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ABSTRACT 
A method of measuring correlation functions without interpolating in the temporal domain, “the discrete 

correlation function,” is introduced. It provides an assumption-free representation of the correlation measured 
in the data and allows meaningful error estimates. This method avoids the problem of spurious correlations at 
zero lag due to correlated errors. It is shown that physical interpretation of the cross-correlation function of 
two series believed to be related by a convolution requires knowledge of the input function’s fluctuation power 
spectrum. In the case of AGN line-continuum cross-correlation functions, the interpretation also involves 
model dependence in the form of symmetry assumptions and must take into account intrinsic scale bias. 
Application to published data for Akn 120 and NGC 4151 illustrates this method’s capabilities. No correla- 
tion was found for the optical data for Akn 120, but the ultraviolet NGC 4151 data show a strong correlation, 
indicating that the broad C iv feature emanates from a region whose size is greater than 1.2 and less than 20 
light-days. These bounds on the size of the line-emitting region in NGC 4151 are in good agreement with the 
predictions of photoionization models. 
Subject headings: galaxies: individual (NGC 4151, Akn 120) — galaxies: Seyfert — numerical methods — 

quasars — radio sources : variable 

I. INTRODUCTION 

There are a great many astronomical problems in which two 
signals are observed to vary in time, and the goal is to deter- 
mine whether they are correlated and, if so, how. Although it is 
not the most general relationship between two time series, 
many can be described in terms of an input function which 
varies in time, driving an output function which therefore also 
varies in some related way. In the simplest version of such 
systems, the response is linear and may be described mathe- 
matically by the convolution 

b(t) = i " dT^¥(T)a(t - t) , (1) 
J- 00 

where a is the input, b is the output, and 'F is called the 
“transfer” or “response” function. Typically, one measures b 
at certain sample times, and either knows 'F and wishes to infer 
a, or else measures a at a set of sample times and wishes to infer 
x¥. One of the principal problems in implementing this 
program in astronomical contexts is that it is very difficult to 
control the sampling times: most objects are only observable 
during certain times of the year and certain phases of the 
Moon, and observing schedules are also perturbed by the dep- 
redations of both weather and time allocation committees. In 
this paper we present a method which takes account of these 
difficulties. Although it is easiest to interpret the results when 
the convolution relation (eq. [1]) applies, this statistical 
method can be used to determine correlations between any two 
time series. 

In order to illustrate this method’s capabilities, we will apply 
it to a problem in the study of active galactic nuclei (AGNs) 
which has attracted much effort over the past 20 years, namely, 
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the determination of the physical character and size of the 
region responsible for producing the broad emission lines (the 
so-called “ BLR ”). Arguments based on photoionization mod- 
eling (cf., Davidson and Netzer 1979) suggest that the line- 
emitting region is ~ 1 x L^2 pc across (L46 is the ionizing 
luminosity measured in units of 1046 ergs s-1). Consequently, 
it is natural to expect that these lines would vary in flux on 
observable time scales. Furthermore, since it is generally 
thought that the line emission is powered by the observed 
ionizing continuum, fluctuations in the continuum strength 
should be reflected in fluctuations in the lines. In the language 
of equation (1), if the lines respond linearly to the continuum, 
the continuum luminosity is the function a, the line luminosity 
is h, and the geometrical structure of the region is encoded in 'F 
since the delays are due entirely to light-travel time effects (see 
§IV). 

Blandford and McKee (1982) proposed a program by which 
'F for the BLR could be inferred from coordinated observa- 
tions of continuum and line variations. Although this method 
is extremely powerful, it has yet to be applied because it 
requires extremely good temporal sampling and also extremely 
low noise in the data. 

For these reasons, other methods, which are less ambitious, 
but also less stringent in their prerequisites, have been used to 
try to measure a characteristic size of the BLR. For instance, 
the autocorrelation function of a single line contains informa- 
tion on the size of the BLR (Alloin, Boisson, and Pelat 1987). 
Size information can also be derived by cross-correlating con- 
tinuum fluxes with line fluxes (Gaskell and Sparke 1986; 
Gaskell and Peterson 1987). However, these techniques have 
been used in a way that requires interpolating the data between 
observed points to form a continuous function. When, as is 
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usually the case, the fluctuation power spectrum has substan- 
tial amplitude at frequencies above the mean sampling rate, 
interpolation is dangerous. Furthermore, correlated errors in 
the measurement of continua and lines often cause a spurious 
peak at zero lag (see § III). A simpler application of the cross- 
correlation method has also been tried, in which the maximum 
in the cross-correlation function is determined “by sight” 
(Clavel et al. 1987). This method suffers from the same prob- 
lems as the interpolation method, as well as the possibility of 
introducing subjective biases. 

In this paper, a new method for determining auto- and cross- 
correlation functions from unevenly sampled data is intro- 
duced. Analogous methods have been applied to other 
problems, but they have been left in a comparatively unde- 
veloped state (e.g., Mayo, Shay, and Ritter 1974; Hjellming and 
Narayan 1986). In this method, the correlation function is 
defined only for those lags for which measured data exist, so 
that no interpolation, hence no “invention” of data, is 
required. It also yields reliable error estimates and avoids spu- 
rious features caused by correlated errors. The only price paid 
for these advantages is that we are only able to evaluate the 
correlation function at a set of discrete sample points. This 
technique is described in detail in the next section and is tested 
using simulated data in § III. We discuss the physical interpre- 
tation of cross-correlation functions in § IV before applying 
both our new method and the interpolation method to two sets 
of published data (for Akn 120 and NGC 4151) in § V. A 
concluding discussion is presented in § VI. 

