that the lines do not 
overlap, and that they have fixed opacities. As we will see, these 
are the assumptions that allow us to express the total force 
produced by all the lines as an integral, without the necessity 
for solving any equations of transfer; this results in an enor- 
mous savings in computer time. The force from a single such 
driving line with an opacity k and at a frequency v can be 
written as 

kvFv vtx 
dx /(jc)</) -r(jc,r) (3) 

where c is the speed of light, vth the ion thermal speed, x the 
thermal-unit frequency displacement from line center, and 0(x) 
the line profile function (assumed Doppler). The line optical 
depth t(x, r) is measured outward from the base radius r0 (see 
eq. [9] below), where the incident stellar flux is assumed to 
have a frequency distribution near the line that can be separat- 
ed into a slowly varying continuum component Fv and an 
incident line profile /(x); we take this incident profile to be the 
transmission of a Schuster-Schwarzschild—type reversing layer 
(cf. Jefferies 1968, p. 30), 

l(x) = e-
K<t>(x)/<Tc . (4) 

The reversing layer thickness is taken to be that corresponding 
to continuum optical depth unity, and we have assumed that 
the continuum opacity oc is due only to electron scattering. 

In a hot star wind, there are a very large number of such 
lines, but since they are assumed not to overlap, the total force 
from all of them can be written quite simply as an integral over 
a line number distribution iV(v, k) in frequency and opacity, 

J*ao r 00 
dK dv N(y, K)gv K(r). (5) 

o Jo 

In this paper we shall assume (cf. CAK, Abbott 1982) that the 
opacity number distribution defined by 

N(k) = N(v, k) , (6) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
88

A
pJ

. 
. .

33
5.

 .
91

40
 

No. 2, 1988 RADIATIVELY DRIVEN STELLAR WINDS. I. 917 

is given by the exponentially truncated power law, 

N(k) = — ( — ) e-
KlK™', (7) 

K0 \K0J 

where a is the CAK power index (0 < a < 1), fc0 is a constant 
related to the CAK force constant k (and set by the line list), 
and the cutoff at a maximum opacity 7cmax is introduced here to 
enable us to limit the effect of very strong driving lines. (See 
§ Ilia.) Absorption by this line ensemble of a point source of 
radiation with total flux F then yields the combined radiative 
acceleration, 

9rad{f) 
N0Fm 

c 

0[x - v(r)/vth] 
[r](x, r) + l/fcmax + </>M/<7c]

a ’ (8) 

where F is the complete gamma function, and N0 = 
(K0vtJc)1~Ci is a normalization constant that, since k0 ~ l/i;th, 
is independent of the thermal speed. The choices that led to 
equations (4) and (7) were dictated by the need to perform the 
integral over k analytically. As a result, the usual exponential 
dependence on optical depth t(x, r) is replaced by a power-law 
dependence on the profile-weighted mass column depth rj(x, r), 
defined by 

t](x, r) = T^’ = Í dr' p(r')Äx - —1 . (9) 
^ Jro L ^th J 

In our numerical computations we have found it advantageous 
to recast equation (8) as 

PGrdid 2 
I d(r2PrJ 

dr 
(10) 

where 

P rad = -¿T j dr'r'2p(r' P(r')g,jr') 

Nofm 
(1 - <x)c 

(ii) 

is the radial radiation pressure, apart from an additive term 
constant/r2. 

Since a flow driven by such a line force is highly unstable, 
with the strongest growth for perturbations with a length scale 
smaller than a Sobolev length, / = vtJ(dv/dr) (Owocki and 
Rybicki 1984), there is a strong tendency to form small scale 
structure. In numerically simulating flows with such a ten- 
dency, an appealing idea is to use adaptive mesh methods, 
which refine the numerical grid as needed to resolve the evolv- 
ing structure (Winkler et al 1985). There are several reasons, 
however, why such methods are not best suited for this 
problem. First, their implicit time-stepping, which is required 
to keep the size of the time step from getting very small as the 
grid becomes finer, would be both costly and difficult to imple- 
ment for the relatively complicated radiative driving force con- 
sidered here. Second, this extra cost could not be compensated 
by taking large time steps, since the time step would still be 
limited to an instability growth time, which decreases with 

decreasing scale of the structure. Finally, in a flow such as this 
one in which the instability persists to the very smallest scales, 
these methods are subject to an “ultraviolet catastrophe”: 
after each refinement of the mesh the instability produces 
structure of a yet finer size, causing the refinement to be repeat- 
ed indefinitely unless it is artificially limited at some minimum 
scale that one is willing to resolve. 

Since limiting the minimum resolution scale is unavoidable 
anyway, we have chosen here the much simpler approach of 
keeping the spatial mesh fixed. In order to study instabilities 
that have their strongest growth at and below a Sobolev length 
/, we set the mesh size to be about //10. The numerical integra- 
tion method we have chosen uses staggered-mesh Eulerian 
hydrodynamics with an explicit time stepping that is operator 
split into separate Lagrangian and advection half-steps. (See 
Paper II.) In the Lagrangian half-step, the momentum flux 
density is updated according to the momentum sources, 
including that associated with the radiative force, and also 
including quadratic pseudoviscosity to smooth shock fronts 
(Richtmyer and Morton 1979). In the advection step, the flow 
variables are remapped onto a fixed staggered mesh using 
monotonized piecewise-linear interpolation (van Leer 1977). 
After some experimentation, we have found that when this 
remapping is done using velocities derived from the old, i.e., 
nonupdated, momentum flux density, the instability on the 
grid scale is suppressed, while that over several spatial zones 
near a Sobolev length is retained, as required. Arbitrary 
choices such as this are a necessary part of operator splitting 
schemes; further discussion of our choice of splitting will be 
found in Paper II. An alternative we tried and rejected was to 
locally enhance the pseudoviscosity near steep rarefactions, 
which we found led to unphysical flow structures that were 
dominated by the artificial viscous force. 

