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Abstract. A consistent theory of excitation, stabilization, and propagation of electromagnetic oscillations
in a relativistic one-dimensional electron-positron plasma flowing along curved magnetic field lines is
presented. It is shown that in such a medium which is typical of the magnetosphere of a neutron star there
exist unstable natural modes of oscillations. Nonlinear saturation of the instability leads to an effective
energy conversion into transverse oscillations capable of leaving the magnetosphere of a pulsar. The
polarization spectrum and the directivity pattern of generated radiation are determined. A comparison with
observations has shown that the theory makes it possible to explain practically all the basic characteristics
of observed pulsar radio emission.

1. Introduction

As is well known, almost immediately after the discovery of pulsating radio sources—
pulsars in 1967 they were identified with rotating single neutron stars. Already by 1975
the character of the main processes proceeding in pulsar magnetosphere was outlined
(Goldreich and Julian, 1969; Sturrock, 1971; Ruderman and Sutherland, 1975) and the
parameters of the outflowing plasma which is evidently responsible for the observed
emission were determined (Ruderman and Sutherland, 1975; Tademaru, 1973). By the
present time a huge and continuously increasing body of information is stored
(Manchester and Taylor, 1977; Taylor and Stinebring, 1986) (over 400 radio pulsars
with periods from 1.56 ms to 4.30 s are known, the periods are found within an accuracy
to 13 digits, time resolution goes down to fractions of microseconds). But the very
mechanism of pulsar radio emission has remained unknown.

In fact, the studies had not gone farther than the qualitative considerations of the late
sixties which had been formulated by Ginzburg ez al. (1969) and Ginzburg (1971), when
it became clear that the mechanism of radio emission must be coherent because only
in this case can an exceedingly high brightness temperature of radio emission be
explained which in some pulsars reaches 10°° K. This coherence may be due either to
the existence in the radiating region of charged particle clusters with the dimension
smaller than the radiation wavelength (‘antenna’ mechanism) (Radhakrishnan and
Cocke, 1969; Smith, 1970; Goldreich and Keeley, 1971) or to the inverse distribution
of particles over energy levels (‘maser’ mechanism) (Chiu and Canuto, 1971; Kaplan
and Tsytovich, 1973 ; Zheleznyakov, 1973). But even the question of which of these two
mechanisms is to be chosen has remained open up to recently. The numerous models
constructed both on the basis of the antenna (Komesaroff, 1970; Benford and
Buschauer, 1977; Cheng and Ruderman, 1977; Buschauer and Benford, 1978 ; Ochelkov
and Usov, 1984; Usov, 1987) and maser (Blandford, 1975; Kawamura and Suzuki,
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1977; Melrose, 1978; Shaposhnikov, 1981) mechanisms of coherence have failed to give
quantitative predictions facilitating such a choice.

The main reason for this is that the main problem of electrodynamics of a relativistic
plasma moving in a curvilinear magnetic field has been neither formulated nor solved:
there existed, in fact, no theory describing an increase and stabilization of perturbations
in such a plasma when its density is rather high. And as will be shown below, it is only
under this condition that electromagnetic oscillations are rapidly generated. The solu-
tion of the general problem has been recently obtained by Beskin et al. (1987b) and
Istomin (1988). Here we show that an application of the results of this theory to pulsar
magnetosphere makes it possible to explain the origin and the main properties of
observed radio emission.

In Section 2 we discuss in detail the properties of plasma in pulsar magnetosphere
and make a brief review of the present state of the theory of radio emission. The dielectric
permittivity tensor in a relativistic plasma moving along the lines of a curvilinear
magnetic field is determined in Section 3 on the basis of the linear theory developed by
Beskin et al. (1987a, b). This will make it possible to find the normal oscillation modes
in this plasma. It is shown that at high enough plasma density a hydrodynamic instability
is excited that leads to a rapid increase of two additional normal modes of electro-
magnetic oscillations which we will call curvature-plasma modes. The nonlinear
processes leading to stabilization of unstable modes and to the formation of their
spectrum are considered in Section 4. It is also shown that the curvature-plasma modes
are effectively transformed into ordinary and extraordinary modes of transverse waves
capable of leaving freely the pulsar magnetosphere and generating observed radio
emission.

In Section 5, the theoretical conceptions developed in previous section are applied
for a concrete calculation of propagation, amplification, and formation of the spectrum
of electromagnetic radiation in pulsar magnetosphere.

Finally, Section 6 is devoted to comparison of the predictions of the theory with
observational data. It is shown that the theory makes it possible to explain the charac-
teristics of pulsar radio emission: the radiation intensity, the range of observed fre-
quencies, the energy spectrum, the shape of the mean profile, the directivity pattern, and
polarization. We should emphasize that the theory is based only on the general con-
siderations concerning the properties of the flux of relativistic electron-positron plasma
flowing in the magnetosphere of a neutron star, which at the present time may be
regarded as sufficiently reliably established (Sturrock, 1971; Tademaru, 1973;
Ruderman and Sutherland, 1975; Gurevich and Istomin, 1985). No other additional
hypotheses or assumptions are used.

2. Magnetospheric Plasma and Pulsar Radio Emission
2.1. THE BASIC PROPERTIES OF MAGNETOSPHERIC PLASMA

As has already been said, radio pulsars are connected with rotating neutron stars
(M~ Mg, R~ 10km) on the surface of which there exist strong magnetic fields
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B, ~ 10''-10"* G. The plasma that fills the pulsar magnetosphere is magnetized, i.e.,
can move only along magnetic field lines. Such a magnetization is violated in the
neighbourhood of the ‘light surface’ R, ~ R, = ¢/Q (Q is the angular velocity of neutron
star rotation), where the velocity of drift motion of particles approaches the light velocity
c. Charged particles can intersect the ‘light surface’, i.e., leave the pulsar magnetosphere
only in the case if they are located on open magnetic field lines which overstep the limits
of the light surface.

It is clear that a statinary plasma outflow along open field lines is possible only if
plasma is constantly generated in the pulsar magnetosphere. It has turned out that such
a generation (‘vacuum breakdown’) may actually take place near magnetic poles of a
neutron star (Sturrock, 1971; Ruderman and Sutherland, 1975; Arons and
Scharlemann, 1979; Jones, 1981; Gurevich and Istomin, 1985). According to this
theory, near the pulsar surface there exists a region (a ‘double layer’ or a ‘gap’) in which
a longitudinal (parallel to the magnetic field) electric field is nonzero. In other words,
between the star surface and the pulsar magnetosphere there appears a certain potential
difference W # 0. The primary particles that have got into this region are accelerated
up to energies & = eV ~ (10’-108)m_c2. Moving further along curved field lines, the
primary particles beam will effectively generate hard y-quanta, which in their turn must
be absorbed in a strong magnetic field forming electron-positron pairs (Sturrock, 1971;
Tademaru, 1973; Ruderman and Sutherland, 1975).

If the magnetic field B, on the star surface is not too strong, so that B, < 5 x 10'* G,
then the secondary electrons and positrons will be produced on nonzero Landau levels
(Beskin, 1982a; Daugherty and Harding, 1983; Shabad and Usov, 1985, 1986 ; Herold
et al., 1985). Passing over to lower levels, these secondary particles will also emit
y-quanta which will lead to the production of new secondary particles. This cascade
production must proceed until the pulsar magnetosphere becomes transparent for the
softest y-quanta. As a result, the density of the secondary electron-positron plasma
proves to the substantially higher than the density of the primary particles beam. Since
this secondary plasma is generated in the region of a zero longitudinal electric field, it
can freely leave the magnetosphere moving along open magnetic field lines.

We should stress that the density of the secondary plasma will be substantially higher
than the primary beam density in a strong magnetic field too (B, = 5 x 10'* G), when
a synchrotron emission of y-quanta is absent (Beskin, 1982a; Daugherty and Harding,
1983). This is due to the fact that each primary particle accelerated in the ‘gap’ generates
many secondary electron-positron pairs.

Thus, plasma generation in pulsar magnetosphere is determined by the processes of
primary particle production in the ‘gap’. Important quantities here are the potential
difference ¥ between the star surface and magnetosphere and the electric current j
carried over by fast particles. As was shown by Beskin ez al. (1984, 1986), their values
are expressed in terms of the dimensionless parameter

0= 2P“/101":‘1”510, 2.1

which is the function of the observed quantities: P, the period (ins) and
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P_,5 = 10" dP/dt, the deceleration rate of pulsar rotation; the corresponding de-
pendences are written down a bit later.

Let us present the main parameters of the electron-positron plasma which flows in
pulsar magnetosphere. Its density is convenient to represent in the form

QB
n,= 4 = An
27c |e|

o (2.2)

where n_ is the Goldreich-Julian corotation density (the primary beam has the same
density in the order of magnitude), and 4 is determined by multiplicity of secondary
plasma generation. According to the calculations carried out by many authors (Sturrock,
1971; Tademaru, 1973; Daugherty and Harding, 1982; Arons, 1983; Jones, 1983;
Gurevich and Istomin, 1985) A depending on the physical parameters: the strength of
the magnetic field B, the star rotation frequency €, the character of particle ejection
from the star surface. For instance, according to Gurevich and Istomin (1985) for
pulsars with @ < 1 we can present the following estimate:

A~ 10°P37(B,/10'2 G)~3/7 .

With moving away from the pulsar surface the plasma density decreases proportionally
to B. At the star surface we have n, ~ (10''-10'*) cm ~3.

In the energy spectrum of particle we can distinguish between a fast (primary beam)
and a slow (secondary plasma) components. A primary one-charge beam has an energy
& ~e¥ ~ 10" m,c? the width of energy distribution being small: A&/& ~ 102
(Gurevich and Istomin, 1985), so in the first approximation the beam may be regarded
as monoenergetic. The sign at the charge of the primary beam coincides with the sign
at the corotation density (Goldreich and Julian, 1969)

BQ

e (2.3)

pe =
in the polar region and, therefore, depends on the angle y between the rotation axis and
the magnetic dipole axis. According to Beskin (1982b) and Gurevich and Istomin
(1985), for a sufficiently large particle outflow from the star surface, the cascade
production is possible both for the ‘electron’ (p. < 0, i.e., y < m/2) and ‘positron’ (p, > 0,
ie., y > m/2) cases.

As regards a drop of the potential ¥ which determines, in fact, the primary beam
energy, its value, as has already been said, is connected with the condition under which
the ‘vacuum gap’ arises. This quantity is convenient to express in terms of the maximal
possible decrease of the potential in the ‘gap’ region ¥, ~4np.R3, where
R, =~ R(QR/c)'? is the polar cap radius (Goldreich and Julian, 1969; Ruderman and
Sutherland, 1975). According to Beskin et al. (1984, 1986), for pulsars with Q < 1

¥~ Q7 -

In case Q > 1, we have ¥ ~ ¥_ .. Consequently, for pulsars with Q < 1 a cascade
particle production starts already for the potentials ¥ < ¥_ .., whereas for pulsars with
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Q > 1 practically the whole value of potential drop possible near the polar regions of
a neutron star should be used for this purpose. The absolute value of the quantity ¥
(and, therefore, the primary beam energy) depend weakly on real parameters of the
pulsar (Ruderman and Sutherland, 1975; Gurevich and Istomin, 1985).