II. THE DISCRETE CORRELATION FUNCTION 

For two continuous, statistically stationary stochastic func- 
tions, a(t) and b(t), the classical correlation function is defined 
as 

CFW, £([<<<>-»» + '>-*]!, (2) 
Ga Gb 

where E{f} is the expectation value of the function /,/is its 
mean, and 07 is its standard deviation (Oppenheim and 
Schafer 1975). The autocorrelation function is produced when 
a(t) = b(t), and the cross-correlation is measured when they are 
different. This function is normalized such that the autocorrel- 
ation function at i = 0 is unity. 

In practice, the expectation value in equation (2) is com- 
puted by sampling a(t) and b(t) at a discrete set of points {i,: 
j= 1, ..., N}. If these points were separated by a constant 
spacing Áí, one could accurately compute CF(t) at a large 
number of lags using only real data, provided these lags were 
all multiples of Ai. For any t = m Ai, there are V — m points tk 
such that + t is also in the set of sample points, so the 
expectation value is well defined so long sls N — m^> 1. Unfor- 
tunately, astronomical data are only rarely evenly spaced, and 
therefore in general there are no values of t such that tk and 

+ t are both in the set {tj} for more than one tk. 
In order to apply the classical technique to astronomical 

data, one or both of the observed data trains have been inter- 
polated in time. Since this interpolation method weights all 
temporal points evenly, the result is dominated by interpolated 
data in at least one of the data trains. Unless there are good 
reasons for a particular choice of interpolation, the result must 
be regarded as highly uncertain. Furthermore, the inter- 
polation method gives no indication of the uncertainty in the 
calculated cross-correlation, while the irregularity in sampling 
quality over the different possible lags must lead to a consider- 

able variation in reliability of the correlation values as a func- 
tion of lag. 

Correlated measurement errors are another problem with 
cross-correlation functions determined with the interpolation 
method. Line and continuum fluxes are typically measured 
from the same spectra, and some errors, such as those in the 
overall flux level, will affect both continua and lines in the same 
fashion. It is well known that such correlated errors can lead to 
spurious contributions to the cross-correlation function at zero 
lag (Gaskell and Peterson 1987). 

To remedy these problems, we suggest the use of what we 
call the Discrete Correlation Function (DCF). It is defined in 
the following manner: For two discrete data trains, and bp 
we collect the set of unbinned discrete correlations 

UDCF0 
(a, - aXfr,. - b) 

Vtâ - el'ial - e2
b) ’ 

(3) 

for all measured pairs (a¿, bj). Each of these is associated 
with the pairwise lag Aiy = tj — ti. The parameter ef is the 
measurement error associated with the data set f. For noisy 
data, it is necessary to replace the (7aob in equation (2) with 
[(<7^ — — eb)Y12 t0 preserve the proper normalization 
(A. Lawrence, private communication). We emphasize that 
every point represents real information. 

Binning this result in time allows the directly useful function 
DCF(t) to be measured. Averaging over the M pairs for which 
t — At/2 < Atij < t + At/2, 

DCF(T)=¿UDCFy- (4) 

[The DCF(t) is not defined for a bin with no points.] Choosing 
the right bin size is governed by a tradeoff between the desire 
for high accuracy in the mean defined by equation (4) and a 
countervailing desire for resolution in the description of the 
cross-correlation curve. The former consideration argues for 
large bins, the latter for small. Our simulations (see § III) show 
that the results depend only weakly on the specific bin size 
chosen. 

It is true that this binning implicitly means that one must 
accept a modest amount of interpolation in the correlation 
function (although not in the time series). This procedure is 
justified in the frequently encountered circumstance in which 
the correlation is smoother than at least one of the constituent 
time series. A smoothly varying phase for the product of the 
Fourier transforms of a(i) and b(t), i.e., â(f)É(f) is all that is 
required. This is usually the case with astronomical data. 

In order to eliminate correlated errors, lags tj — ti for which 
i =j can be excluded. This procedure automatically removes 
zero-lag correlated error (the most common kind) and does so 
at the very limited cost of reducing the number of points con- 
tributing to the zero-lag bin. All other bins are automatically 
free of correlated error even without this cleansing of the zero- 
lag bin. Note that, when one subtracts the variance due to 
measurement error from the total variance, one must eliminate 
the zero-lag pairs if their errors are correlated in order to keep 
the normalization correct. Indeed, requiring the autocorrela- 
tion at zero lag to be within 1 <7 of unity amounts to a crude 
check of the error estimate. 

Unlike the interpolation correlation function, for which the 
errors are difficult and probably impossible to define, it is 
straightforward to define a standard error for the DCF. If the 
individual UDCF^- within a single bin were totally uncor- 
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related, then the standard error in the determination of their 
mean would be simply 

<W« = Œ [UDCFy - DCF(t)]2}1/2 . (5) 

However, many of the UDCFfj within a single bin may have 
mutual correlations if one of the series is strongly autocorrelat- 
ed over widths greater than the bin size. This happens, for 
example, if the relation between the two time series is through 
convolution, as in equation (1), and the transfer function is 
nonzero over a range of lags. It is then necessary to replace 
M — 1 in the denominator of equation (5) by 
[(M — 1)(M' — 1)]1/2, where M' is the number of uncorrelated 
UDCF values within the bin, that is, the number of different 
measurement times for the series a¿. This definition of the 
standard error is quite reasonable: where the point-by-point 
UDCF has a large scatter, or where there are few independent 
points contributing to a bin, <rDCF is large; where there is little 
scatter and many points, is small. 