The term “staggered mesh” means that scalar quantities, 
such as the density or pressure, are referred to zone centers, 
while vector quantities, like momentum flux density or the 
radiative force, refer to zone interfaces; this allows the equa- 
tions of motion (1) and (2) to be approximated in terms of finite 
differences that are nominally second order in both time and 
space. Thus, for example, the (vector) radiative force at a zone 
interface is computed by equation (10) using differences 
between the (scalar) radiation pressure from the neighboring 
zone centers, as computed from equation (11). This has proved 
to be more stable than a method based directly on equation (8), 
which is a great practical advantage. 

Although greatly simplified compared to the real physical 
situation, the driving force computed from equations (9)-(ll) 
retains the sensitive velocity dependence that gives rise to the 
strong instability. But because it is inherently nonlocal, it is 
much more complicated and more costly to evaluate than the 
usual body forces that are included in hydrodynamical simula- 
tions. At each time step, the radiation pressure is calculated 
from trapezoidal rule evaluation of the double integral given 
by equations (9) and (11) over the fixed mesh of frequency and 
radius points. The nesting of the sums can quite easily be 
arranged to allow full vectorization, but this evaluation none- 
theless dominates the computational cost. This cost increases 
with decreasing wind temperature as T-3/2, owing to the need 
for a finer frequency mesh, smaller spatial zones, and a smaller 
time step as the temperature is reduced; we thus normally 
assume a wind temperature T that is artificially enhanced by a 
factor of 10 over the nominal radiative equilibrium value. (See 
§ Hla.) 
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The frequency mesh is chosen to resolve the lines with three 
frequency points per thermal width; the code dynamically 
adjusts the total number of frequencies to cover the velocity 
range of the wind, and typically uses nx = 150-250 points. The 
spatial mesh is nominally set to 250 zones/R*, which is suffi- 
cient to resolve the Sobolev length at a resolution of Ar « 1/10; 
all results presented here remain qualitatively unchanged by 
either halving or doubling this nominal grid size. The time step 
is chosen to be a fixed fraction, usually 0.4, of the smallest 
Courant time Ar/v over the grid, yielding a typical step size of 
At « 10 s. As a specific example of computational cost, the 
nominal case of nr = 500 and nx = 250 requires about 0.5 
CPU seconds per time step on a CRAY X-MP when the sums 
are properly vectorized. Hence about 1000 steps, or 10 Cray 
minutes, are required to evolve this model by a single expan- 
sion time, Texp = r/v x 2 x 104 s. For models with finer spatial 
resolution, the cost increases as l/(Ar At) ~ Ar~2. 

TABLE 1 
Model Parameters 

Quantity Symbol Value 
Mass    
Luminosity   
Radius    
Effective Gravity   
Effective Temperature 
Wind Temperature .... 
Thermal Speed   
Sound Speed  
Opacity Constant   
CAK Power Index .... 
CAK Mass-Loss Rate. 
CAK Terminal Speed . 
Driving Amplitude .... 
Driving Period   

M, 
K 
K 
9. 

Tt T 
Kh 
a 
k0 vjc 
a 
^CAK 
VJCAK) 
A 
P 

50 Mq 
6.8 x 105 Lq 
20 R Q 
2100 cm s" 2 

37.000 K 
370.000 K 
40 km s ~1 

80 km s “1 

2270 cm2 g~1 

0.7 
5.6 x 10-6 M0 yr“ 
1240 km s-1 

0.01 
4000s 

III. RESULTS FOR AN UNPERTURBED WIND 

a) Evolutionfrom an Initial Condition Based on the Sobolev 
Approximation 

Most previous models of radiatively driven stellar winds 
have used the Sobolev approximation to calculate the line 
force. In the present context, this can be viewed as assuming 
that the variation of the integrand in equation (9) is dominated 
by the Doppler shift of the line profile that occurs as the veloc- 
ity v changes by a thermal speed vth. Thus, over a Sobolev 
length scale l = vxJ(dv/dr\ one assumes that the density is 
approximately constant at the value, p(r') » p(r), and so can be 
moved outside the integral. Assuming further that the velocity 
increases monotonically with radius, one then can convert the 
variable of integration to comoving frame frequency x' = x 
- v!vxy This makes it possible to evaluate the integrals in both 
equations (8) and (9) analytically, yielding the Sobolev line 
force, 

0SobM = 
N0FT{ol) 
(1 - a)c 

a + w)1^ 
T 1 —a max 

where 

(12) 

_ P*max^th 
dv/dr 

(13) 

In the case of a pure power-law line ensemble (/cmax -► oo), the 
term in square brackets becomes unity. Equation (12) then 
takes exactly the simple analytic form originally derived by 
CAK, in which the force varies with the local velocity gradient 
as 9CAK ~ (dv/dr)01. Such Sobolev theory, line-force expressions 
have proven extremely useful in constructing steady state wind 
models. We have used this CAK force expression in our 
radiation-hydrodynamics code to show that, for a variety of 
initial conditions, time-dependent numerical calculations 
evolve asymptotically toward a steady state that is nearly iden- 
tical to the corresponding analytic CAK wind model (Paper 
II). This confirms the expectations of earlier linear analyses 
(Abbott 1980; Owocki and Rybicki 1984) that line-driven wind 
models based on the Sobolev approximation are hydrody- 
namically stable. 

We now wish to compare these CAK models with results 
from numerical calculations using the more general force 
expression that does not use the Sobolev approximation (cf. 
§ II). For this, and all the numerical calculations in this paper, 

we choose a standard set of stellar parameters, listed in Table 
1, that correspond to a typical O star. Recall that, for economy 
of calculation, we set the wind temperature to be 10 times the 
nominal value given by radiative equilibrium. Even at this 
higher temperature the force due to radiation in most of the 
wind still dominates over that due to gas pressure, and so these 
models should be similar to what would be obtained from a 
more expensive calculation with a lower temperature. In par- 
ticular, since the temperature has no effect on the CAK line 
force, the CAK model with this enhanced temperature is vir- 
tually identical to the one obtained with the usual assumption 
that wind temperature is near its radiative equilibrium value. 