Possessing the charge density p, ~ p., a primary beam leads, naturally, also to the
appearance of electric current running along open field lines. Its density is convenient
to write in the form

j = iOCpc 9

where i, <1 and p, is given by Equation (2.3). As was shown by Beskin ef al. (1984,
1986), i, ~ Q for pulsars Q < 1 and i, ~ 1 for pulsars with Q > 1. We can see that the
current is also determined by the parameter Q.

Finally, the total energy W, = | j'¥ ds transferred by particles in the region of open
field lines can be written in the form

¥
Wpart = iO N Wmax ’
‘Pmax
where
Woax ~ RECp Y ax =4 x 1021 P~4(B/10"> G)? erg s ™!

is the maximal possible energy transferred by particles*. We can see that W, ~ W,
for pulsars with Q > 1 and W,,,, < W,,,, for pulsars with Q < 1.

Note that according to the models of particle generation (Sturrock, 1971 ; Tademaru,
1973; Ruderman and Sutherland, 1975) the production of a secondary plasma is
impossible near the magnetic axis, the outflowing plasma will fill a conic region (the
so-called hollow cone). The internal radius of the cone r,, on the star surface is expressed

through the quantity Q (2.1) (cf. Beskin et al., 1984) as
r,.~Q"°R,, (2.4)

where again R, is the polar cap radius. For pulsars with Q < 1, near the internal
boundary of the hollow cone there flows an intensive jet of surface current /,, whose
relative fraction turns out to increase with decreasing @, so that

L, /1oy ~ Q_4/9 s

where I, = iycp.Rj is the total electric current circulating in the pulsar magnetosphere.
The profile of the current corresponding to pulsars with Q < 1 is shown in Figure 1(a).
We can see that in this case the outflowing current occupies practically the whole polar
cap surface. As concerns pulsars with Q > 1, as is seen from Figure 1(b), they generate
particles only within a ring with r;,,, ~ R, located near the external boundary of the polar
region.

* The quantity W, represents, in fact, complete losses of rotational energy of a neutron star
W, = JQ dQ/dt (for more details see Beskin ef al., 1983).
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Fig. 1. Profile of current running in pulsar magnetosphere in the region of open field lines: (a) pulsars with
Q0 < 1; (b) pulsars with @ > 1.

Now let us proceed to the discussion of the properties of secondary electron-positron
plasma. According to Tademaru (1973), Ruderman and Sutherland (1975), Daugherty
and Harding (1982), Gurevich and:Istomin (1985), the particle energy of secondary
plasma stretches from &, =yt . m.c? to &, ~ 10°m.c? For energies §* < &3,
the particle spectrum sharply breaks. Such a break, as has already been said, is due to
the character of plasma generation. Low-energy photons are not absorbed in the
magnetosphere and, therefore, do not produce low-energy particles. According to

Ruderman and Sutherland (1975)
© ~ 200-400 . (2.5)

ymin

> x> here for the fields B, < 5 x 10'2 G the
spectrum of secondary particles is close to the power-law one (dN/dy oc =) with the

As to the region of energies 6,5, < §* < &,
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factor v close to two (Tademaru, 1973; Daugherty and Harding, 1982). As is well
known, this case corresponds to energy equipartition about the spectrum. Figure 2 gives
an example of such a spectrum borrowed from the paper by Daugherty and Harding

(1982).

10

2 2 3 -
10 340 10 i
Fig. 2. An example of the spectrum of a secondary electron-positron plasma generated by a primary
particle of energy 103 eV (Dougherty and Harding, 1983).

We should stress, however, that the functions of electron and positron distribution
in pulsar magnetosphere do not, generally speaking, coincide with each other, the lowest
particle energy being smaller than (2.5). The point is that under quasi-neutral conditions
an outflowing plasma is known to screen the longitudinal component of the electric field
E . For this it is necessary that the density of the electric charge contained in the plasma
p. should be close to the corotation charge density p, (2.3) (Goldreich and Julian, 1969).
The charge density in an accelerated particle beam is not, generally speaking, equal to
p.. Therefore, in the region of a quasi-neutral plasma, a relatively weak longitudinal
electric field appears that decelerates one of the plasma components and accelerates the
other due to which the density p, is created and maintained in the magnetosphere. The
jump of the potential AY¥ which creates this field is small

e |[AY|/m.c* Sy -

It is much smaller than the jump of the potential ¥ in the region of acceleration and
generation of particles.
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The total electric current I running within a given tube of field lines must be conserved.
As a result, we derive two equations that determine the quantities y,., and y;.:

nt —n= = -i)pflel;

* n- v+ 1

- =2 (1 —ip)p./lel,
yr;iﬁ Vn:ii v-1 °

n

which under the condition y%’ > 1 give

min

1/2
pe =[ G-1) l] ~225 pmmvah at pe>0;
20+ D - )

(2.6)

-1 1/2
omin = Vot Vmin = [ ¢-D ,1] ~ 212 at p.<0.
200+ D (1 - iy)

We see that the sign at the charge of the slow component coincides with the sign at the
corotation charge (2.3), i.e., with the sign at the charge of the primary beam. Since
Y2 ~ 102, the characteristic energy of one of the components must be several times
smaller than that of the other (Cheng and Ruderman, 1977). Since slow particles have
a smaller mass, they play the role of electrons, whereas fast particles play the role of
ions in an ordinary plasma.

Thus, in the region of open field lines a magnetospheric plasma represents relativistic
fluxes of electrons and positrons whose mean energies are distinct. We, henceforth,
assume for simplicity that the slow component corresponds to a certain type of particles,
for instance, electrons and the fast component to positrons.

2.2. MODELS OF PULSAR RADIO EMISSION

The general picture presented above has made it possible, in spite of the absence of a
quantitative theory to make several assertions concerning the properties of observed
radio emission. First of all, a phenomenological model of an ‘hollow cone’ was formu-
lated (Ruderman and Sutherland, 1975; Oster and Sieber, 1976) which explained
qualitatively some characteristics of radio emission (Backer, 1976; Taylor and
Stinebring, 1986). This model was constructed under the assumption that the radiation
intensity is determined by a plasma flux along open field lines in pulsar magnetosphere.
Since, as has already been mentioned, a secondary plasma cannot be generated near
the magnetic axis, the directivity pattern of radio emission, as shown in Figure 3, must
also have the form of an hollow cone. The external opening of the pattern is determined
by the opening of the unclosed field lines whereas the internal by the condition (2.4).
As a result, the hollow cone model, in which the form of the directivity pattern repeats
the profile of the outflowing plasma density, made it possible to explain qualitatively not
only the existence of ‘two-hump’ and ‘one-hump’ average profiles (Backer, 1976; Beskin
etal., 1984; Taylor and Stinebring, 1986), but also some polarization and frequency
characteristics of observed radio emission (Rankin, 1983a, b).
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Fig. 3. The ‘hollow cone’ model.

Besides, some processes were investigated which could in principle lead to the
explanation of the coherence mechanism. These are, firstly, several plasma instabilities
and nonlinear phenomena possible in a relativistic electron-positron plasma of a pulsar
(Hinata, 1976; Benford and Buschauer, 1977; Cheng and Ruderman, 1977; Lominadze
et al., 1979, 1983; Suvorov and Chugunov, 1980; Asseo et al., 1980, 1983; Gedalin and
Machabeli, 1983; Michailovski et al., 1985a; Verga and Fontan, 1985; Usov, 1987).
These instabilities could be responsible for particle bunching necessary in the antenna
coherence mechanism. On the other hand, the plasma waves themselves could be
transformed into transverse ones due to nonlinear processes and, therefore, lead to the
observed radio emission (Michailovskii, 1980; Onischenko, 1981; ter Haar and
Tsytovich, 1981). Indeed, making use of the relations (2.2) and (2.6) we obtain that at
distances r ~ (10-100)R from the star surface the characteristic frequency v, ~ @, /2,
where

w, = (4ne*n,/m,)'?

gets into the range 100 MHz-10 GHz, i.e., just coincides with the frequencies of the
observed pulsar radio emission. It should also be noted that because the particle motion
in a strong magnetic field is one-dimensional, the characteristic plasma frequency
v, ~ p~ % so far as

ov, = 5p”/mey3.

Secondly, additional consideration were expressed in favour of the maser amplifi-
cation mechanism (Ginzburg ez al., 1969). Indeed, we may regard a relativistic plasma
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flowing out of the pulsar magnetosphere as a system with an inverse particle population
with respect to energies. The energy losses (i.e., transition onto lower energy levels) are
due to the so-called ‘curvature’ radiation connected with the particle motion along
curved field lines (Radhakrishnan and Cocke, 1969; Ochelkov and Usov, 1980). Such
losses play the principal role if particles are on lower Landau levels, i.e., when their
synchrotron radiation is absent. That is why transverse waves in the pulsar mag-
netosphere could also be expected to be unstable.

Recall that the theory of curvature radiation of one particle can be easily obtained
from the well-known formulae for synchrotron radiation (Landau and Lifshitz, 1975)
by way of replacing the Larmor radius r; = vé/eBc by the radius of magnetic field line
curvature p. In particular, the expression for the spectral power of curvature radiation
of one particle has the form

3e?2 & w
o = {— ; m.c® o, J Kspdy, &7
n e C
wfw,

where K 5 is the McDonald function and the frequency

3
A (2.8)
2 p\mye?

is close to the frequency of maximal radiation. If we substitute into the last formula the
value p ~ (108-10%) cm (which corresponds to distances 10~100 km from the neutron
star) and the characteristic energy (2.6) & ~ 100 m_c? of the secondary electron-positron
plasma, then the frequency of curvature radiation again gets in the range
100 MHz-10 GHz, i.e., also coincides with the frequencies of observed radio emission.

Thus, on the basis only of the theory of plasma production in pulsar magnetosphere
we have come in a natural way to radio band frequencies. This fact was used in many
radioemission theories both within the antenna (Komesaroff, 1970; Goldreich and
Keeley, 1971; Buschauer and Benford, 1978; Cheng and Ruderman, 1977) and maser
(Blandford, 1975; Kawamura and Suzuki, 1977; Melrose, 1978; Shaposhnikov, 1981)
mechanisms. In particular, in the framework of the maser amplification mechanism
numerous attempts were made to find natural modes of electromagnetic oscillations for
which the reabsorption coefficient u; would appear to be negative because of closeness
of the frequency w, to the observed frequency range (Kawamura and Suzuki, 1977;
Melrose, 1978; Shaposhnikov, 1981; Chugunov and Shaposhnikov, 1988). This
problem has not, however, been solved.