With a quantitative error estimate in hand, it makes sense to 
compare the magnitude of the correlation found with that 
which might arise from random fluctuations in the correlation 
of two causally unrelated time series. If a(t) and b(t) are inde- 
pendent Gaussian processes with zero mean and unit standard 
deviation, the probability distribution for their product y is 

P(y)dy = ^ jda jdbe-(a2+b2)l20(y - ab) . (6) 

The integrals may be easily evaluated using the ^-function and 
the method of steepest descents : 

fi, IrMi, 
P(y)dy*0370dy\e-M , , , (7) 

[W
1/2> 

Note that the probability distribution is a Gaussian in |y|1/2 

for I y I > j. The DCF of a and b is independent of lag (since the 
statistical properties of both a and b are independent of time), 
so its expectation value at any lag is the mean of y, i.e., zero. 
However, the standard deviation of P(y) is ~1.01M112/ 
(M — 1), where M is the number of measured pairs in a bin. 
Thus, even completely uncorrelated time series are expected to 
produce values of the cross-correlation of ~ + M~1/2. 

III. COMPUTER SIMULATIONS 

In order to test the DCF and interpolation methods, we 
have applied them to simulated data. The following example 
was chosen to mimic the physics of AGNs as well as the exi- 
gencies of ground-based observing, while at the same time 
remaining as conceptually simple as possible. 

To that end, we choose the power spectrum of continuum 
fluctuations to be inversely proportional to frequency, i.e., 
flicker noise. We assume that the phases of different frequency 
components are independent and random. No good studies of 
the actual fluctuation power spectrum of the ionizing contin- 
uum over the temporal frequency range of interest (days to 
years) have yet been done, but studies of the X-ray continuum 
at higher frequencies (minutes to hours) indicate power-law 
behavior of this character (McHardy and Czerny 1987; Law- 
rence et al 1987). 

We also assume that the continuum is radiated isotropically 
and excites a spherical shell of isotropically radiating line- 

emitting material which responds linearly to continuum fluc- 
tuations. The radius of this shell is taken to be 200 light-days, a 
number which is within the range predicted on the basis of 
photoionization models for the Seyfert galaxy Akn 120, 
whose actual time series we analyze in § Va. 

All cross-correlation methods work well for finely spaced, 
evenly sampled, noise-free data. The goal of this paper is to 
understand how to work with coarsely spaced, unevenly 
sampled, noisy data; that is, the kind encountered in real life. 
Toward this end, we chose a sampling pattern which exactly 
duplicates the intervals between observations reported for the 
Akn 120 monitoring by Peterson et al (1983, 1985) and 
Gaskell and Peterson (1987). They measured the flux in that 
object 58 times with a mean spacing of 38 days, but in a highly 
uneven pattern. 

In another step toward verisimilitude, we add two different 
kinds of measurement error to the continuum and line light 
curves: each is altered by its own, independent Gaussian 
process with standard deviation of 7%, and then both are 
further disturbed by a different Gaussian process of the same 
standard deviation which is identical for the two light curves. 
The net result is to introduce a 1 cr measurement error of 10% 
which is evenly divided between random and correlated error. 

We define the variability parameter, R, as the ratio of the 
total rms fractional fluctuation in the time series to the esti- 
mated rms fractional error. Thus defined, the minimum value 
of R is unity. This ratio is more important than the measure- 
ment signal-to-noise ratio in determining the quality of the 
resulting correlation functions. Again, in order to match the 
condition of the Akn 120 data, we constructed the simulation 
to also have similar values of R : 2.8 for the continuum, and 1.6 
for the line. Figure 1 shows the line and continuum light curves 
which result from this procedure. It is apparent that the contin- 
uum is very badly represented by this sampling pattern and 
that a smooth interpoint interpolation would be extremely 
misleading. 

The resulting correlation functions are presented in 
Figure 2. The solid line is the true correlation function, mea- 
sured by applying equation (2) to the continuous light curves 
shown in Figure 1. As expected, the cross-correlation is large 
near 200 days. However, the peak of the curve is very broad, its 
half-maximum points falling at — 50 and + 400 days. Even the 
90% maximum level spans the range from +35 to +275 days. 
The dotted line is the cross-correlation function using the 
noisy, irregularly sampled data shown in Figure 1 and calcu- 
lated by the interpolation method. The individual points with 
error bars are the result of the DCF method applied to the 
noisy, irregularly sampled data of Figure 1 using a bin size of 
50 days. The difference between Figures 2a and 2b is that the 
noise level was doubled for the data used to construct 
Figure 2b. 

At a crude level, the interpolation method and the DCF do 
comparably well in reproducing the ideal cross-correlation. 
Both are large in roughly the right place, and are generally 
small in magnitude elsewhere. Both also deviate from the ideal 
curve in similar fashion. In detail, they differ in several respects. 
The interpolation curve has three peaks: at 0, 110, and 400 
days. With no additional information, any one of them might 
be chosen as the true peak. Formally, the DCF has a single 
peak at 150 days, but the large error bars at this bin and at 200 
days bespeak the lack of pairs at intervals of half a year 
imposed by seasonal constraints on ground-based observa- 
tions. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

8A
pJ

. 
. .

33
3.