Figure 1 shows a comparison of the CAK line force gCAK 
(dotted curve) with the more general absorption force 0rad 
(dashed curve) calculated from equations (9}-(ll)> using the 
same CAK wind model for the spatial variation of velocity 
(solid curve) and density. The difference (dash-dot curve) is small 
in the supersonic region, where Sobolev theory is valid, but 
quite substantial in the subsonic flow near the wind base, 
where the Sobolev approximation breaks down. This means 
that when the CAK analytic steady wind solution is used as an 
initial condition in a numerical time-dependent wind calcu- 
lation based on the more accurate line force, the flow is not 
steady, but evolves. The initial acceleration dv/dt |f = gTad 

- 9cak is largest in the subsonic region near the base, but then 
the disturbance created there propagates outward through the 
wind. This is illustrated in Figure 2, which shows the wind 
velocity versus radius at various times after the initial condi- 
tion at i = 0. Note that the initial disturbance becomes greatly 
amplified, owing to the strong line-driven instability, and forms 
a pulse with a very steep rarefaction, or velocity rise. 

Although very steep, these rarefactions are not discontin- 
uities, but rather there is a small length scale of their leading 
edges that has a minimum value set by the maximum possible 
radiative force, which is that attained when all the lines are 
optically thin. However, in a CAK-type power-law line ensem- 
ble without an exponential cutoff this maximum possible force 
is infinite, and so the length scale can, in principle, approach 
zero. Indeed, this occurred in our calculations. This poses a 
serious problem, since it means that any finite-difference 
method, including adaptive mesh methods, must eventually fail 
to resolve the structure (cf. § II). Furthermore, unlike shock 
discontinuities, these rarefactions have an intrinsic structure, 
and so they cannot simply be spread with artificial viscosity, as 
is often done to resolve shocks. This would alter the nature of 
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Fig. 1.—Velocity and line force per unit mass in a CAK line-driven wind model based on the Sobolev approximation. The force obtained from the CAK/Sobolev 
formula is compared with that computed from eqs. (9)-{ll) without resort to the Sobolev approximation. The difference shows the initial evolution of a time- 
dependent, non-Sobolev wind model when the CAK solution is used as an initial condition. The assumed stellar parameters are those given in Table 1. 

Fig. 2.—Velocity vs. radius at various times t after the CAK initial condition at i = 0. The initial adjustment of the subsonic region is quickly amplified into a 
steep rarefaction wave by the line force. 
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the radiative absorption within the rarefaction, leading, as we 
have found by numerical experimentation, to an overall flow 
structure that is quite unphysical. 

In the present work, we have chosen simply to limit the 
steepness of the rarefactions by limiting the strength of the 
strongest driving line. Fortunately, this can be done without 
greatly altering the gross properties of the flow. In particular, 
steady state, Sobolev theory wind models analogous to CAK 
but with an exponential cutoff in the line distribution (cf. eq. 
[7]) have nearly the same CAK velocity law, and their mass- 
loss rates are only slightly reduced, roughly in proportion to 
the reduction in the number of optically thick lines. After some 
experimentation, we have chosen here to use a cutoff of fcmax = 
10'3k:o, which apparently makes the steepness of rarefactions 
manageable while only reducing the computed mass-loss rates 
by about a third. 

b) Asymptotic State of an Unperturbed, 
Absorption-Line-Driven Flow 

Rather than concentrate any further on the detailed initial 
evolution of the wind, let us now consider the nature of the 
asymptotic state that the flow approaches after these initial 
disturbances propagate away. 

i) Self-Excited Waves 
Figure 3 shows the initial CAK velocity law as well as the 

velocity attained many flow times (t > 105 s) after the CAK 
initial condition. The oscillation of the various curves, which 
give the velocity at various distinct times separated by 103 s, 
show that, while the wind has evolved to a much quieter state, 
it still is not steady. Instead, there remains a train of nearly 
periodic self-excited waves, with the period « 5000 s roughly 
twice that associated with radiative amplification, vth/gTild % 

Vol. 335 

2500 s. These waves persist even in the absence of continuing 
explicit perturbations and have so far resisted all our attempts 
to eliminate them. They seem to be a ubiquitous feature of the 
asymptotic wind state, independent of the precise initial condi- 
tion, and showing no sign of decreasing in amplitude for as 
long as we have run the calculation, which in some cases has 
been more than a few times 106 s, or more than 100 times a 
characteristic wind flow time. 

The persistence of these self-excited waves is a puzzle 
because the instability in the supersonic portion of the wind 
has been shown to be of an “advective” type (Bers 1983; 
Owocki and Rybicki 1986), implying that any initial dis- 
turbance should eventually be carried away by the flow. It is 
still possible that the subsonic region contains “absolute” 
instabilities, for which the effect of an initial disturbance is not 
carried away. In this case, however, such disturbances should 
grow to nonlinear amplitude in the subsonic region, whereas 
the waves seen here have a very small amplitude (ôp/p » 10“5) 
interior to the sonic point. 

Perhaps it is simply unreasonable to expect that such a 
numerical calculation could ever become entirely quiescent in 
the presence of such a strong instability, even though that 
instability is of the advective type. Numerical experiments we 
have done, however, indicate that the waves are largely unaf- 
fected by changes in either the spatial grid or the time step, 
contrary to what one expects for some of the most obvious 
sources of numerical noise. There is, however, one important 
exception : in the present case, with the right boundary at r = 
2R5|£, the waves repeat quite regularly with a period of about 
5000 s; but when this boundary is extended further outward, 
the regularity of this repetition appears to be markedly 
reduced. Since it is difficult to construct a completely transpar- 
ent boundary condition, it is possible that the effect of the 

OWOCKI, CASTOR, AND RYBICKI 

RADIUS (R*) 
Fig. 3—Wind velocity a long time (> 105 s) after the CAK initial condition, when initial pulses like those shown in Fig. 2 have propagated away. Although there 

are no explicit perturbations, the wind state attained is not steady because of the persistence of small fluctuations at the base that are amplified into self-excited waves 
in the wind. The model is the same as in Fig. 2, except that the maximum strength of the driving lines has been limited in order to limit the steepness of rarefactions. 
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outer boundary is somehow propagated back to the wind base, 
despite the fact that the flow is supersonic. Perhaps this sets up 
a resonance that allows a small fraction of the wave energy 
generated from the instability of the supersonic wind to be 
recycled back to the subsonic wind base, where it causes the 
small fluctuations that are the source for more unstable waves. 
These ideas require further investigation. 

ii) Comparison with Previous Steady State Models 
In the region where the self-excited waves are still linear the 

flow is very nearly a steady state. The mass-loss rate differs 
from the CAK value (corrected for the line cutoff) by only a few 
percent (M « 0.95MCAK); but Figure 3 shows that the velocity 
law deviates much more substantially from the CAK solution. 
In the supersonic portion of the wind, where the line force is 
nearly equal to the CAK force, the velocity parallels the CAK 
law; but in the subsonic and transonic regions, where the 
Sobolev approximation is poor, the two velocity laws diverge. 