The point is that the main progress of the theory was connected mainly with the
problem of natural modes of relativistic plasma oscillations in a homogeneous magnetic
field (Godfrey et al., 1975; Suvorov and Chugunov, 1975; Hardee and Rose, 1976;
Hardee and Morrison, 1979; Lominadze et al., 1979, 1983 ; Volokitin et al., 1985; Arons
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and Barnard, 1986), when the basic effect — the curvature radiation — is absent. An
accurate account of the curvature of magnetic field lines, i.e., an account of the effects
due to curvature radiation required solution of the problem concerning the dielectric
properties of inhomogeneous relativistic plasma which, as been mentioned above, has
been solved only recently (Beskin ez al., 1987b; Istomin, 1988).

Since this problem has not been solved, the influence of the curvature of magnetic
field lines has been taken into account either in the framework of the Einstein’s
coefficients method (Shaposhnikov, 1981) or within some other approximations
(Hinata, 1976; Asseo et al., 1980, 1983) which did not provide the necessary charac-
teristics of natural mode oscillations*. For example, in the paper by Chugunov and
Shaposhnikov (1988) which is the most advanced in our opinion, in a dense plasma one
can only establish the connection of the total optical depth 7; = | u; d/ of a normal mode
J with its refractive index #; and the polarization coefficient J#; whose values remain
unknown. In the case of not a dense plasma, where the Einstein’s coefficients method
is valid, no substantial wave amplification occurs (Chugunov and Shaposhnikov, 1988).
What has been said above refers in full measure also to a nonlinear interaction of normal
waves, which was considered in the majority of paper only for the case of a homogeneous
magnetic field (Hinata, 1976; Lominadze et al., 1979, 1983; Michailovskii, 1980;
Onischenko, 1981; ter Haar and Tsytovich, 1981; Michailovskii et al., 1985a).

Thus, to determine the dielectric properties of a relativistic inhomogeneous plasma,
including the character of nonlinear interaction, is the key problem in the analysis of the
possibility of maser amplification of electromagnetic waves in pulsar magnetosphere.
Our paper is devoted just to this problem. But before proceeding to it, we will present
the basic results of the linear theory for the case of a homogeneous magnetic field, which
we will use henceforth.

2.3. DIELECTRIC PERMITTIVITY OF A HOMOGENEOUS PLASMA

Consider a relativistic electron-positron plasma placed in a strong homogeneous mag-
netic field B. Since the external field B is strong, all particles in a non-excited state are
located on lower Landau levels. The unperturbed distribution function of electrons and
positrons should, therefore, be written in the form (Suvorov and Chugunov, 1973)

F=(p) = F”i (pu)é(pj,) > (2.9)

where p, and p, are longitudinal and transverse components of the momentum.
Choosing now the z-axis along the direction of the magnetic field and the wave vector
k in the xz-plane, we obtain the following expression for the dielectric tensor &,4(w, k)

* In papers of Asseo et al. (1980, 1983) and recently published paper of Larroche and Pellat (1987) the
cylindrical wave modes propagating in relativistic plasma along the curvelinear strong magnetic field were
postulated. The waves are unstable only in the strongly inhomogeneous plasma. Such formulation of the
problem is far from the real conditions in pulsar magnetosphere, where the cylindrical modes and sharp
gradients are absent.
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(Godfrey et al., 1975; Suvorov and Chugunov, 1975; Hardee and Rose, 1975):

: +< w2y @? >; i<-w—p2 Wy > <a)_p2 vk, v, @ >
@i- e ot @i-ran)) \o? @l - e

Eap = _,~<w_132 _%> 1+< wy y & > —i<w—§ wpk. v, >
w? (wz — y* @) o*(wz - y* &) w® (wg — y> &)
< @ k0 @ > l<“’_§ W5k, ) > 1_< a’5>+
o*(wf - y* @) w® (wz - y> &%) Y D
% )
»* w*(wg - 7> &%)
(2.10)
where
4nn* e? B . 2\ ~ 1/2
wI?: e € ) wB=—e—__; a)=a)—ka”; '))=(1—v—i) .
me mec C

In what follows, brackets { > stand for averaging over the longitudinal distribution
function F f (p,) and summation over the types of particles

o= 2 J dpy--- Fit(py),

where [*_ dp F*(p,) = 1. It is interesting that Equation (2.10) can also be derived
as a result of quantum calculus (Canuto and Ventura, 1972) which takes into account
a discrete character of the transverse energy of particles.

First of all note one fact which will, henceforth, be of use. It concerns the cyclotron
resonance the condition for which can be written in the form

For a secondary electron-positron plasma this relation is fulfilled only at distances
r ~ R_, where

R.~2x 103R(A)m( e )—1/3 (—y—)_m (9)_1/3 .11)
¢ 102G 1 GHz 100 ®/0.01

and for fast-rotating pulsars R_ is outside the light cylinder (Michailovskii et al., 1982;
Gedalin and Machabeli, 1983). At small distances r < R, from the star surface, the
characteristic frequencies satisfy the inequalities

D<K,y < wg. (2.12)
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Consequently, here one can disregard the terms @*7y? as compared with wz. As a
result, at small distances from the star (2.12), ‘cyclotron’ corrections to unity in the
expression (2.10) for the dielectric permittivity tensor prove to be small (Elitzur, 1974):

5~
0c.. = 0¢ copywz

£2 vy =
< w? wj

The main role in the dielectric properties of plasma must be played by the ‘Cherenkov’
correction,

> ~ 107 1-10"2°. (2.13)

2

de,. = —< 'l > (2.14)

,})3 (’Z)Z

A smallness of the cyclotron correction as compared with the Cherenkov one is due both
to a large magnitude of the magnetic field and to a small quantity @ = w — k,v, in
the numerator of (2.13) and in the denominator of the cyclotron correction (2.14).

Consequently, we can draw an important conclusion that the main dispersion charac-
teristics of normal modes propagating in pulsar magnetosphere can be obtained in the
approximation of an infinitely strong magnetic field. The effects due to cyclotron
resonance are in this approximation, of course, disregarded. As was shown by
Michailovskii ez al. (1982, 1985b), the cyclotron absorption possible at large distances
from the star surface does not, however, have a decisive effect upon propagation of
transverse waves and can be taken into account separately. As regards the dielectric
permittivity tensor (2.10), in the infinite magnetic field approximation it takes an
especially simple form

] 0 0
ts= | 0 ] 0 . (2.15)

2.4. NORMAL MODES OF ELECTROMAGNETIC OSCILLATIONS

First of all we are now interested in the normal modes of oscillations whose frequencies
are close to radio-frequency range. As distinct from the majority of previous papers in
which the analysis was carried out in the rest system of plasma (Lominadze et al., 1979,
1983; Gedalin and Machabeli, 1983), we will write the expressions for the refractive
indices n; = ck;/w in the laboratory coordinate system. Such a choice is explained by
the fact that only in this case does a correct (without involving non-inertial coordinate
systems) transition to the case of a curved magnetic field become possible. Besides, no
questions concerning the Lorentz-frequency transformation in a transition from one
frame of reference into another arise.

Owing to the simple form of the dielectric permittivity tensor (2.15) the solutions of
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the dispersion equation

det(i’lzéaﬁ - nanﬁ - 80([5’) = O
can be written in an explicit form

nf=1, (2.16)

2
n2=1- 02 <w—{> 2.17)
> @&

In what follows, we consider only the most interesting for us case of small angles 0
between the vectors k and B. As is seen from the analysis of the relations (2.16) and
(2.17), in the electron-positron plasma there exist four normal oscillation modes whose
frequencies lie in the radio range. The dependence of their refractive indices n, on the
angle 0 is shown in Figure 4. Figure 4(a) corresponds to the condition

Azwjyc

<1,

a)2
where y, = (y~3) 73, which is fulfilled at distances

2 \1/3 1/3 B 13/ p\~1/3 —2/3
= () () (ore) () (o)
104 100 102G ls 1 GHz

from the surface of a neutron star, and Figure 4(b) corresponds to the condition 4 > 1
valid at small distances.
We can see that both for angles 6 < 0, and 0> 6, , where

2 1/4
0, = (a’—’; <i3>) : (2.18)
w* \y

two plasma (/-modes) and two transverse (1-modes) normal waves of radio range can
propagate in magnetospheric plasma. Note also the possibility of mutual transformation
of t- and -modes for 4 > 1 in the range of angles 0 ~ 0.

The solutions of Equations (2.16) and (2.17) determining the dispersion properties
of normal waves can be written in an explicit form. We shall do this for the case 4 > 1,
which is the most interesting one as will be shown below.

First of all, the equality (2.16) corresponds to a linearly polarized transverse wave ¢,
whose electric vector is perpendicular to the plane containing the vectors k and B. As
we see, the refractive index n; of this wave is identical unity. This is not surprising
because in an infinite magnetic field a free motion of particles across magnetic field lines
is impossible. For this reason the response of such a medium to any wave whose electric
vector is perpendicular to the external magnetic field is equal to zero. We shall call it
an ‘extraordinary’ wave.

The properties of the other three normal waves are determined by the relation (2.17).
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L a)

7~
7 1/cos @

d)

Y e

*

Fig. 4. Normal oscillation modes of a relativistic electron-positron plasma in a strong magnetic field:
(a)4<1;(b)4d> 1.
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When A4 > 1, it can be written in the form

2

1 /o
n*=1-60? ~—2<—§> (2.19)

W™ \Y
The possibility to take the quantity @ = w(l - n(v,/c) cos @) outside the sign of
averaging over the distribution function of particles is connected just with fulfillment of
the condition 4 > 1. This means that for 4 > 1 we may put v, = c in the expression for
@. Consequently, in the region 4 > 1 normal waves in the radio-frequency range are,
in fact, hydrodynamic modes.

As a result, the relation (2.19) give the following expressions for the refractive indices
of the normal modes

2 4\ 1/2
ny=1+ 034 - (< i > 4 9—) ; (2.202)
w?y3 16
2 64 1/2
ny =1+ 0%4 + << D > + —> : (2.20b)
w?*y3/ 16
n,=1+0%2=1/cosf. (2.20¢)

Polarization of the normal waves is determined by the relations

B 2 94 1/2 92_ -1/2
(Ex/Ez)Z = - Q wp +— +— 5 (2213.)
2 L \\w?2y3/ 16 4 |
B 2 04 1/2 92" —-1/2
(EL/E.)s = — o I ; (2.21b)
2 [ \\w?y3/ 16 4 |
1 61
EJE),~— - —<1. 2.21¢
(E/E.)4 44 (2.21¢)

The corrections to the relations (2.20) and (2.21) are presented, for example, by
Lominadze and Pataraya (1982).