 .
64

6E
 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



Lag (days) 
Fig. 2a 

Lag (days) 
Fig. 2b 

Fig. 2.—(a) Cross-correlation functions for the simulated data. Dotted line is the cross-correlation function measured with the interpolation method, sampled 
every 10% of the mean spacing. The points with error bars are the discrete correlation function, binned in intervals of 50 days, (b) Same as (a), except that the 
measurement noise was doubled to 20%. Note that this increase in noise effectively wipes out the correlation. 
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DISCRETE CORRELATION FUNCTION 651 

Their most important contrast is in the error bars provided 
by the DCF method. Both the DCF method and the inter- 
polation method show a dip near +200 days. Although there 
would be no way to judge its reality in terms of the inter- 
polation method, the large error bar on the DCF point shows 
that in fact the true level at that lag cannot be distinguished 
from the level obtained between 0 and 300 days. Its spurious 
character is made even clearer by simulations done with the 
same noise level, but regular sampling with the same average 
interval, which show that this feature is due to the peculiarities 
of the sampling pattern. We also comment that the fact that the 
true cross-correlation function lies within the error bars 
~ 60% of the time demonstrates that the error bars are 
genuine measures of the 1 a uncertainty. 

In this simulation, the correlated error produces a clear peak 
precisely at zero lag in the interpolation method curve. Other 
simulations (e.g., Fig. 2b) demonstrate that at slightly smaller 
signal-to-noise ratios, this zero-lag peak grows in prominence 
in the interpolation method cross-correlation as true correla- 
tion disappears from the rest of the curve. It would be easy to 
remove this feature, which is the result of correlated errors, if 
its influence were felt only at zero lag. However, the inter- 
polation method spreads its effects over a characteristic width 
which is related (in a way made rather complicated by the 
irregular sampling) to the mean spacing (in this case 38 days). 
Correlated error, as we have previously remarked, is very 
easily removed in the DCF method. 

The adequacy of the sampling for cross-correlation analysis 
depends strongly on whether the autocorrelations in the indi- 
vidual time series are significant at time differences comparable 
to the typical spacing. The interpolation method does as well 
as it does in this simulation because the line flux has substan- 
tial autocorrelation up to ~400 days, and even the continuum 
flux is significantly autocorrelated at large lags because of the 
properties of flicker noise. 

The specific value of R required to obtain a meaningful 
result is a function of both the sampling pattern and the physi- 
cal model assumed. Within those limitations, a minimum R 
can be determined by simulation. For instance, Figure 2b 
shows the result of doubling the error level imposed on the 
same underlying light curves as shown in Figure 1. The ampli- 
tude of the cross-correlation found by the interpolation 
method is very nearly cut in half by the additional noise, and 
the clearest feature remaining is the zero lag peak created by 
the correlated error. Even the cross-correlation curve produc- 
ed by the DCF method has almost no real features remaining. 
For this case, then, the minimum R is around 2.2 for the con- 
tinuum and 1.4 for the line. 

Simulations show that other sampling patterns and other 
physical models require different values of R to yield a mean- 
ingful result. For the physical model discussed in this section, 
sampling at regular intervals of 38 days would allow much 
larger error levels: R values as low as 1.5 for the continuum 
and 1.15 for the lines could be tolerated. On the other hand, as 
we show in the following section, even noise-free data sampled 
at very small, regular intervals produce a very weak cross- 
correlation when a(t) has strong high-frequency components. 

IV. INTERPRETATION 

Once a cross-correlation curve has been computed, and its 
reliability assessed, the next task is to use it to derive physical 
information. Here we devote ourselves to the case in which b(t) 
and a(t) are believed to be related by a convolution, and we 

seek information about T'(t). For there to be any usable fea- 
tures in the cross-correlation function, either 'F or a must have 
at least one characteristic time scale. In this section, we deter- 
mine which features of the cross-correlation curve can be used 
to infer possible characteristic time scales embedded in the 
response function 'F, and how their interpretation depends on 
both the continuum power spectrum \â(f)\2 and symmetry 
assumptions. 

Plausible, but erroneous, statements about this program 
abound in the literature. For example, if there is a one-to-one 
functional relationship between characteristic time scales and 
characteristic length scales (e.g., by light ray kinematics), it is 
frequently assumed that the principal characteristic length 
scale of the system can be directly identified with the time lag at 
which the cross-correlation has its maximum. Unfortunately, 
this is not true in general. Furthermore, the position of the 
peak is quite commonly not the most prominent feature associ- 
ated with the principal characteristic time scale. The specific 
features which do reveal that scale are determined by both the 
statistical character of the fluctuations in a(t) and the form of 
'F(t). 

These problems are illustrated clearly if the cross-correlation 
function is rewritten (in the continuous limit) in terms of 
Fourier transforms: 

CF(T) = äaab(T-z) {dfe~2,:ift 1 ä(f)|2*(/) ’ (8) 

where T is the total duration of the run of data and X is the 
Fourier transform of the time-dependent function X. The func- 
tion 'F(Z) may be regarded as a frequency-dependent gain 
function, so the importance of different fluctuation frequencies 
to the cross-correlation depends jointly on the continuum 
power spectrum | â(f) \2 and the gain 'F. 

Once again, our illustrative example is based on AGN broad 
emission lines. The delay between continuum fluctuations and 
their associated line fluctuations is entirely due to geometry 
because the local response time of line-emitting material to 
fluctuations in the continuum strength is extremely short ( < 1 
hr) compared to the expected light travel times across the 
region (days to years). Although lines do not respond in a truly 
linear fashion to continuum fluctuations (Gaskell and Sparke 
1986), typically | ô log Ft/d log Fc j « 1 (T. R. Kallman, private 
communication), and the fluctuation level is rarely more than 
50%. Thus, the linear approximation implicit in the convolu- 
tion description is generally adequate. 