Such marked differences from the Sobolev result are not seen 
in previous, nonSobolev wind models based on co-moving 
frame calculations of the scattering line transfer (Weber 1981; 
Castor and Weber 1985; Pauldrach, Puls, and Kudritzki 1986). 
Their appearance here may be a consequence of our approx- 
imations, in particular (1) the higher assumed values for the 
thermal speed and for the ratio of the thermal speed to sound 
speed, which increases the deviation of the radiation force from 
the Sobolev value, (2) the use of a pure absorption model, 
which neglects the force due to scattered radiation, and (3) the 
use here of the point-star approximation, for which the velocity 
solution is known to be sensitive to small changes in condi- 
tions. To clarify the role of these approximations and deter- 
mine the physical significance of the steeper velocity solution 
computed here, we have recently begun a study of the general 
steady state solution topology for the non-Sobolev, pure 
absorption model. Results of this study are still under analysis 
and so are deferred to a future paper. 

IV. EFFECT OF PERTURBATIONS AT THE WIND BASE 
The self-excited waves described above are troublesome in 

that we do not completely understand their origin and cannot 
control their characteristics. However, since their base ampli- 
tude of «10“5 is probably much smaller than that of actual 
wave fluctuations in the atmospheres of these stars, we can 
simply overwhelm them by explicitly introducing an input 
wave flux whose characteristics are chosen to simulate various 
types of atmospheric fluctuations. In this paper, we confine 
ourselves to one specific form for such wave input, namely 
monochromatic sound waves incident at the lower boundary 
of the wind with a base amplitude of 1% and a period of 4000 
s, the latter being chosen to correspond roughly to the quasi 
periodicity of the self-excited waves. A systematic study of the 
response to other types of wave input will be deferred to future 
work, although the results for a few other periods and ampli- 
tudes will be briefly discussed at the end of this section (§ IVh). 

a) Resulting Spatial Structure at a Fixed Time 
Figures 4 and 5 show snapshots of the wind structure 

resulting from such a 1% base density perturbation with a 
period of 4000 s. They plot the density, the velocity, and the 
radiation force, all as a function of radius from the wind base at 
a fixed time (t = 105 s) many wind flow times after the initial 
introduction of the waves. This is long enough so that all initial 
transient responses have died away, and so the resulting 

overall wind structure is very nearly periodic at the driving 
wave period. Figures 4 and 5 represent outcomes from separate 
computations that differ only in the location of the outer 
boundary radius, set to r = 2R* and r = 4R*, respectively. 
Detailed comparison shows the structure to be almost identical 
over the common spatial range r = 1-2R*. This contrasts with 
results for the self-excited waves, which were quite sensitive to 
the location of the outer boundary. In fact, it is interesting that 
the driven response shows little evidence of interference from 
the self-excited waves, indicating that the driving is sufficiently 
strong to lock the oscillations to the driving frequency. (This is 
not always the case, and one class of deterministic chaos arises 
in nonlinear oscillators that are driven at other than their char- 
acteristic frequencies; cf. Dubois 1987). 

Figures 4 and 5 clearly illustrate the large amplitude oscil- 
lations in velocity and density that result from the strong 
amplification of the 1% base perturbation by the line-driven 
flow instability. The high-velocity parts of the wave, which 
have been Doppler-shifted out the line shadow of intervening 
material, are more strongly driven by the line force, and so 
accelerate to still higher speeds. Note, however, that the 
density of this high-velocity material tends to become very low. 
This tendency for the high-speed part of the wave to become 
very rarefied is a dominant feature of these calculations that 
has many important consequences. For example, it greatly 
reduces the extinction of the stellar radiation by the high-speed 
flow and so diminishes the effect of line shadowing on overly- 
ing, lower speed material. 

b) Phase Propagation of the Wave 
Figure 6 explicitly illustrates this phase relationship between 

the velocity and density. It shows the radial evolution of the 
velocity-density phase difference, as computed by fitting the 
temporal variations of each quantity to a sinusoid at each 
radius. For now, let us focus only on the evolution in the inner 
region below r « 2R*. In the subsonic region r < Ll-R^, the 
velocity and density are in phase, but in the supersonic wind at 
r > L1R*, the phase abruptly shifts so that they are almost 
anticorrelated. In order to understand the reasons for this 
phase shift, let us now consider the way the waves introduced 
at the base propagate outward through the wind. 

The solid curve in Figure 7 shows the radial variation of the 
wave phase velocity, as computed by numerically differentiat- 
ing the velocity phase shown in Figure 6: [vp = co/Rc (k) = 
œdr/d(j)]. The dashed curves show the expected phase velocity 
for the inward and outward modes of radiatively modified 
acoustic waves, as derived by solving a local linear dispersion 
equation (Abbott 1980; Owocki and Rybicki 1984) for k versus 
co at each radius, using data from the numerical model. Note 
that the terms “ inward ” and “ outward ” here refer to the sense 
of propagation as viewed from a frame that is locally co- 
moving with the flow ; when viewed from a frame fixed with the 
star, the phase velocity of the inward mode actually becomes 
positive above a sonic radius of r « L1R* (see lower dashed 
curve in Fig. 7), where advection by the flow carries the wave 
away from the star. 

The important point illustrated by Figure 7 is that near this 
same sonic radius, the computed wave undergoes a sudden 
mode switch. As a result, the outward-propagating sound 
waves generated in the subsonic region are transformed into 
inward mode, radiative-acoustic waves in the supersonic wind. 
As shown by the linear stability analysis of Owocki and 
Rybicki (1984), such inward mode waves are much more 
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Fig. 6.—Radial variation of the velocity-density phase difference in degrees. Note the abrupt shift near the sonic radius r « 1.1R*. 