Itis readily seen that for angles § < 6, the normal modes j = 2, 3 are purely longitudi-
nal, and (Lominadze et al., 1979)

2\ 1 \!2
my=1+ (<‘”—§> —2> . (2.22)
Y (0]

But as is seen from Figure 4(b), they behave differently with increasing 0. For angles
0> 0, the normal wave j = 2 becomes a transverse electromagnetic wave with n, ~ 1
whose electric vector lies in a plane containing vectors k and B. We shall call it an
‘ordinary’ mode*. As to the normal wave j = 3, for large angles 6 its refractive index

* The chosen terminology corresponds to the determination of ordinary and extraordinary waves in
magnetoactive plasma when the magnetic field approaches to infinity (v, > ®). We must notice that in the
paper of Beskin et al. (1987a) the designations were vice versa.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1988Ap%26SS.146..205B

5SS 148, “Z05B,

P&

[1oBBA

THEORY OF THE RADIO EMISSION OF PULSARS 221

tends to the value (2.20b), which corresponds to dispersion of the ‘drift’ or Alfvén type
o = kv. Note that the energy of this wave is negative because in a coordinate system
moving with a particle flux it has a negative frequency @’ = y@ < 0.

Finally, the fourth normal mode j = 4 is a purely drift or Alfvén wave (2.20c) in the
entire range of angles.

2.5. THE CYCLOTRON-RESONANCE REGION

In conclusion we make some remarks concerning the cyclotron resonance regionr ~ R _.
The point is that up to now an analysis of cyclotron absorption has been carried out
in the assumption that the distribution functions of electrons and positrons practically
coincide (Hardee and Rose, 1976; Hardee and Morrison, 1979; Michailovskii et al.,
1982; Gedalin and Machabeli, 1983; Beskin et al., 1987a). As a result, the nondiagonal
components &,,, &,., &,., &, Of the dielectric permittivity tensor (2.10) which are odd
in the electric charge e turned out to be identical zeros, and this made the problem much
simpler.

When the distribution functions of electrons and positrons do not coincide, this is
generally speaking not the case. Indeed, making use of the fact that at large distances

from the star
|1 - n‘ < 1/’))511:1< 02 ) (223)

so that @ = w(y~2 + 02), we obtain, for instance, that

., _i<ijB & >~i wj<1>
xy — Gyx T ~ — 5 5 >
w* (0 - y*@?)/) 2 wwg \y*/ .

0,05 -2 (e
Y+ Y Y+ Y- Y
and, therefore, ¢,, # 0, ¢,, # 0. The quantity ¢, , turns out generally speaking not small
as compared with d¢, . =¢,, — 1.

First of all, we shall be interested here in transverse modes for which n? ~ 1.
Employing the explicit form of the tensor ¢,z (2.10), we obtain

0 0? 1
ni,=1l+¢, —5 S + Bl de.. + 3 [(670e,, — 6S)* - 4(e,, + 0¢,,)* ],

where

ZZ —

(2.24)

where the quantitiese, | =¢, - 1=1- &y S =&, + &, 06, = ¢, — | are small as
compared with unity, and we are dealing only with the region of small angles 0 < 1.
Polarization of the normal modes is determined by the relation

(g) _ 0708, — 05 +[(0%0e,, - 0S)> - 4(c,, + 05,,)*]'/? | (2.25)
1,2

E

y 21 lsxy‘
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The leading terms in (2.24) and (2.25) are, infact, ¢, |, ¢, and 6% de,,. The plus sign
in Equations (2.24) and (2.25) corresponds to an extraordinary and the minus sign to
an ordinary wave.

As has already been mentioned, at small distances from the star z < R_, the main
contribution in the expressions (2.24) and (2.25) is made by the ‘Cherenkov’ correction
(2.14). The condition of smallness of the quantity ¢,,, as compared with 62 ¢, can be
written in the form p, < 1, where

(o)
& W Yz +

XY o~

E be,, wp /1
-

But, as can be easily verified, in the cyclotron-resonance region r~ R, where
wp =~ 7,0 = 5yw0?, the condition p, < 1 is violated. Since according to (2.25)

(Ex> 1 (U +4p )
1,2 2i“res

He

b4

E

y

so that
(Ex/Ey)l = iures > (Ex/Ey)2 = - i/lures s (226)

where now p.. = {1/9*> . (1/9*> ~'yd S 1, we arrive at the conclusion that in the
cyclotron resonance region the normal wave polarization contains a noticeable circular
component. At the same time, the ratio

&y 1 < 1 >
e O \v?/ 2
remains less than unity in the region r~ R, because, according to (2.23),
Os > <1/7°) ..
Thus, the above analysis demonstrates that the main contribution in the cyclotron
absorption (as in the case of identical distribution functions of electrons and positrons,

Michailovskii et al., 1982, 1985a, b; Beskin et al., 1986, 1987a) is made by the quantity
¢, , ; and, therefore,

X N
Imn, , =~ Im <‘"P y_ @ _ > (2.27)
T2 w? (wz - 7> &%)

As regards polarization of normal waves, it substantially differs from the linear one near
the cyclotron resonance. We make use of this fact in Section 6 in the analysis of
observations.
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3. Linear Electrodynamics of Relativistic Electron-Positron Plasma in a Curvilinear
Magnetic Field

We have considered the electrodynamic properties of relativistic plasma in a homo-
geneous magnetic field. But, the most important for the curvature mechanism of electro-
magnetic wave excitation is the fact that plasma particles move along a curvilinear
magnetic field because it is only in this case that there occurs curvature radiation. The
curvature radius of a magnetic field line p exceeds greatly the radiated wavelength
A, ~ p/7> (2.8). But the radiation processes are characterized not by the wavelength but
by the formation length ~ p/y which is much larger. The directivity pattern of radiation
is so narrow (~ 1/y) that on the length equal to the formation length the radiation
oversteps the boundaries of amplification cone. Hence, inhomogeneity plays a decisive
role in generation of curvature radiation. Besides, since all plasma particles move at
velocities close to the velocity of light, also possible is Cherenkov interaction of particles
with oscillation modes whose refractive index is slightly more than unity. A simultaneous
existence and interaction of curvature and Cherenkov radiations does not only com-
pletely determine the increments of wave amplification but also leads to the appearance
of new important oscillation modes which do not exist in a homogeneous plasma.

3.1. DIELECTRIC PERMITTIVITY OF INHOMOGENEOUS PLASMA

Now let us proceed to the discussion of dielectric properties of a relativistic electron-
positron plasma placed in a curved magnetic field. At each point introduce three vectors:
b in the direction of the magnetic field, n along the normal, and 1 along the binormal.
As shown in Figure 5, these vectors correspond to an orthogonal coordinate system
Z, X, J.

As has been shown by Beskin etal. (1987a), the dielectric permittivity tensor

‘Z E A
5’® z
mn

1

X

Fig. 5. A local coordinate system connected with a magnetic field line (z, x, y). b, n, 1 is a triplet of unit
vectors.
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&,5(w, k, 1) can be found in the following way. First it is necessary to establish the
response of the medium to a plane wave
E = E4 exp(—iwpt + ikyr), G.1)
1 4 . .
B = — [k E*] exp(—iwyt + ikyr),
Wy
1.e., to calculate the conductivity tensor ao?ﬁ(a), k, r) which enters in the expression for
the current

Jol @0, Ko, T) = a05(o, Ko, T)EF exp(— iyt + iKor) . (3.2)

Since the medium is inhomogeneous, its response (3.2) is not already a plane wave, so
that the tensor g° - depends besides w and k, also on the coordinate r. This means, in
particular, that normal waves in an inhomogeneous medium are not plane either. The
effective dielectric permittivity tensor is determined in terms of the tensor oy by the
relations

4ni

Eup(@, K, 1) = 0,5 + — o,4(0,k, 1),
(3.3)
dk’ dR R .
o.p(, Kk, 1) = JJ e o%(w, k',r+ 5) exp[i(k’ — k)R].

Let us recall that the expression (3.3) refers to a stationary medium when an unperturbed
distribution function of particles does not depend on the time.

To find the response ogs(w, k,r) we shall use the method of integration over
trajectories (Shafranov, 1963) according to which the expression for the electric current
induced by a plane wave (3.1) can be written as

4

Jwo, ko, 1,8y = —€* ) nf j dp v, J dt’ exp(—iwyt + ikor') X

et e

— OO

+

1
EA EA
X { +_a)0 [v'[k ]]} 7 )

where F* is an unperturbed distribution function of particles whose trajectories are
given by the functions r’ = r(¢'), v/ = v(¢'). Consequently,

(3.4)

t

op(w, k,r)= —e* Y nf j dp v, J de’ explio( — t') — ik(r — r')] X

— O

{%(1 - li) Ky } oF" (3.5)
w w op,
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When we substitute the conductivity tensor o44(w, k, r) (3.5) into the expression (3.3),
we can integrate over k' and R. Taking into account that the quantity r — r’ in (3.5)
is a function of the coordinate r, momentum p, and the time difference ¢ — ¢’

r-r =L(r,p,t-1),
we obtain

t

L
o= —€ ) nk J dp v, J de’ expliow(t — ¢') — ikR*] det ! (5;” 1o “) X

et,e” 2 a—rv
kv’ kv, | 0 ] 0 OF*
x[(l— V)aﬁﬁ o, L 2oy L 5,96—0,;] , (3.6)
) o 2w or, 2w or, 0P, Ir—r+R*2
where the vector R*(r, p, ¢t — t') is the solution of the expression
R*=L({Ir+ R*2,p,t-1). (3.7

We should emphasize that the operators ¢/dr acts also on the derivative 0F/dp’.
The expression (3.6) is also valid for any inhomogeneous medium as soon as the
following conditions are satisfied

Imk o1, (3.8)
k|

kL > 1,

where L_ is the characteristic dimension of inhomogeneity, which in our case is equal
to the curvature radius p of a magnetic field line; Imk is the imaginary part of the wave
vector, which is the space increment of wave amplification (or damping). As regards the
distribution function of particles F* (p, r) it will be anisotropic in a strong magnetic field
of a neutron star (cf. Equation (2.9))

F*(p,r) =F|T_r(p”)6(pl - p;rir) =
= Jdpu F{?(P”)é[p —p“b(l‘) o JAP (3.9)

where | F i(p,)dp, = 1, p is the component of the momentum parallel to a magnetic
field line, and the momentum p; is the drift of charged particles moving in a curved
magnetic field: i.e.,
N v
p;=+—— pl.
WgpP
As in Section 2, the expression (3.6) can be substantially simplified if we take into
account two important facts: in the internal region of the magnetosphere
(r < (10>~10®*)R)wg > w and p,,/m_c < y; '. When these conditions are satisfied, the
quantity w, can be made to tend to infinity, which implies that the transverse motion
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is completely ‘frozen’ — i.e.,

OF* OFF p.
— = J e o(p —p”b)dp|| . (3.10)
apo‘ 5])“ Py

For further calculations it is necessary to know the trajectory of particle motion
r-r =v@t-t)-Ja(-t)Y+iak-t)>+--;

2
p

3
a= -U—g[b+n<b d—’0>+£l:|;
p dr/ p,

p. being the radius of magnetic field line torsion. Since in the region of radiation
generation p_> p, we, henceforth, put p, — oo. The expression (3.6) for the conductivity
tensor contains the value of the distribution function at the point r + R*/2. Therefore,
we have to find the particle velocities v, v, and R* also at the point r + R*/2. We have

R* 2 3
W=U|b(l’+——>=u”b+vJ|_(t_t')n_lm (l—t’)zlib-kn(b d_p)jl_}.,
2 2p 8 p? dr

2 3
V(' w) = v b - L (t—t)n—- > °L (t—~t’)2[b+n<b 9£>]+ (3.11)
2p 8 p

dr

3
R*=U”(t—t')b__1_m (t—ll)3|:b+ll<b d_p):|+
24 p? dr

It is of importance to note that the quantity R* in (3.11) is an odd function of the
difference ¢ — ¢'. Generally, it can be shown that the quantity w(z — ') — kR* entering
in (3.6) is an odd function of the argument ¢ — ¢'. This corresponds to the fact that in
time reversal t —» — ¢ the conductivity remains the same as for a reversed wave v —» — ,
k — —k (with an accuracy to permutation of indices). To this important property there
must satisfy the value of dielectric permittivity (as well as conductivity) in a weakly
inhomogeneous medium when the conditions (3.8) are satisfied.