For simplicity, we restrict our attention, for the most part, to 
cases in which | â(f) \ has no characteristic scales, and ¥ has no 
more than two. These constraints are appropriate because (as 
was remarked in § III) AGN continuum power spectra appear 
to be broad band and smoothly varying, and because it is 
generally thought that the dynamic range in radius over which 
the emission lines are made is no more than a factor of a few 
(Mathews and Capriotti 1985). 

A particularly simple example to study is that of a spherical 
shell of isotropically emitting material at radius r, responding 
to a central source of isotropic radiation. In that case, the gain 
is 

*(/)=~¿/(e4’">//c~1)- (9) 

The gain is unity at frequencies / <§ c/r, and falls off roughly as 
/_1 for higher frequencies. This behavior is, in a qualitative 
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way, quite general. Whenever the emitting region has a finite 
^ size, i¥(f) -► 1 as /-* 0. Physically, this is because the line flux 
< can track perfectly continuum fluctuations with frequencies 
Í / ^ To S where t0 is the light-crossing time. Similarly, if most of 
^ the line power comes from a region with characteristic light- 

crossing time t0, 'î'(/)->0 as /-► oo; i.e., fluctuations faster 
than the light travel time are smeared out. 

We immediately see, then, that in order to produce any rec- 
ognizable signal of a characteristic time scale t0 in 'F(t), there 
must be significant fluctuation power in the continuum at fre- 
quencies corresponding to roughly tö1- Examination of equa- 
tion (8) then shows that if the only fluctuation power is at 
frequencies/to 1, the cross-correlation reduces to the auto- 
correlation of the continuum, while if the only fluctuation 
power is at frequencies/^ to 1, the magnitude of the cross- 
correlation is very small. Thus, if |â(to < 1, it is entirely 
possible for the peak of the cross-correlation to fall at t = 0, 
independent of the \a\ueoÏT0. 

The exact criteria required for the continuum power spec- 
trum to produce a useful line-continuum cross-correlation 
depend on the details of the line-emitting geometry. For 
example, for the particular '¥(/) given in equation (9) (e.g., an 
isotropic continuum source, with isotropic radiation from a 
spherical shell of radius r), there must be significant power 
above/min « (24)1/2(4n)~ 1(c/r) in order to distinguish the line- 
continuum cross-correlation from the continuum autocorrela- 
tion. On the other hand, there must be significant power below 
/max ~ (47r)_1(c/r) in order to maintain a nonzero cross- 
correlation. Other geometries would change these coefficients 
of c/r by factors of order unity. 

a) Intrinsic Scale Bias 
Scale biases (Gaskell and Sparke 1986) are very difficult to 

avoid whenever the continuum power spectrum has enough 
power at high frequencies to probe the shortest time scales in 
'F(t). When that is the case, the cross-correlation amplitude at 
t = r/c due to material with characteristic scale r can be 
approximated by : 

2 ÇcKlnr) 
cf,(t) * ^ : df I â( f ) 12, (10) 

where we have used the fact that the gain function has an 
effective cutoff at frequencies above ~c/(2nr) and the oscil- 
lation in the inverse transform adds to the suppression of 
higher frequency contributions. Clearly, as r decreases, a wider 
range of frequencies contributes to the integral and its value 
grows. For example, if | â(f) |2 oc/-1 above some lower cutoff 
frequency/0, to the accuracy of this approximation, the correl- 
ation function is proportional to In [c/(2tc//0)]. The quantitat- 
ive dependence on r would change if the power spectrum were 
different or if the responding material’s configuration were 
changed, but the basic sense is always in the same direction, 
emphasizing the smallest sizes. 

An example of this effect is presented in Figure 3. It shows 
the cross-correlation of arbitrarily finely sampled, noise-free 
simulated data produced by a model in which an isotropic 
continuum source with a flicker noise power spectrum excites 
two spherical shells with equal line luminosities, one at r = 50 
lt-days, the other at r = 200 lt-days. The weak shoulder at 
t « 200 days would be lost in the noise with real data. 

Lag (days) 

Fig. 3—The cross-correlation produced by two shells of equal power but different distance from the center. Only the peak due to the smaller shell is apparent. 
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b) Dependence on Input Function Power Spectrum 
^ As is readily seen in equation (8), the shape of the cross- 
< correlation function is strongly influenced by the character of 
^ the power spectrum \â(f)\2. White noise provides a particu- 
^ larly striking example of this influence: if | a(f) |2 is a constant, 

the shape of the cross-correlation curve is identical to that of 
the response function'F(t). 

“Blue” fluctuation spectra (i.e., spectra with more power 
toward higher frequencies) are genuinely pathological. In 
general, their cross-correlations are of very small magnitude 
except for possible divergences at a finite number of points 
related to characteristic time scales of 'F (e.g., | â(f) \ oc / oper- 
ating on a spherical shell, which produces a cross-correlation 
of zero everywhere except for ^-functions at t = 0 and t = 
2r/c). 

However, the fluctuation spectra of most continuum sources 
are “red.” These spectra are easier to work with, producing 
more robust curves with greater magnitude correlations. 
Figure 4 shows the “ideal” cross-correlation, computed by 
evaluating equation (8), for a variety of continuum power 
spectra | â(f) \2 operating on the same spherical shell. For fixed 

the peaks tend to narrow and the overall magnitude of the 
cross-correlation increases as the fluctuation spectrum 
becomes “ redder.” Both the greater magnitude and the sharper 
peak stem from the growing relative importance of slow fluc- 
tuations, which any structure can track precisely. Unfor- 
tunately, this trend, which makes interpretation easier, also 
makes measurement harder: at constant variance, the large 

fluctuations which are required for real events to stand out 
above measurement noise move farther apart. 