Fig. 7.—Radial variation of phase velocity (solid curve) of the computed 
wave compared with the flow velocity (dot-dash curve), and with the phase 
velocities of inward and outward radiative-acoustic waves (dashed curves), 
obtained by solving a local, linear dispersion equation at each radius using 
coefficients derived from the numerical model 

strongly amplified than the outward waves, and so they domi- 
nate the structure of the outer part of the wind. In particular, it 
is a fundamental property of such inward mode waves that the 
velocity and density fluctuations are opposite in phase, and 
this provides the basis for understanding the origin of the 
results described above. 

The basic cause of the mode switch itself can be understood 
as follows. In the subsonic part of the flow, where the radiative 
force is small, both the inward and outward modes correspond 
to the two modes of ordinary acoustic waves. However, in the 
supersonic part of the flow, the radiative force modifies the 
waves so that the inward (outward) mode propagates faster 
(slower), relative to the fluid, than ordinary acoustic waves 
(Abbott 1980). Thus as waves introduced into the subsonic 
flow propagate outward past the sonic point, they enter a 
region in which the propagation speed relative to the fluid is 
rapidly decreasing for the outward mode, but rapidly increas- 
ing for the inward mode. Because of the steep gradients in flow 
variables near the sonic point, the scale length for these 
changes is quite small. In fact, it is smaller than the wavelength 
of the assumed sound waves, implying a breakdown in the 
usual WKB approximation for the propagation of waves 
through a weakly stratified flow. The behavior of waves in such 
a non-WKB region is complicated, but the usual effect is a 
mixing of the eigenmodes found in the local analysis. Such 
non-WKB mode mixing is thus most probably the cause for 
the mode switch observed here. 

Since this mode switching is a consequence of the steepness 
of the transonic flow in such an absorption-line-driven wind 
model, the question arises as to what degree the wind structure 
computed here is sensitive to the limitations of this absorption 
model (cf. § Illb). If, for example, proper treatment of scattering 
line transfer were to reduce the steepness of the velocity, then 
such non-WKB mode switching might also be greatly reduced. 
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Nonetheless, because the inward mode wave is much more 
unstable (Owocki and Rybicki 1984), it should still ultimately 
dominate the wind structure even if the mode mixing were very 
slight. Results presented here that stem from the inward mode 
nature of the waves, or from the associated opposite phase 
relationship for density and velocity variations, thus should 
not be qualitatively changed by including such additional 
eifects, although this must still be tested by a detailed calcu- 
lation. 

c) Temporal Growth of the Wave 
It is of interest to find the amplitude at which the computed 

growth of the wave shows a significant deviation from that 
predicted by a linear analysis. In the linear regime the velocity 
amplitude should grow according to Av - exp (J dtQ\ where, 
for the present value of a (0.7), the growth rate for very short 
scale (À<t) perturbations is given by (see Owocki and Rybicki 
1984, eqs. [52]-[54]) Q » 2.1v/l = 2.1(v/vth)(dv/dr). Since in the 
supersonic wind the waves move at nearly the flow velocity, we 
then have Av - exp (J dril/v) - exp (2.7v/vJ. Thus the accu- 
mulated number of e-folds expected from linear theory is just 
proportional to the mean flow velocity. 

In Figure 8 the computed wave velocity amplitude, Av, is 
plotted against the temporally averaged flow velocity, <t;>; the 
linear variation over several decades on these semilog axes 
shows that the computed amplitude does indeed vary in this 
way. The smaller slope (i.e., growth rate) for the computed 
waves can be attributed to the fact that their wavelength is 
longer than the Sobolev length, and so they have a lower 
growth rate than the very short waves assumed in the above 
linear theory estimate. It is striking, however, that the linear 
relationship holds to the large velocity amplitude At; » 500 km 

s x. This is more than an order of magnitude greater than a 
thermal speed, and a few times the velocity amplitude »150 
km s 1 at which the velocity becomes nonmonotonic. 

Apparently, expected nonlinear effects, like line shadowing, 
have little effect in slowing the growth. This is probably 
because the high-velocity material has a very low density, and 
so allows much of the stellar radiation to pass through and 
drive the back side of the wave. Since the whole wave, and not 
just the front, is driven together, there is no strong dynamical 
effect to cause the growth to saturate. Eventually, of course, the 
simple kinematic effect of fast material running into slower 
material forces the wave to steepen, slowing the growth; but 
this does not occur until the wave steepening time exceeds the 
instability growth time, at a highly nonlinear velocity ampli- 
tude of several hundred kilometers per second. 

d) Formation of Shocks and Dense Shells 
The shocks that result from this kinematic wave steepening 

are also quite different from what had been anticipated. Again, 
this is due to the fact that the high-velocity part of these inward 
mode waves has a very low density. As these waves steepen, 
they naturally give rise to a reverse shock, across which this 
very high speed, rarefied material is compressed and deceler- 
ated to become part of a slower, very dense shell (cf. Fig. 4). Of 
course, like the inward mode waves, these reverse shocks still 
propagate away from the star, but only because they are being 
advected outward by the supersonic flow. Their structure is in 
many ways opposite that of the forward shocks envisioned in 
earlier heuristic models (Lucy 1982h; Krolik and Raymond 
1985; Abbott 1988), in which a fast, dense, radiatively driven 
flow rams into slower, less dense, ambient material that is 
thereby accelerated and compressed across the forward shock. 

<V> (km/s) 
Fig. 8-Semi-log plot of the driven wave velocity amplitude vs. the temporally averaged flow velocity. Note that the 

from linear theory, up to a highly nonlinear amplitude of Aü « 500 km s" ^ growth remains exponential, as expected 
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The key difference is that a forward shock accelerates slow 
material while a reverse shock decelerates fast material. Figure 
4 shows that a forward shock does form here on the outer edge 
of the dense shell, but it is much weaker than the reverse shock. 
The net result is thus not just one, but a pair of shocks per 
wavelet. 