Substituting the expressions (3.10), (3.11) into (3.6), we derive the following expres-
sion for the required dielectric permittivity tensor ¢,z = 9,5 + (47i/w)0,4:

. w? oF * 0212
Eup = Opyp — 1 Z_ EP J dp m,v, - [ J dtE(w,k, p|, 1) I:babﬁ(l - éi!pz ) +
0

M P

e ,e

dp v,
+ (nybg — nﬂb)—r—(nbﬁ+nﬁb) T2 = nng — s
2p 8p? 4p

dr

E(cokpnat)—exp[ 2i4 '; [k +k< jp>:|:|
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We are considering modes which propagate at a sufficiently small angle to the direction
of the magnetic field 8 < 1/, (i.e., these modes alone turn out to be unstable), the terms
containing the derivative of the curvature radius dp/dr may be neglected. Finally,
integrating over d, we have

7O, T
(k.p)*? (k.p)'?
p?? w? j‘ oF
e, k1) =90 ,—2mi —— — | dpy — 0 0 0 ,
il ) =0, K172 e;:e_ . P o,
,g’—l
; 70 F()
(k.p)'? B
3.12
where (3.12)
1
F (&) =Ai(&) +iGi(¢) = — J drexp(ité + it3/3);
TC 0
and primes denote derivatives with respect to the variable
p2/3
¢=2(w-k,v)) —— . (3.13)

1/3
z I

Integrating in Equation (3.12) by parts, one can write the tensor ¢,,(w, k,r) in an
equivalent form

pz/3< , Gi’"(f)—z‘Aj"'(f)> 0 —dn £< ) Ai"(é)+iGi”(é)> \
k.

1+4n Tan > wP
z

3,2 3.2
(g !

£ = 0 1 0

k2/3 P

z

in £ AOHIGIE)

3.2 0 1+4n £<w2 Gi/(é)—iAi/(é)>
7Y B

3.2
LT

(3.14)

The expression (3.14) is an extension of the dielectric permittivity tensor (2.15) to the
case of a curves infinitely strong magnetic field.

We should note here that for a real argument ¢ the Hermitian part of the tensor ¢,
is connected with the function Gi(¢) and the anti-Hermitian with the Airy function
Ai(&). In particular, for > 1 the anti-Hermitian part of the tensor ¢,, will be exponen-
tially small. It can be easily verified that for n ~ 1 the condition &> 1 just corresponds
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to the frequencies w > w, ~ (c¢/p)y> for which, according to Equation (2.7), the intensity
of curvature radiation will also be exponentially small.

We should stress that the argument ¢ is actually a complex quantity. As has already
been said, we are first of all interested in natural modes propagating at small angles to
the direction of relativistic particle motion, i.e., Rek, > 0, the damping corresponding
to the condition Imk, > 0 and the amplification to Imk, < 0. Everywhere below we
consider only the case Rek > Imk, so the imaginary part of k should be taken into
account only in the numenator of (3.13). As to the frequency w, in our formulation of
the problem it should be regarded as a real quantity. In the end, wave amplification
corresponds to the inequality Im & > 0.

Show finally how the limiting transition of the dielectric permittivity tensor (3.14) to
the case of a direct magnetic field is realized. As is seen from (3.13), for large p the
condition | ¢| > 1 will be satisfied. Making use of the asymptotics (Nikishov and Ritus,
1986)

gy e b 2oL
F (&) e + et + , (3.15)

which is valid as |¢| — oo in the sector

—-nf3<argé< 72,

1_i<i5i> 0 _,.<m>
2 \y3p2 y3pd3
Eup = . .
5 0 1 0 (3.16)
i<“’3”u> 0 1_<a’5>
yap&)3 y3c~02

In the limit p — oo this tensor, as expected, tends to the dielectric permittivity tensor of
a homogeneous plasma (2.15).

we come to

3.2. NORMAL MODES OF ELECTROMAGNETIC OSCILLATIONS

Let us now discuss normal modes of electromagnetic oscillations. The dispersion
equation for the tensor (3.14) has the form

(1 -n2)2+ ({1 -n*)(1 -n?cos?0)de,, + (1 — n?) (1 — n?sin?0 cos® p)de,, +
+ (1 — n? + n?sin*0 sin” @) (d¢,, 0¢,, — ¢,,6,,) =0, (3.17)
where

-1, o€

.=86,—1, k,=kcos#, Kk, =ksinfcoso.

ZZ
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The properties of the solutions of Equation (3.17) depend essentially on the quantity
d¢,.. In particular, for d¢,, < 1 the refractive indices n, will be equal to

n?=1, (3.18)
nZ =1+ ¢, + ¢, sin’0, (3.19)

both these waves corresponding to transverse oscillations. As concerns the case
de,, > 1, we shall first write down the expressions for n; only for the vector k which lies
in the plane of a curved magnetic field, i.e., when k, = k sin 0 sin ¢ = 0. With an account
of the fact that 0¢, , < d¢,, we have

n2=1, (3.20)

N 5822 sin? @ + 58xx + 5822 58xx ~ Exzbox ) (321)

n’=1

1 + d¢_, cos?0

We should emphasize that Equation (3.21), like the relation (2.17), determines the
refractive coefficient implicitly, so that its solution describes both transverse and plasma
waves. On the other hand, the same as for a homogeneous magnetic field, the normal
waves (3.18) and (3.20) correspond to polarization for which the electric vector of the
wave is perpendicular for the plane in which the magnetic field line lies. For k,, = 0 this
wave (which will also be called extraordinary) does not interact with the plasma
contained in an infinitely strong magnetic field, and therefore cannot amplificate.

Let us now classify the solutions (3.18)—(3.21) depending on the physical parameters-
plasma density n, (and, therefore, Langmuir frequency w,), curvature radius of magnetic
field lines p, and oscillation frequency w. Figure 6 illustrates three regions on the plane
w — p in which the properties of normal waves differ substantially. The coordinates of
the ‘particular’ point

~ 1/2 .
CO* o a)p Ve ;

C
~ 5/2
P =— V217,

@p

depend here only on the quantity y, = (y~3)> ~!/3 and the electron-positron plasma
density.

(1) Region I (d¢,,> 1)
Region I corresponds to the case |1 — n| > 1/y2, when in the expression for

1
CY)=CO—kZUH=Colji+92+2(l—n):|,
2 2

the quantity 1/y* can be disregarded. In view of this, the condition d¢,_ > 1 can be
written in the form a > 1, where

2 4/3
a=an(LN P . (3.22)
})3 k23 o2
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Fe f

Fig. 6. Three regions of parameters on  — p-plane. Unstable curvature-plasma modes take place in
region 1. In region III only two transverse waves can propagate.

and the dispersion equation (3.17) can be written as

E-b=ialF (&) +iaF" () + a’[F" () F (&) - F"2(D], (3.23)
where

b= (k,p)*?6>. (3.24)
According to Equation (3.13), the refractive index #; is connected with the root ¢; of the
dispersion equation (3.17) by simple relation

¢

2 _ 2 j

The straight line @ = 1 separates regions I and III. As to the boundary separating regions
I and II, the corresponding condition is formulated below.

First of all we are interested in normal oscillations for which Im £ > 0. Making use
of the asymptotic properties of (3.15) which contains all unstable modes, we obtain that
the dispersion equation (3.23) has five branches of nondamping oscillations: for 6 < §,,
where

0“ = a3/20 0* ; (3.26)
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and 0, is given by Equation (2.18), the roots of Equation (3.23) are equal to

a 1/2
S3= % (’) ; (3.27)
T
2 20\
54 5,6 exp <_n lm) <_a> ) m = 0, 1’ 2 . (328)
o 5 i
If 0> 6, (which is, of course, possible only in the case a*?°6, < 1), we have here
& =b=(k.p)?P0%; (3.29)
i 21/6 a'’?
& 45,6 = XD (? m> h Gyt M0 (3.30)

We have left number 1 for the extraordinary mode nj = 1 (see Equations (3.18) and
(3.20)). The asymptotic expressions (3.27)—(3.30) are valid only for |£| > 1.

One can easily check that the roots 2 and 3 in Equations (3.27), (3.29), and (3.30)
exactly corresponds to the normal modes j = 2, 3 for a homogeneous magnetic field.
Therefore, the relations (2.20a) and (2.20b) remain valid for the refractive indices 7, and
(2.21a) and (2.21b) for their polarizations. And this is not surprising because, according
to (3.22), a — oo corresponds to the limit p — oo. On the other hand, for a finite curvature
radius p the mode ¢ — [/ which existed in the direct magnetic field splits up into three
branches of oscillations (3.28) and (3.30), as is demonstrated in Figure 7. Two of them,
as is seen from the relations (3.28) and (3.30) will be unstable. For these modes

2\ 1/5
— 223 sin 2—7[1 9Nt L 1=1,2, 0<a*?°0
5 y3 k4/5p2/502/5 ’ > *?
Imns ¢ = z (3.31)
1/3
(3PN L 0> a3/2°¢
27/6 }’3 kzpl/302/391/3 ’ * 2

i.e., Imn depends in a power-law manner on the curvature radius p. The polarization
of such waves is close to transverse polarization: i.e.,

(EZ) ¢
= ~ i — ;
E,/45.6 P4, 5 6

Note that as distinct from the case of a homogeneous magnetic field, the longitudinal
component of the electric field E, of normal modes j = 4, 5, 6 is nonzero even in the
case 0 = 0. As we shall see below, the existence of modes which we call curvature-
plasma waves just leads to the appearance of a powerful pulsar radioemission.