In many cases, the positions of the “ shoulders ” of the cross- 
correlation are better indicators of the characteristic scale than 
the position of the peak. The peak is often very low and broad, 
while the places of greatest derivative, or alternatively, the 
positions of half maximum, may be more easily discerned. For 
power spectra which produce vague peaks, the shoulders lie 
near t = 0 and t = 2r/c. Thus, at least for these “ red ” spectra, 
there is always a feature which can be used, but the best choice 
depends on the continuum power spectrum (assuming, of 
course, that the system has a characteristic time scale). 

c) Symmetry Assumptions 
Our comments so far have focused on line emission from 

isotropically radiating, spherically symmetric distributions. If 
the true distribution is less symmetric, the most prominent 
features for a given input power spectrum change their charac- 
ter and their position, even if the underlying scale stays the 
same. Consider two examples, the first having spherical 
geometry but anisotropic radiation, the second having iso- 
tropic radiation but aspherical geometry. If the emitting 
material is confined to a spherical shell, but radiates predomi- 
nantly in the direction toward the ionizing source (as it would 
if the line is very optically thick and the outside edge of the 
emitting material is colder than the inside edge), then the peak 
is sharper than it would be if the same continuum fluctuations 
illuminated an isotropic radiator, but it also moves toward 

Lag (days) 
Fig. 4.—“Ideal” cross-correlations for isotropically emitting spherical shells irradiated by continua with a variety of power spectra. The power spectrum 

corresponding to the dotted line is proportional to/-2, that corresponding to the solid line is proportional to/-1, and that corresponding to the broken line is 
proportional to/-1/2. 
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T = 2r/c. On the other hand, rings of isotropically emitting 
material tend to amplify the cross-correlation near t = 
(r/cXl ± sin a), where a is the viewing angle between the ring 
axis and the line of sight. Both flattened cross-correlation 
curves (when the input power spectrum is very “red”) and 
double-peaked curves (when the input power spectrum is close 
to that of white noise) may result. 

Clearly, a great many considerations must be taken into 
account before even a well-determined cross-correlation func- 
tion can be interpreted physically. Before drawing conclusions 
about geometrical structure from these functions, it is always 
necessary to clarify the symmetry assumptions which have 
been made, and to study the nature of the continuum fluctua- 
tions. 

V. APPLICATIONS 
As a second test, we apply the DCF and interpolation 

methods to published data from two variability studies: optical 
continuum and Kß line flux observations of Akn 120 (Peterson 
et al. 1983, 1985; Gaskell and Peterson 1987), and IUE moni- 
toring of the continuum and broad component of the C iv 
A1550 line in NGC 4151 (Clavel et al. 1987). 

ä) Akn 120 
Figure 5 is a plot of the cross-correlation between broad- 

band optical flux and H/? line flux, measured with both the 
DCF and interpolation methods. Gaskell and Peterson (1987) 
have also analyzed these data by the latter technique, and 
claim to find a broad peak whose most likely position is at +7 
days, but which is consistent with being anywhere from 0 to 
+ 30 days. Our application of the DCF method is performed 
with two different bin widths in order to test two proposed 
sizes for the emission line region: 50 day bins to test the photo- 
ionization prediction of ~ 150 days; and 5 day bins to test the 
peak near 7 days claimed by Gaskell and Peterson. 

The interpolation method curve in Figure 5 shows a peak at 
0 days lag, not +7 days; this peak is entirely due to correlated 
error (see § III). There is also a broad shoulder in the inter- 
polation curve that extends out to +180 days, and an equally 
strong positive feature near +400 days. 

The DCF undercuts the reliability of any feature in the inter- 
polation cross-correlation curve. It shows no clear peak; 
indeed, the (unphysical) negative lag side has as many positive 
features as the positive lag side, and there is only the merest 
hint of positive correlation between —10 and +25 days. More- 
over, in both binnings, 60% of the points lie within 1 <j of zero; 
this is, of course, consistent with a true correlation which is 
identically zero. Near lags which are odd multiples of half a 
year, the error bars are very large because few independent 
points contribute. It appears that it is impossible to reach any 
firm conclusions regarding the characteristic size or structure 
of the BLR in Akn 120 on the basis of these data. 

There are a number of possible reasons why a correlation 
was not detected, and yet the hypothesis of photoionization 
driving of the lines would still be valid: (1) the source may be 
either much larger ( > 1 pc) or much smaller ( a few light- 
days) than sizes sampled by the data; (2) the gas may be distrib- 
uted in an unfavorable geometry which smears out 
correlations; (3) if the true shape of the continuum power spec- 
trum is closer to white noise than flicker noise, the amplitude of 
any cross-correlation is diminished (see § IV); (4) the optical 
continuum may not be well correlated with the ionizing con- 
tinuum (H/? responds to the entire continuum from 1 Ry up to 

a few keV ; Krolik and Kallman 1988); or (5) the measurement 
errors may have been underestimated—our simulations show 
that if the true error level is 15%, rather than the quoted value 
of 10%, R would probably be below the minimum useful level. 
With regard to the last point, the large width of the correlated 
error spike suggests that there were extra errors correlated on 
time scales of a few days (due, for example, to calibration errors 
which persisted throughout a run). 