The dynamics of the shock structure here is also quite differ- 
ent from that envisioned earlier. In previous forward shock 
models, the ambient preshock wind is only weakly driven 
because of line-shadowing by the underlying, dense postshock 
flow. Conversely, in the present reverse shocks, the fast, rare- 
fied preshock flow is strongly driven, but because of its very 
low density, there is little line-shadowing of the overlying post- 
shock material in the dense shell. Hence material outside the 
shell can be radiatively driven once its flow speed exceeds that 
of the relatively slow shell ; it does not have to be accelerated 
out of the shadow of the previous high-speed, low-density flow. 

It is worth noting that the nature of this shock structure 
actually helps justify, a posteriori, our neglect of a detailed 
ionization balance. Krolik and Raymond (1985) argue that the 
ionization of driving ions in the radiatively driven postshock 
flow provides a natural self-regulation mechanism that limits 
the maximum strength of the shock. In the present case, 
however, such ionization effects are likely to play a less direct 
role because it is the radiative force on preshock, not post- 
shock, gas that drives the strong shock. Of course, it is still 
possible that more subtle effects cause the ionization balance to 
be dynamically important, but this will require a detailed cal- 
culation to determine. 

e) Interaction of the Shells and Shocks 
Let us now consider how this structure evolves over a larger 

spatial scale. Figures 9a and 9b show the extrema of the density 
and velocity that occur at each radius during a wave period. 
Both the velocity and density show their maximum amplitude 
fluctuation at r ä L6R*, the location of initial formation of the 
shocks and shells. Above this radius, the fluctuation ampli- 
tudes then decline until r » 2.2R*, where the density minimum 
shows an abrupt jump of more than two orders of magnitude. 
This radius of minimum density contrast thus seems to divide 
the flow into two quite distinct regions. 

To see what is occurring at this radius, let us return attention 
to the snapshots of the flow structure shown in Figure 5. Since 
the wind structure is periodic, the spatial variation from 
wavelet to wavelet (or shell to shell) can be used to track the 
temporal evolution of a given wavelet (or shell) from period to 
period. Following in this way the sequence of three dense shells 
from r « 1.4R* to r æ 2R*, we can see that, because the shells 
are bounded by forward and reverse shocks, they tend to 
expand as they are advected outward. Figure 5 then shows 
that, at a radius of r æ 2.2R*, the outer edge of one shell over- 
runs the inner edge of the next higher shell. This fills the rare- 
fied region between the shells, resulting in the abrupt jump in 
minimum density shown in Figure 9a. It also leads to the 
formation of a series of secondary shells that, superficially, 
appear quite similar to the originals. 

Figure 6 shows that this shell interaction further results in a 
temporary decline in the velocity-density phase difference to 
about 90°. Both this and the increase in the intershell density 
mean that the highest velocity material in the post-shell inter- 
action region has quite a high density, high enough to shadow 
the flow above from the stellar radiation. As shown in Figure 5, 
the radiative force above this interaction height of r æ 2.2R* 

925 

becomes negligible, implying that the subsequent flow evolu- 
tion is purely hydrodynamic. In fact, the computed flow in this 
region somewhat resembles that observed in the distant solar 
wind, where similar shells and shocks form from the inter- 
action of fast and slow wind streams (Pizzo 1986). In both 
cases, repeated shell interactions, each of which causes an 
incremental decrease in the shock amplitude, eventually lead to 
a smoothing of the wind. 

Finally, we note that the terminal flow speed reached in the 
distant wind after smoothing of the shocks and shells is within 
a few percent of that predicted by the CAK model. Further- 
more, the time-averaged mass-loss rate is likewise very nearly 
the same as the CAK value (corrected for the reduction in the 
maximum line strength). Remarkably, all the extensive struc- 
ture that arises in the acceleration region of the wind has 
apparently little net effect on its gross properties far from the 
star. 

/) Structure with Respect to Mass 
It is instructive to view the same velocity structure as Figure 

5 in terms of a Lagrangian rather than an Eulerian spatial 
coordinate. Figure 10 thus shows this structure plotted versus 
the total mass above the wind base, in units of the mass lost by 
the star in one period. Note the sharp rarefaction, or steplike 
velocity jump, at a mass of m « 3; this illustrates the runaway 
character of the line-driven instability : one fluid parcel that is 
initially flowing slightly faster is strongly accelerated, while its 
near neighbor, initially flowing only slightly more slowly, is 
hardly accelerated at all. Note also the spikelike character of 
the rarefaction/shock pairs at m « 4 and m æ 5, which illus- 
trates how very little material is actually contained in the high- 
velocity parts of the wave with v > 1500 km s-1. Most of the 
mass seems instead to collect at a velocity of about 1200 km 
s“1, suggesting that such a wind structure might exhibit 
narrow absorption features in unsaturated spectral lines, much 
as is commonly observed. This possibility is discussed further 
in the next section. 

g) Implications for Interpreting Observational Signatures of 
Wind Structure 

It is natural to ask how the wind structure derived here 
compares with that inferred from the observations discussed in 
the Introduction. Although a detailed comparison is beyond 
the scope of the present paper, let us consider the likely conse- 
quences of the computed structure for the interpretation of the 
observations in each spectral region. 

i) Infrared and Radio 
Recall that the certain kinds of emission from these winds, 

for example in the infrared continuum or in the blue wings of 
the Balmer-alpha line, are often larger than expected from a 
smooth wind with the mass-loss rate inferred from other diag- 
nostics, like thermal radio emission or UV line strength. This 
could be explained by a dumpiness that increases the mean 
square density, and hence the emission measure, of the regions 
of infrared or Balmer-alpha emission. Figure 11 shows the 
radial variation of the clumping factor, <p2)/<p)2, for the 
driven wave model discussed above. The typical magnitude of 
«5 for this quantity corresponds roughly with that needed to 
explain the infrared enhancement (Abbott, Telesco, and Wolff 
1984). Interestingly, clumping occurs in two peaks that corre- 
spond to the regions of peak amplitude in the primary and 
secondary shells near r « 1.6R* and 3.0R*, respectively. The 
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RADIUS (R*) 
Fig. 9—Radial variation of the extrema in (a) density (plotted as the natural logarithm of the density over time-averaged density) and in (f>) velocity, taken over 

the wave period. The large jump in minimum density at r ä 2.2Æ* corresponds to the interaction of dense shells. 