For a > 1, with an increase of the angle § four of the five roots ¢; pass over to the
lower half plane, so that the normal waves corresponding to them become damping. The
motion of the roots is shown in Figure 8 (see also Equation (3.30)). For example, the

E,

<1. (3.32)

x
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x

Fig. 7. Normal oscillation modes of a relativistic electron-positron plasma in a strong curved magnetic field
(region I). Unstable curvature-plasma waves correspond to drift oscillations with n ~ 1/cos 6.

roots corresponding to amplified waves with m =1 (j=5) and m =2 (j = 6) in
Equations (3.28) and (3.30) pass over to the lower half plane for 8 = 6" | where

II's, 62

out _y o a¥Q ; us=028;  wug=0.77. (3.33)

II's,6

The only nondamping normal wave here is the mode &, (3.29).

Note also that for a =~ 1 an unstable wave with m = 1 (j = 5) and a transverse mode
&, (3.29) mutually transform. This is shown in detail in Figure 9. We can see that for
a > 1.15 the root &5 of the unstable mode m = 1 passes over onto the lower half plane
with increasing 6 (i.e., such a wave damps for large #), while for a < 1.15 this mode
passes over to the asymptotics & = b = (k,p)*> 67 and, therefore, propagates freely for
(k,p)*?0?> 1 as a transverse mode.

We should emphasize that the amplified modes found about correspond in fact to
hydrodynamic instability. It should be so because the limit @ > 1 corresponds to a large
particle density. In particular, the solutions (3.27)—(3.30) can be obtained directly from
the asymptotic expression (3.16) for the dielectric permittivity tensor by way of the
substitution @ — w — k,c, v — c. The hydrodynamic character of the instability is also
confirmed by the fact that the imaginary parts of the refractive index (3.31) depend on
the particle density #, in a power-law manner.

Finally, we shall present exact expressions for the case when the vector k has a
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Fig. 8. Motion of the roots ¢; of the dispersion equation (3.23) subject to the parameter b = (k,p)*/> 6.

component perpendicular to the plane in which the magnetic field line lies, i.e., when
k, = k sin 0 sin ¢ # 0. In this case the solution of the dispersion equation (3.17) has the
form

N de,, 07 + b, + D + [(0e,,0% + de + D)? — 407 cos? (1 + ds,,)]"?
2(1 + de,,)

n’=1

b

where 2 = 0g,, 0¢,, — &,,¢,,.. Rewriting this equation with an account of the quantities
a, b, ¢ introduces above (see Equations (3.13), (3.22), (3.24)), we obtain

2 2 172
c—b=l{i"-bi[(—2‘i-b) , Babeos’e “"] } (3.34)
2 (et & n&t

In the derivation of (3.34) we have also made use of the asymptotical dielectric permit-
tivity tensor (3.16). Note also that Equation (3.34) includes now the ‘extraordinary’
mode j = 1 too.

An analysis of Equation (3.34) shows that its solutions coincides with the solutions
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Im7{ |

05 4

-0.5

Fig.9. The region of transformation of two normal waves. Digits again indicate the values of the
quantity b.

(3.27)—(3.30) only for angles 0 and ¢ which satisfy the condition 8 < 0, /cos ¢, where

0, =a°0, . (3.35)

If the inverse inequality 6 > 0, /cos ¢ is fulfilled, then the solutions of Equation (3.34)
are

é4=b,

. 2 1/4
¢l 5.6 = €XP (—7—;'—1) (—‘;) cos'?2¢p, 1=0,1,2.
T

(3.36)

The dispersion properties of the normal waves j = 2, 3 are determined as before by the
relations (2.20a) and (2.20b).

Thus, we see that the ‘amplification cone’ strongly extended along the x-axis as is
shown in Figure 10. So, the ratio of the angles ¢, and ¢, (Equations (3.26) and (3.35)),
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Fig. 10. The structure of amplification cone. The internal region corresponds to the largest increments
(3.28). In the dashed region the linear transformation of normal waves j = 1 and j = 4 is not effective.

in the limits of which the amplification of curvature-plasma waves is the most effective,
will be equal to

0,/0, ~a*"®> 1.

The same refers also to the entire amplification cone. Indeed, according to (3.33) and
(3.36), the external dimensions of the amplification cone are given by

eiut ~ a1/4 9* , |T)ut ~ a3/4 6* ,
so that
out out
H_L < H .

Let us pay attention to another fact connected with the possibility of mode transfor-
mation in the range of angles 6 ~ 6, , which is shown in Figure 11. We see that for
k, # 0, as the angle 0 increases, the curvature-plasma mode j = 4 is transformed into
the transverse wave j = 1 with n; ~ 1 and the transverse wave j = 1 into the curvature-
plasma mode. The parameter

b 4% ~a 3M0%cos 3,
k. dl'[n, —n,|

which (as is known), allows us to judge of the validity of the geometrical optics
approximation (Ginzburg, 1970), appears to be more than unity only for the angles

cosp<a V0«1,
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n= l/Cos&

T e

6, ¢
Fig. 11. Linear transformation of two normal waves j=1 and j=4 in the range of angles
0~ 0, (3.35).

1.e., only in a narrow band also shown in Figure 10. Thus, an effective transformation
of the curvature-plasma wave j = 4 into a transverse electromagnetic wave is possible
practically in the entire amplification cone.

Let us now formulate the condition which determines the boundary between regions
I and II. As has already been said, the hydrodynamic approximation considered above
holds also in the case when |1 — n| > 1/y2. If the inverse inequality is fulfilled, then the
kinetic effects due to the difference of the particle velocity from the velocity of light
become essential. In particular, the relation (3.25) and along with it the dispersion
equation (3.23) are no longer satisfied. The dispersion equation (3.17) has only four
roots and all of them lie on the real axis.

Using now the relations (3.25) and (3.28), we find that the condition |1 — r| = 1/y?
can be written as

alls = (kzp)2/3 <y—3>2/3 ) (3.37)

This relation determines the second boundary of region I*.

Thus, in region I there exist six nondamping normal waves. Two curvature-plasma
modes (for small enough angles 6) turn out to have a negative reabsorption coefficient
t; = 2(w/c) Imn; such that these waves can be effectively amplified. As shown below,
the existence of such unstable modes makes it possible to explain the origin of a powerful
pulsar radioemission.

* We should stress that in the hydrodynamic limit considered by Beskin et al. (1986, 1987a) the condition
for the boundary between regions I and II is distinct from Equation (3.37).

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1988Ap%26SS.146..205B

S 14%6. ~“Z05B!

[1oBBARE:

THEORY OF THE RADIO EMISSION OF PULSARS 237

(2) Region II (a> 1, |1 — n| < y7?)

Region II occupies a sector a > 1, |1 — n| < y. 2. In this sector the dispersion equation
(3.17) has four roots which practically coincide with the corresponding solutions for a
homogeneous magnetic field. This is exactly how it should be because, as is seen from
Figure 6, region II corresponds to the limit p— co. Consequently, in this region there
exist two longitudinal and two transverse normal waves shown in Figure 4. There are
no unstable modes here, so an effective amplification is impossible in region II. We shall
not therefore consider this case in detail.

(3) Region III (a < 1)

In this region, as is clear from the above analysis, along with an extraordinary there
exists only one more transverse mode ¢,. Indeed, as is seen from the dispersion
equation (3.23), for a < 1 we can neglect in a first approximation the terms in the
right-hand side, owing to which

& = (k.p)? 162 + y~7],

which just corresponds to a transverse mode with #n7 ~ 1. The right-hand side of
Equation (3.23) determines the imaginary part of the refractive index. As a result we
come to

nS=1+ ¢
(k.p)*"

For a < 1 all the rest of the roots of the dispersion equation (3.23) lie in the region
-n<argl< —n/3, where for |£]| > 1,

(F"() + kp)*P 627 (D] -

F(8) = exp(—5¢%2),

12 é:l /4
i.e., in the lower half-plane. Consequently, the normal waves which correspond to such
roots will damp fastly.

Thus, in region I1I there may propagate only two transverse modes (3.18) and (3.19)
with the refractive index n;, close to unity. Note that this conclusion remains valid also
in the case w > w,. The point is that in the upper half-plane, owing to the asymptotics
(3.15), the function # (&) along with its derivatives tends modul to zero as |£| — oo, s0
that the corrections to unity in Equation (3.19) will be small irrespective of the form of
the argument ¢.

3.3. LOW-DENSITY LIMIT

Since for a given curvature radius p the limit @ — 0 corresponds to a small particle
density, one can expect that just in this limit the anti-Hermitian part of the dielectric
permittivity tensor (3.14) must be connected with the intensity of curvature radiation
of individual particles in a vacuum (2.7). To demonstrate this, write the expression for
the reabsorption coefficient for the normal mode ¢,. Using the expressions (3.12) and
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(3.19), we have
8n2

w= e [a D@ e AL 6)
c k apn

z

where for a small particle density one can put & = (k, p)*? (6% + y~ 2). The extraordinary
mode in the approximation a < 1 gives g, = 0, so all the radiation must be connected
with the normal wave ¢,. On the other hand, the reabsorption coefficient can be
determined by means of the Einstein coefficients method (Ginzburg, 1970). For the
distribution function of particles (3.9), in the low-density limit we obtain
3.2
_ G J dp, %ﬂ 2,k (3.39)

U
- w? P

where Z_(Q) dw dQ is the radiation intensity of one particle per unit interval of fre-
quencies dw and in a unit solid angle dQ. Comparing Equations (3.38) and (3.39) and
taking into account that Ai”(¢) = £ Ai(¢) and that for angles 6 < 1 we can put k, = w/c,

we have
2 5/3 2/3
2 @-1% (%) a+ 2y292)m[(ﬂ) (1+ yzez)].
TP cy? cy?

Integrating this expression over the solid angle dQ = = d6? we obtain

[ee]

P = f dQ 2,(Q) = e (“”)m f dx(2x — x,) Ai(x) =

p o \cy’
*o (3.40)

e J[2y‘°‘/3 V3 — K, 5(p) dy,
271' p

where x, = (wp/cy®)??, 1 = w/w,, and @, = 3(c/p)7>. It can be readily verified that

(e o)

J Qy*P '3~ ’7)K1/3(J’) dy = HJ dy K5/3()");

n

and, therefore, the intensity (3.40) exactly coincides with the expression (2.7). Thus, the
results of calculations by the method of kinetic equation for n, — 0 fully correspond to
the results of the Einstein coefficients method.