It is particularly unfortunate that this monitoring data 
has so few pairs of points separated by half a year, because the 
best guess photoionization model estimate of the characteristic 
size of the broad line region in this galaxy is r « 
150(Lion/LUy)1/2(S/0.2)_1/2/i_1 lt-days. This estimate assumed 
that the ionization parameter S and pressure in the broad line 
gas are the “ typical ” values found, e.g., by Kwan and Krolik 
(1981). The line ratio data of Wu. Boggess, and Gull (1983) are 
consistent with this assumption, or possibly with an ionization 
parameter up to a factor of 2 or so larger. The parameter Luv is 
defined as the monochromatic luminosity 1LA at 1450 Â: the 
values shown by Alloin, Boisson, and Pelat (1988) were com- 
bined with those given by Wu, Boggess, and Gull (1983) to 
estimate its value. The symbol h is the usual abbreviation for 
the Hubble constant in units of 100 km s-1 Mpc-1, so a 
smaller value would imply a larger emitting region. Combining 
the uncertainties in these scaling factors yields an overall 
uncertainty in the photoionization prediction for the charac- 
teristic scale of at least a factor of several in either direction. 

b) NGC 4151 
The results of the second study, which sought a correlation 

between ultraviolet continuum spectral flux density (average of 
the values at 1450 Â and 1710 A) and (broad) C iv line flux in 
NGC 4151 (Clavel et al. 1987), are plotted in Figure 6. Clavel et 
al. have claimed, on the basis of fits “by sight” of selected 
stretches of data, that the cross-correlation is greatest for lags 
around +5 days. Gaskell and Sparke (1986), using part of 
these data, found a similar result. These claims and the photo- 
ionization prediction of ~ 15 days characteristic scale (see dis- 
cussion below) can all be tested by applying the DCF method 
with a bin width of 5 days. We also plot the result of binning in 
50 day segments in order to demonstrate that there is no sig- 
nificant correlation at large lags. The continuum autocorrela- 
tion is plotted in Figure 7. 

In this case, the DCF method confirms the overall shape of 
the interpolation method curve, except for the peak at precisely 
zero lag in the latter curve. More strikingly, the cross- 
correlation as measured by the DCF method is very nearly 
symmetrical around zero lag, and has a large positive ampli- 
tude between approximately — 300 and + 300 days. In fact, the 
cross-correlation is almost identical to the continuum autocor- 
relation. The only place where they differ significantly (the devi- 
ations near + 200 days are less than 1 a because the error bars 
are so large) is between —15 and +15 days, where the autocor- 
relation is ~0.3 larger. Thus, except for a narrow region 
around zero lag, fluctuations in the broad component of the 
C iv emission line are statistically indistinguishable from fluc- 
tuations in the neighboring continuum. 

One possible explanation for this identity is that the fluctua- 
tions in both the line and the continuum are due to a corre- 
lated error of duration ~ 300 days. It is more likely, however, 
that we are seeing an effect alluded to in § IV : if there is little 
continuum power at frequencies high enough to probe the 
structure of T^t), the cross-correlation simply reduces to the 
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Fig. 5.—(a) Cross-correlation functions for the Akn 120 data. Dotted line is the cross-correlation function measured with the interpolation method, sampled 
every 10% of the mean spacing. Points with error bars are the discrete correlation function, binned in intervals of 50 days, (b) Same as (a), but plotted on a larger scale 
to show the region from —100 to -I-100 days more clearly and with the DCF binned every 5 days. 
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Fig. 6.—Cross-correlation functions for the NGC 4151 data. Dotted line in both panels is the result of using the interpolation method, sampled every 10% of the 
mean spacing. Points with error bars are the discrete correlation function, binned (a) every 5 days and (b) every 50 days. 
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Fig. 7.—The continuum autocorrelation function for the NGC 4151 data computed by the DCF method for a bin width of (a) 50 days and (b) 5 days. 
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continuum autocorrelation. Although the power spectrum is 
not very well determined by this data, a Fourier transform of 
the autocorrelation function does show that it drops sharply at 
frequencies around / « 0.02 d_1. (This is also why the inter- 
polation method does relatively well with this data.) The analy- 
tic arguments of § IV indicate that the close tie between the 
cross-correlation and the autocorrelation places an upper limit 
on the size of the emitting region which would be r « 20 
lt-days if the simple isotropic spherical shell model applies. We 
emphasize, however, that this limit is uncertain by at least a 
factor of 2 due to our ignorance of the true symmetry of the 
emission region, and by at least another factor of 2 due to the 
imprecision of our estimate of the power spectrum. On the 
other hand, the clear failure of the cross-correlation to repro- 
duce the continuum autocorrelation within 15 days of zero lag 
(computing the correlation functions with 30 day bins demon- 
strates that the two functions are ~2.5 g apart in this range) 
indicates that the small amount of power at periods shorter 
than 15 days finds little response in the line. If the criterion 
suggested in § IV for the simple isotropic spherical shell model 
is applied to all frequencies 0.066 d “1 and higher, a lower limit 
on the size of the line-emitting region of ~ 1.2 lt-days is found. 
Again, this number is uncertain by at least a factor of 2 due to 
uncertainty in the true geometry and by at least another factor 
of 2 due to the roughness of our criteria for frequency match- 
ing. 

These results are entirely consistent with photoionization 
models. The very large amplitude of the cross-correlation cer- 
tainly argues for a close relation between continuum excitation 
and line emission. In addition, estimates of the likely length 
scale, made in the same manner as for Akn 120, suggest a size 
of r « 15(S/0.2)- 1/2(Lion/Luv)1/2^-1 lt-days. Luv is defined as 
for AKN 120, but the data are taken from Clavel et al. (1987). If 
anything, the measured line ratios would indicate a somewhat 
larger value of S than we have chosen as our fiducial value, 
further diminishing the predicted size of the line-emitting 
region, but a smaller value of H0 would increase it. 