smaller magnitude of the outer peak reflects a general decline 
of the density contrast (cf. Fig. 9a) that should continue as the 
flow reaches large radii. Thus thermal radio emission, which 
also scales with the mean square density but which arises from 
a much larger radius, should not be much enhanced. Finally, 
nonthermal radio emission, observed from several hot stars 
(Abbott, Bieging, and Churchwell 1984), can arise in this model 
from particles that are accelerated near the shocks at smaller 
radii, and then carried adiabatically with the expanding flow to 

the larger radius where their gyrosychroton radio emission is 
optically thin (White 1985). 

ii) X-Ray 

The strength of the shocks computed here seem to corre- 
spond qualitatively to what would be required to produce the 
luminosity and spectral properties of the observed soft X-rays. 
For example, the computed shock velocity-jumps range from 
AF = 500 km s_1 to 1000 km s-1 (see Fig. 4), implying post- 
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Fig. 10.—Velocity in same wind model as Figs. (4)-(9), but vs. mass above stellar wind base, in units of wind mass lost in a wave period. Note the steepness of the 

rarefaction at a mass of m « 3 and the spike character of the rarefaction/shock pairs at m « 4 and m « 5. 

Fig. 11.—Radial variation of the density “ clumping factor,” defined as the ratio of the mean square density over the square of the mean density. The two maxima 
correspond to the regions of primary and secondary shell formation discussed in the text. 
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shock temperatures in the range 106-107 K, much as inferred 
from the observed X-ray spectra. The energy dissipated in such 
a shock (which in the present spherically symmetric models is 
assumed to extend all around the star) is roughly È « 
2nr2p(ÁV)3. We take, from Figure4,p « 10“16 gem“3 for the 
mass density at r « 1.6R*, immediately preceding the shock 
velocity jump of AV » 700 km s“1, with the result È&2 
x 1033 ergs s 1. Assuming that there are a few such shocks 

present at any one time, and that a substantial fraction of the 
energy from each is emitted as X-rays, this would be more than 
adequate to provide the observed X-ray luminosity, which, for 
a star with the assumed bolometric luminosity of Lbol æ 6 
x 105 L0, would be roughly Lx & 10“7Lbol ä 2 x 1032° ergs 

s 1. However, both this observational quantity and the above 
theoretical estimate are quite uncertain because of the large 
correction for X-ray absorption within the wind. Thus more 
detailed calculation of the both production and transport of 
the X-rays will be needed to determine how well the properties 
of this computed wind structure agree in detail with X-ray 
observations. 

iii) Ultraviolet 
As mentioned above (cf. § IV/), the general properties of the 

distribution of velocity with mass (Fig. 10) suggest that the UV 
lines formed in such a flow might exhibit narrow absorption 
features. Consider then the absorption profile that would occur 
for a moderately strong line that is optically thick, but unsatu- 
rated in the wind. Figure 12 shows the residual flux versus 
wavelength (measured from line center in velocity units) at four 
phases of the wave period in the standard, perturbed wind 
model discussed above. At low velocities (v » 300 km s“1) the 

Vol. 335 

absorption varies greatly with phase, but at two discrete higher 
velocities, corresponding to the velocities (v « 900 km s“1 and 
1250 km s“x) of the primary and secondary dense shells shown 
in Figure 5, the absorption is strongly enhanced at all four 
phases. Although this ignores, for computational simplicity, 
the emission component that exists in actual scattering lines, 
we note that such emission should be quite smooth in fre- 
quency, since it arises from the cumulative contribution of 
material over a large volume with a wide range of line-of-sight 
velocities (Castor and Lamers 1979). 

The absorption part of a P Cygni profile synthesized for a 
scattering line in this computed wind model is thus also very 
likely to show narrow absorption features like those in Figure 
12. Since these features persist at all phases of the wave, they 
should even appear in profiles that are time-averaged over a 
wave period, or spatially averaged over lines of sight that have 
oscillations with various phases. The computations presented 
here thus provide a reasonable basis for understanding the 
common appearance of such narrow absorption components 
in UV line spectra observed with IUE. Note further that 
although the individual wind structures propagate outward 
through the wind, their periodicity means that the narrow 
absorption components that they cause can persist for many 
wind expansion times, and this may help explain the persist- 
ence of some such features in IUE spectra made months or 
even years apart. 

Finally, we note that the characteristics of this model also 
seem compatible with two notable observed features of much 
stronger, resonance lines. First, the highly nonmonotonic 
velocity fields computed here should result in a net back- 
scattering that can cause the absorption troughs of such strong 

OWOCKI, CASTOR, AND RYBICKI 

VELOCITY (km/s) 
2—Absorption-Hne profiles (omitting emission) of a typical, strong line for four phases of the driving wave. The persistent features at t; » 900 km s“1 and 

v « 1300 km s , which arise respectively from absorptions by the primary and secondary dense shells, are reminiscent of the narrow absorption components that 
are commonly observed in UV lines from hot stars. 
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lines to be “black” (Lucy 1982a), much as is commonly 
observed. Second, the small amount of material, signified by 
the spikes in Figure 10, with velocities much higher than the 
terminal flow speed should cause a residual amount of absorp- 
tion on the blue edge of such strong lines; hence these edges 
will not be sharp, as in monotonie wind models, but will 
approach the blue continuum more gradually, which again is 
what is commonly observed. 

h) Results for Other Amplitudes, Periods, and T emper atures 
We have also computed models for a limited selection of 

other amplitudes and periods for the driving perturbations. 
The results show that reducing or increasing the amplitude 
from the earlier value of 1% yields results qualitatively similar 
to those shown above, except that the waves reach nonlinear 
amplitude at a slightly higher or lower radius, as would be 
expected. Interestingly, the wind structure arising from pertur- 
bations with base amplitude greater than about 10% tends to 
be much less regular, showing signs of chaotic behavior that is 
often characteristic of strongly driven nonlinear systems. 