Finally, in the limit < 1 it is easy to determine also the optical depth 7,, = | u,, d/.
Indeed, in this limit one can neglect the effects of geometrical optics and assume that
the normal wave ¢, propagates along a straight line. Using the expression (3.14), we
obtain

J [AL” (x) + x, 7202 A’ (x)] dl> :

3 k:/3 2
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where

wp 2/3

X = (*g) (1 + y20%)=x,(1 + y26?), dl=pd6.
cy

As a result, after integration

o0

pw\* w2y Ai’(x) dx
1,= —(4n|—, ) *~ =
cy?) w? (x = xo)'7?
2 2
- <47r2 f‘ﬂ’(%) Aiz'(u)> ,
w? \cy?
where u = x,/2%3, and we have employed the relation (Nikishov and Ritus, 1986)

! J Al dx (_x_) Al (x_)
o (.X _ X0)1/2 22/3 22/3

Xo

(3.41)

Since Ai(u) Ai’(u) < 0 for u > 0, the total optical depth appears to be positive (3.41).
We would like to emphasize, however, that in the region of parameters where the
expression (3.41) holds, the quantity 7,, < 1, so that the absorption of the mode ¢, in
region III can be neglected. As was to be expected, for w > w,, i.e., when u > 1, the
quantity 7,, turns out to be exponentially small. The expression (3.41) coincides with the
value of 7 obtained by Chugunov and Shaposhnikov (1988).

3.4. THE REGION OF CYCLOTRON RESONANCE

Concluding this section we present, without derivation, the expression for the com-
ponent ¢, of the dielectric permittivity tensor ¢, in the case of a finite magnetic field.
As has already been said, the main attention should be given to the region near the
cyclotron resonance. As shown by the calculation,

2~ 273
W, O

8yy=1+<n-—‘;— '?/3
w® vy kP

X [—Gi(x*)—Gi(x‘)+iAi(x+)+iAj(x")]>, (3.42)

where

2/3

x*t=2 &')ig)f P .
v/ ko,

Equation (3.42) makes it possible to extend the expressions (2.14) and (2.15) for
‘cyclotron’ corrections to the case of a curved magnetic field.
As one would expect, an account of a finite curvature of magnetic field lines leads
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to widening of cyclotron resonances ((2mp*3/k}?v,)Ai(x*) instead of
(@ + wg/v)). However, as can be easily verified, in the range of parameters of interest
(p~10°cm, w~10°s~ ! and in the cyclotron-resonance region one can put
wg/y = @) the quantity

2/3
wg p*

1/3
y kY vy

due to which the energy range of particles within which they are in resonance with the
wave remains rather narrow. In particular, if the width of the distribution function

~ ~\ -1
Ag, e 10_6< v ) ) ( p )2/3 @) ’
& wg p* 1 GHz 10° cm w

then Equation (3.42) will essentially coincide with the corresponding expression (2.10)
for a homogeneous magnetic field.

Indeed, in this case practically for all particle energies the arguments x * and x~ will
be modulo much greater than unity. Consequently, we can use asymptotic expressions
(cf. Abramowitz and Stegun, 1964) of the form

>1, (3.43)

SN 2,32y, ...
Ai(x) T exp(—3x7%) + ,
(3.44)
Gi(x) = 1/nx + 2/mx* + - -,
Ai(-x) = T sin(3x*2 + m/4) + - - -,
(3.45)
1
Gi(-x)=—+ cos(Gx>? + m/d) + -+ - .

X n1/2x1/4

For a sufficiently wide distribution function, the oscillating factors in Equations (3.44)
and (3.45) became neglectable and the asymptotics 1/nx will give the result exactly
coinciding with the limit of the homogeneous magnetic field. Only in the case if the
inverse inequality in Equation (3.43) is fulfilled, the influence of the curvature of mag-
netic field lines appears to be substantial. In particular, in the range of energies for which
x~ <0, x* <0 the imaginary part will oscillate (Shaposhnikov, 1981; Beskin
et al., 1987a).

It is, however, clear that the condition (3.43) in enough rigorous, at least for the main
electron-positron plasma. Only a primary beam may be an exception, for which
resonance appears at small distances from the star surface, where w/w < 1 and the
condition (3.43) becomes less rigorous. But even in this case the natural beam width
A&/ & ~ 10~ 2 turns out to be rather large (Gurevich and Istomin, 1985). Consequently,
one can draw a conclusion that the influence of the magnetic field line curvature on the
cyclotron resonance in pulsar magnetosphere is not very strong and can be neglected
in a first approximation.
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4. Nonlinear Processes in an Inhomogeneous Relativistic Electron-Positron Plasma

4.1. SPECIFIC FEATURES OF NONLINEAR INTERACTION IN A CURVED MAGNETIC
FIELD

In the previous section we investigated the linear properties of a plasma flowing in pulsar
magnetosphere along open magnetic field lines. It was shown that in a curved magnetic
field there appear unstable curvature-plasma modes with substantial increments. In real
conditions, as shown in Section 5, in the magnetosphere of a neutron star an amplifica-
tion of these waves is so strong that it is necessary to take into account nonlinear effects.
Besides, the effects of plasma inhomogeneity are of importance. As we have seen, a
curved magnetic field changes the character of resonance interaction between particles
and waves. Beside the Cherenkov mechanism of radiation which works in a homo-
geneous field, in an inhomogeneous field it becomes also possible for particles to radiate
the curved oscillations. This changes substantially the electromagnetic properties of a
relativistic electron-positron plasma — not only its linear but also nonlinear charac-
teristics. Besides, the curvature of a field leads to the interaction not only of waves
having electric field components along a strong magnetic field, as in the homogeneous
case, but also of waves whose electric vector is perpendicular to the magnetic field line,
as is the case with curvature-plasma waves (3.32).

Here we will consider nonlinear processes that restrict the growth of unstable modes
as well as nonlinear interactions between different modes. As shown below, the energy
of excited waves 1s much lower than the energy of outflowing plasma and, therefore, we
consider nonlinear processes within the weak turbulence theory. But the plasma
inhomogeneity effects are substantial and one should use equations that take into
account the influence of these effects upon nonlinear processes. These equations were
derived by Istomin (1988).

4.2. QUASI-LINEAR APPROXIMATION

First of all consider a quasi-linear approximation which takes into account a reaction
of electromagnetic oscillations to the evolution of distribution functions of charged
particles. According to Istomin (1988), the quasi-linear equation for the case of a weakly
inhomogeneous plasma (the condition (3.8)) has the form
dF* 2 k k
¢ Z E;?*(k)E,?(k) {6#0'<1 - _V) + —Uv“ -
k

d¢ _Z w w

t

_ s £+LU 0} 0 Jdt’exp[iw(f—l’)—ikR*], 4.1)

Ho Vo

20 or, 20 “or) dp,
L R*/2 kv’ ;
det ! 6aﬁ—l———a AU /)‘ [6h(1—i)+kvvl+
2 Org ) @)
+ A av’}ai+cc
2w or, Yo M or, *1 ap!

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1988Ap%26SS.146..205B

S 14%6. ~“Z05B!

[1oBBARE:

242 V. S. BESKIN ET AL.

The notation here is the same as in Section 3 (Equations (3.4)—(3.7)). The quantity E°(k)
is the amplitude of an electromagnetic wave which has the local wave number k(r)
determined by the wave phase ®(r): i.e.,

E(r) = ) E°k)exp[i®(r)]; k=VO.

The distribution function evolution described by Equation (4.1) is due to excitation
of curvature-plasma oscillations. Since waves are emitted in the direction of particle
motion with a small angle spread Af ~ 1/y, the distribution function F*(r, p, ¢) also
acquires a spread over transverse momenta p,.. The value p,/p, ~ y~ ' is, however, not
large; so that Equation (4.1) can be integrated over p,. As a result, with an account of
the relation (3.10) we obtain the equation for the evolution of the longitudinal distribu-
tion function Fi"(p,), of the form

dFif e’ 0 r vy 0
=— *(k)EO(k)J dr(b +n, — )—x
TR ’ J " 2p ) dp,
X {exp |:i(a) — kbv ] Uﬁ 13] (b,l - n, 2 ’E) ﬂ} . (4.2)
24p? 2p /) op,

The relaxation of the longitudinal distribution function is seen to be due not only to
longitudinal components of the wave field (as in a homogeneous magnetic field), but also
to transverse ones, and by virtue of (3.32) the contribution of transverse components
is of the same order of magnitude as the contribution of longitudinal ones. This results
from the nonlocal character of interaction between resonance particles and waves, when
the effect at a given point is affected by its closest neighbourhood, where the transverse
component of the electric field has a nonzero projection to the direction of the magnetic
field because of its curvature. The right-hand side of Equation (4.2) contains the same
Airy function (and its derivatives)

p2/3
Al [2(@ k.v;) PATER :I
Z b
as the dielectric permittivity tensor ¢,4(3.14) which determines the increment of unstable
curvature-plasma waves. The instability exists only in the hydrodynamic limit, when the
characteristic spread of the distribution function over the longitudinal velocities is not
large and
. &
L =|1-mn|.
29?2 w

This means that after the stationary state is established and the right-hand side of
Equation (4.2) vanishes, the distribution function of particles must be cut off for energies
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y > 7y,,, where

3/2 .2 \1/5 1/5
Ymin O~ P w —1/5
Ver = < == ) = Pmin <—) A / .
w, ¢ w,

For the characteristic frequencies of curvature radiation w ~ w, (2.8) the quantity y,,
in the order of magnitude s y, ;.. Thus, the quasi-linear relaxation leads to a considerable
deceleration of a relativistic plasma flux. For the distribution functions of electrons and
positrons of the form Fi"(p,) ~ p| Y(v ~ 2) the fraction of energy lost on the average
per particle is given by

rnec2 Ymin (hl yma_x - 1) )
Pmin

where y,,., 1s the maximum value of the Lorentz-factor of particles due to the mechanism
of particle generation in the polar region of pulsar magnetosphere, y,,,, ~ 10*-10°.

We can see that if the quasi-linear approximation had been valid, a considerable part
of the plasma flux energy would have converted into electromagnetic radiation. But as
shown below, the nonlinear interaction of a higher order leads to saturation of instability
on a lower level. Therefore, quasi-linear effects turn out to be inessential.

4.3. THREE-WAVE INTERACTION

Let there exist three waves with frequencies w,;, w,, ws; their electric fields have,
respectively, the form

E2(r) exp{i®;(r) — iw;t}; j=1,2,3.
The local wave numbers are equal to
k, =V, =k (w;,1).