It should not be too surprising that these measurements 
provide a clearer signal than the optical monitoring of Akn 
120. The ionizing continuum which powers the C iv line is 
much closer in wavelength to the measured continuum than is 
the case for the optical estimates of the continuum responsible 
for H/?; variability amplitude tends to increase with photon 
frequency in active galaxies (Cutri et al. 1985); and the more 
uniform sampling made possible with IUE, all combine to 
make it easier to detect any intrinsic correlation. For instance, 
if we assume that the measurement errors are 10% in this case 

(no error estimate is given in Clavel et al. 1987), R is 7.4 for the 
continuum and 6.8 in the line, since the rms variations are 
almost an order of magnitude larger than in the optical Akn 
120 data. 

VI. CONCLUSIONS 

We have presented a new method for analyzing correlations 
in time series data. The discrete correlation function has the 
advantage of taking a very conservative approach to the data : 
no interpolation, that is, no “invention” of data, is required. 
Moreover, this method permits the easy elimination of spu- 
rious effects due to correlated errors. Its final major advantage 
is that, unlike other methods used to compute correlations, it 
gives a quantitatively meaningful error estimate. 

We also present a discussion of the problems of physical 
interpretation of cross-correlations. We have raised a number 
of previously ignored issues, such as the influence of the contin- 
uum power spectrum on the shape of the cross-correlation 
curve and how to choose which features of that curve to iden- 
tify with the characteristic time scales of the underlying system. 
Bias in favor of small scales and symmetry assumptions also 
color interpretation of these correlation functions. 

Finally, we applied this new technique to two sets of Seyfert 
galaxy line and continuum monitoring data. In one case, Akn 
120, we were unable to confirm the presence of any significant 
cross-correlation. This is in good agreement with simulations, 
which show that a high ratio of intrinsic variability to measure- 
ment error is required to derive significant information from 
unevenly sampled observations. In the other case, NGC 4151, 
strong positive cross-correlation is present, but there is so little 
high-frequency variability in the continuum that only very 
approximate limits may be placed on the size of the line- 
emitting region. Nonetheless, these limits—between ~1.2 and 
~ 20 lt-days—are good enough to demonstrate quite satisfac- 
tory agreement with the predictions of the photoionization 
model. 
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Note added in proof.—After this paper was accepted and preprints distributed, Linda Sparke communicated the results of her 
application of the DCF to the Clavel et al. (1987) ultraviolet data for NGC 4151. Her analysis showed that, while the source is in a 
state of increased activity, the cross-correlation function shows a clear peak at a lag of -b 10 days. The authors are indebted to Dr. 
Sparke for her contribution to their understanding of this object. 
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During the Clavel et al. observations (JD 2,443,568 to 2,445,658), the short time scale (< 1 yr) variability properties of NGC 4151 
appear to be correlated with the phase of long time scale (> 1 yr) variations, in the sense that during times of consistently high 
continuum flux there is comparatively more power in high-frequency fluctuations. The data are naturally divided into three 
segments, with the source being in a “low” state in the middle, during the period from JD 2,444,449 to 2,445,026 inclusive (mean 
continuum flux F = 2.5 x 10 14 ergs cm 2 s“1 Â“1), and in a “high” state for the observations on either side (mean continuum 
flux F = 8.9 x 10 ergs cm 2 s 1 A x). Both the magnitude of the fluctuations and the continuum autocorrelation functions of 
the two states are dramatically different. During the high state, the rms fractional fluctuation is 0.74, and the autocorrelation 
function is virtually constant from lags of 0 to 15-20 days, beyond which it quickly goes to zero. On the other hand, the rms 
fractional fluctuation in the low state is only 0.47, and the autocorrelation function is different from zero only at essentially zero lag, 
and again between 80 and 100 days. Thus, during the high state there is substantial power in fluctuations having time scales up to 
~ 20 days, while in the low state, the only time scale for which there is much power is ~ 90 days. 

This contrast is mirrored in the cross-correlation functions. In the high state, there is a strong peak at a lag of about +10 days. 
There is also a peak at +10 days for the low state data, but it is much weaker than that in the high state, and there are also peaks of 
comparable statistical significance near — 60 and + 80 days. 

Following the analysis in § IV, these results indicate that, at least during the high state, the C iv line-emitting region has a 
characteristic scale of ~ 10 lt-days. This result is completely consistent with our previously determined range of 1.2 to 20 lt-days, and 
with the order of magnitude photoionization estimate of ~ 15 lt-days. Evidently, using only part of the data allows a finer estimate 
than using all of it because the continuum variations probe the line-emitting region more effectively in the high state than in the low 
state. As we demonstrated in § IV, interpretable structure in the cross-correlation function appears only when there is significant 
power in the continuum fluctuations on time scales matching the natural time scales of the emission-line region. Thus, a region with 
a characteristic scale of ~ 10 lt-days is much more effectively probed by continuum fluctuations with power on time scales shorter 
than 20 days (i.e., the high state) than by variations with power on ~ 90 day time scales (the low state). 

It should be emphasized that the arbitrary elimination of data is always extremely risky. In this case, it apparently works because 
the fractional variations on the natural time scale of the system during the high state are greater than those in the low state. 
Confirmation of these results requires further monitoring or other evidence to justify the contention that the short time scale 
continuum fluctuation power spectrum in this object depends upon the phase of its long time scale variations, and to determine if 
the size and structure of the line-emitting region remain constant with time. 
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