When the period is reduced by a factor of 2 to 2000 s, the 
same periodic shock structure seen before occurs, except that 
both the amplitude of the shocks and the spatial scale over 
which they form and interact are reduced by roughly the same 
factor of 2. Because these higher frequency waves have a 
smaller wavelength, they have a shorter kinematic steepening 
time and so steepen at a smaller amplitude and a lower radius 
than before. Likewise, the distance between the dense shells is 
less and so the shocks and shells also begin to interact at a 
lower height. 

The results when the period is increased by a factor of 2 
cannot be explained so simply. Although the wind structure is 
still temporally periodic at the wave-driving period, it is no 
longer so spatially regular. It thus appears that the driving at 
this period is above some critical wind response period that 
allows simple wave propagation. This critical period is appar- 
ently related to the characteristic period of »5000 s for the 
self-excited waves, but we have not yet been able to determine 
its exact nature or origin. It is much lower than the acoustic 
cutoff period, which in this case is 4na/g » 47,000 s, and corre- 
sponds roughly to the period associated with radiative amplifi- 
cation, which is tW0rad ~ l/v & 2500 s. We also find 
qualitatively similar, irregular spatial structure for the still 
longer periods 10-20 hr) that are characteristic of nonradial 
pulsations observed in these stars. 

Finally, we have also attempted to compute unperturbed 
models with a lower wind temperature, keeping the ratio vtJa 
fixed. The computations turn out to be extremely expensive 
because, in addition to the extra cost of evolving the model 
through a given time (see § II), we also find the models are 
much slower to settle down. The limited results we have 
obtained suggest, however, that the preferred periods of the 
self-excited waves for these models tend to decrease as T1/2. 
The self-excited structure in these cooler wind models thus 
qualitatively resembles that described above for the shorter 
period driven case, in that the spatial scale for formation and 
interaction of the waves is reduced compared to the standard 
model (cf. Fig. 3). 

V. CONCLUSIONS 

In this paper we have presented results from numerical 
simulations of the nonlinear evolution of line-driven flow insta- 

bilities in an idealized model of a radiatively driven stellar 
wind. This model assumes a spherically symmetric isothermal 
stellar wind driven radially outward through absorption of a 
point source of continuum radiation by a fixed ensemble of 
isolated, pure absorption lines. Our results are summarized as 
follows: 

1. In the absence of perturbations, such a time-dependent 
wind model asymptotically becomes nearly steady, with a 
mass-loss rate similar to the CAK steady state model, but with 
a much steeper velocity law. 

2. This unperturbed wind never becomes completely steady, 
however, since there persist near the subsonic wind base small- 
amplitude “self-excited” fluctuations that are amplified by the 
line-driven instability into nonlinear waves in the supersonic 
flow. 

3. The strong velocity dependence of the line force leads to 
the formation of very steep rarefaction waves. Their steepness, 
and hence the computational expense of resolving them, can be 
limited by limiting the strength of the strongest driving line. 

4. Outward-propagating sound waves incident at the base 
of the wind change in character, because of the breakdown of 
the WKB approximation, in the region of most rapid acceler- 
ation just outside the sonic point, and become inward-mode 
radiative-acoustic waves for which the fluctuations in density 
and velocity are nearly opposite in phase. 

5. The low density of the high-speed part of such waves 
diminishes the effect of line shadowing so that the wave growth 
follows the rate predicted by linear theory well into the nonlin- 
ear regime, when kinematic effects cause the waves to steepen, 
thereby saturating their growth. 

6. As they steepen, such inward mode waves form very 
dense shells, bounded on the inner edge by a strong reverse 
shock that connects to the high-speed, rarefied flow below, and 
bounded on the outer edge by a weaker, forward shock that 
connects to slower, moderate density wind. Eventually the 
shells expand and interact to form a secondary shell structure 
in which the high-speed flow has a high enough density to 
shield the outer wind from any further radiative driving. 

7. This computed wind structure is qualitatively consistent 
with that needed to explain various observational properties of 
these stars: enhanced infrared and Balmer-alpha emission 
resulting from the wind dumpiness, nonthermal radio emission 
from particles accelerated near shocks, soft X-ray emission 
from shock-heated gas, black absorption troughs in strong UV 
lines due to the net backscattering of the highly nonmonotonic 
velocity, and narrow absorption components in UV lines 
arising from absorption by the dense shells. 

8. Despite the presence of extensive structure, the gross 
properties of the wind, such as the average mass-loss rate and 
terminal flow speed, are quite similar to those derived by 
steady state wind models like CAK. 

The principal conclusion we draw from these results is that 
the line-driven flow instability should, as expected, lead to 
extensive formation of shocks within a radiatively driven wind, 
but the nature of these shocks and the associated wind struc- 
ture may be quite different from what had been anticipated. In 
particular, the fastest, most strongly driven flow may be highly 
rarefied, not dense, and the strong shocks that form may be of 
the reverse, not the forward, type. These results are likely to 
have important consequences for how one interprets the obser- 
vational evidence for structure in these winds. 

A primary goal for future work will be to develop techniques 
for making quantitative comparisons with available observa- 
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tions, particularly in ultraviolet lines and X-rays. We also hope 
to improve this model by progressively relaxing the present 
simplifying assumptions. In the meantime, we must emphasize 
that inclusion of these additional effects may significantly alter 
the computed wind structure and so modify the present results. 
In any case, the numerical simulations presented here provide 
an intriguing glimpse of some subtle nonlinear aspects of the 
dynamical interplay between matter and radiation in the 
highly unstable radiatively driven stellar winds. The methods 
developed here should also provide a basis for the more com- 
plete studies to come. 

• The computations described here were performed on Cray 
supercomputers at the National Magnetic Fusion Energy 
Computer Center, the Lawrence Livermore National Labor- 
atory, and the San Diego Supercomputer Center. This work 
was performed in part under the auspices of the US Depart- 
ment of Energy by the Lawrence Livermore National Labor- 
atory under contract W-7405-ENG-3, and was partially 
supported by an Institutional Research and Development 
grant from L. L. N. L. S. P. O. also acknowledges partial 
support from NSF grant AST 86-11824 and NASA grant 
NAG-8-613. 
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