Consider the case where w, ~ w, + ;. On a frequency w, + w; a nonlinear current j
describing a nonlinear wave interaction is given (cf. Istomin, 1988) by

Ju= 00 ESLES; expli(®, + @3) — i(wy + w3)t],

where 62, is a nonlinear plasma conductivity

Go]t\;'l = Z B 4 j dp vcx[Ma(wZ + s, ky + ks)Mx(ws, k;) +

+ M/l(a’z + w3, Kk, + kB)Ma(w27 k,))IF=(p,r), (4.3)

and the operators M (w0, k) are defined as

t

y *
My(0,K) = - J dr explio( - ') — ikR*] det =1 |5, - - w‘ x
2 org
k / k 12 . a . a a
xliévx<1_i)+ﬂ+i_v;_L5VX_ULJ_ .
(@) ®w 2w or, 2w or, op. e+ R¥2
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A nonlinear response on frequencies w; — w, and w; — w, can be written in a similar
way. The quantity ¢ ; (4.3) is proportional to the cube of the particle charge, and for
quasi-neutral electron-positron plasma with identical distribution functions there would
occur a complete mutual compensation of contributions from individual components.
However, as mentioned in Section 2.1, the distribution functions of electrons and
positrons in pulsar magnetosphere differ substantially from one another so that there
is no compensation and the nonlinear conductivity which describes the three-wave
interaction does not vanish.
For a distribution function of the form (3.9) (p, — 0) M (@, K) is equal to

M, [, k) = _¢ J dt J dp, exp[z(w kbv||)1+— kb ” 3:| X
2 24 p?

— 0

v v 0
X (bx~nx i} )5<p pyb—np, 5'; >5 . (4.4)
I

Substituting Equation (4.4) into (4.3) we find that

e’ v v
ol = — v dzdr ba+na—ﬂ(‘c+r’]|:ba—na”“ r'—r:|><
t e+,e~ 4 JOO " JOJ [ 2p ) 2p( )

expli(w; — w3)7 — i(k; - k3)R¥] i{l:b,l - n, ul (t- T’)J X
op) 2p

F
X [exp(iw; T — ik;R*) + exp(iw, T — isz*)]} §—” ; 4.5)

ap

2 3
R*=(b+nv—'t'—bv—'r’2>v”r—b N2
2p 8p? 24p2

4.4. THE STATIONARY SPECTRUM OF UNSTABLE MODES

Consider a three-wave interaction of unstable curvature-plasma waves (j = 5, 6,
Equation (3.28)) among themselves and with plasma modes (j = 2, 3 (3.27)). The laws
of conservation of momentum ks ¢ = k, + k;* and energy ws ¢ = w, + w5 are obeyed
in the latter case only in a narrow-angle cone < 0,a~*?° = 0, (3.35),0, <0, <9,

* In a nonhomogeneous medium the momentum is not conserved, but its non-conservation in the inter-
action act Ak ~ (jk/p)"/?is very small as compared with the characteristic widths of the spectra of the excited
waves and, therefore, it can be disregarded.
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(3.26). Therefore, in the entire angle cone (6, 6, ) (see Figure 10), where the excitation
of oscillations is most effective, essential is only the interaction among unstable
curvature-plasma waves.

Unstable modes obeying the dispersion law

w=kec+ d,

where the quantity @ is determined by the expressions (3.25) and (3.28), can be
described as single-drift mode, but with a complex amplitude rather rapidly changing
In time: i.e.,

E,(r, t) exp[ —iw,t + i®,(r)] ;
k,=Vo,, w, =k,.C.

Since the instability is of hydrodynamic character, when Re® ~ Im @, the excited
waves are in fact monochromatic and their electric field can be represented in the form
of the integral

E = j E,(k,r, t)exp[ —iw;t + i®,(r)] dk, . (4.6)

Some harmonics can interact with one another in any order of nonlinearly because the
dispersion w ~ k,c implies a strong coupling between them. But due to the fact that they
exist only in a narrow angle cone in the direction of the magnetic field, the most effective
is three-wave interaction because the phase volume these harmonics occupy is small.
A stationary solution is possible in this case because the decay of the wave into two leads
to the fact that the wave vector leaves the amplification cone beyond which the waves
damp strongly.

The calculation of the nonlinear conductivity is substantially simplified because for
unstable modes @/ > (c/pw)?? (a > 1) and the quantities R} and R* from the expres-
sion (4.5) can be put, respectively, equal to R¥ = by, 7', R* = by 7 (as in a homo-
geneous medium). As a result we have

1
O = Lle7ln, (U1< : (3 2 *ai) o [bocbo'blll +
2 m? v,y v3 0w/ @

v
v ib(bon, — nyby) UL+ ingb b, - Iy +
p

of of
+ banan,{ _2 14 + i’la(bani - b/‘tna) ;)E 15 +

Ujj

3
+in,ngn, — 16:|> , (4.7)
P
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where
1 1
Ii=—+-3
W,
1 1 1 1
12:~ +~ ~ - ~2_ ~2,
W, 0, 205 205
1 1 1 1
Li=——+ —+—+—;
0,0, @O0, 205 203
J _3 1 3 1 1 1 1 1
e T N W W AT T
2 i, 2 wjw; w05 w05 20, 205
1. 1 3 1 31
e N Y N T
205 203 2 wiw, 2 0704
I _3 1 31 3 1 3 1
4G 4@ 4 BB 4 PR
1 1 3 3
-——————t —— + ——
20,3 20,03 @0, @0,

In a homogeneous field in a nonrelativistic imit (y — 1) the expression under the integral
sign in Equation (4.7) transforms into the well-known result (Tsytovich, 1971)

w 0\ 1 v, k, k, k,
34— — | — [ = ——" |1y 224 B2
y3 0/ &} W, Wy 03 \®; Wy W
In the curved field in Equation (4.7) we make in fact an expansion with respect to
c/p® < 1. But since the transverse component of the electric field of unstable modes is
p@/c times larger than the longitudinal one (see Equation (3.32)), all the terms in the

expression (4.7) are of the same order of magnitude. Substituting Equation (4.7) into
the dispersion equation that takes into account the nonlinear conductivity

47y

(nlzéaﬁ - nlanlﬁ - gac,B)Elﬂ = O-O%AEZBElila
Wy
we obtain
43 p? L e ~ B
( o T T =) EL =20 —— (T T ) By By X
c”w, o m,c

0, (W @ 1 I ) ) 31
X{*1<T3+~—2>+2 :”+~—+_~3“2+—~2)—*T><
2\ @3 W, @y 203 202) 2 @

~ ~ ~5 2 1
T ()
W, ¢ Wl } @, 2\@, o

x expl[i(w, — w, — w3)t — (D, — D, — D;)].
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The quantity @ is proportional here to the time derivative which acts on the wave
packet amplitudes: i.e., @ = i §/0t.

In the left-hand side of Equation (4.8) the turning of the wave vector due to
inhomogeneity (d6/df ~ ¢/p) is disregarded, because in the region a > 1 we have

FEY

Now proceeding to the spectral expansion (4.6) and solving Equation (4.8), we obtain

c 0)2 —-1/5 c 3/5 CO4/5
B0.0=" rh = o () (¢ L @9
e /y p a)max

where w,,,, is the maximal frequency of the excited curvature-plasma mode, i.e., the
value of the frequency when the hydrodynamic instability vanishes

—2

~ 1
(U/CU = Eymin M

According to (3.28)

Omax ~ Ve, c/p)/? . (4.10)

The condition (4.10) coincides, naturally, with the boundary (3.37) between regions I
and II. The wave amplitude E,(w, 0) is constant inside the amplification cone and is
equal to zero outside the cone.

According to Equation (3.32), the total spectral amplitude is equal to

E/(w)=E, () = g (o] E, (0, 0)0, =

-1/5
e <y*3>7/5<y-4>—1w;‘/5(5> WPogl. (@1
e p

Saturation of the instability up to the level determined by the state (4.11) proceeds
within a short time of the order of |@|~!. The corresponding length ¢/|@| is small
as compared with the curvature radius, and therefore the stationary state can be
regarded to be realized in fact at each space point where there exists instability. The
spectral energy density U, can be determined from the considerations that the instability

increment |®| is responsible also for the wave coherence time. Since |®| < W,y
then

1 5 1 2
Uw=—Ef(w)co|z—(’”ec) 3 2elengl . (4.12)
8 8\ e

The total energy density in the entire frequency range is equal to

U= j U,dow~nm.c® (y) yn2~i "me? (y) . (4.13)
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Thus we can see that the multiplicity parameter A ~ 10°-10° determines the coefficient
of relativistic plasma energy transformation into the energy of unstable curvature-plasma
oscillations and that it is a universal quantity depending only on specificities of plasma
generation in each individual pulsar. The transformation coefficient = U/m_c*n, {7)
is small and is equal to about 10 ~3-10~ >, which proves validity of the weak turbulence
approximation.

4.5. MODE TRANSFORMATIONS

Now consider energy transformation of unstable curvature-plasma modes into normal
waves j = 1, 2. Investigation of such a transformation is of essential interest because,
as will be seen below, it is only these waves that can leave pulsar magnetosphere. First
of all we will show that in a curved magnetic field a linear transformation of the energy
of unstable modes into an extraordinary wave j = 1 is possible. The point is that as a
result of nonlinear interaction of unstable waves j = 5, 6 the shift of their frequency
o must tend to zero because the saturation is characterized just by the condition
0/0t = 0. This means that in a stationary state normal modes j = 5, 6 are not, in fact,
distinct from the mode j = 4, and, therefore, the energy density USP(0) ~ USP/6, of the
normal wave j = 4 also reaches the values determined by the relation (4.12).

On the other hand, as shown in Section 3, for angles § ~ 0, the mode j = 4 is linearly
transformed into the extraordinary wave j = 1. Since in a curved magnetic field the angle
0 between the vectors k and B increases with a characteristic velocity d 8/d¢ = ¢/p then,
as is seen from Figure 11, the energy of the normal wave j = 4 from the region 6 < 6,
will be permanently pumped over into the normal wave j = 1 for angles 0 > 0, . The
energy outflow from the region 6 < 0, in no way affects the magnitude of the stationary
spectrum (4.12) because the characteristic time 1, ~ p6, /c within which the angle 6
varies exceeds greatly the saturation time I' = |@®|~!. Indeed, as can be readily
verified, according to Equations (3.28) and (3.25), the condition t, > T coincides with
the condition a > 1 which is always satisfied in region I. Thus, we see that due to a
permanent transformation of the mode j = 4 in a curved magnetic field, a transverse
electromagnetic wave is effectively generated.

Next, the transformation of energy into an ordinary wave j=2 (0> 6,) could
proceed at the expense of decay of unstable modes j = 5, 6 into two plasma waves j = 2
and j =3 (0 < 6,). As has already been mentioned, this decay takes place for small
angles 6 < 0, . However, this decay does not take place because the low-frequency
mode j = 3, as has already been said, has a negative energy (Wilhelmson ez al., 1970).
If this decay did take place, this would lead to an increase of the energy of a normal
wave with a negative energy, which means the fall of its amplitude down to zero and,
therefore, a complete cessation of three-wave interaction.

Nevertheless, an effective energy transformation into an ordinary wave j= 2 is
possible. The point is that the three-wave interaction leading to the formation of a
stationary spectrum of unstable modes has been considered above, in fact, in the
framework of hydrodynamics, when the shift of the frequency @ exceeds greatly the
kinetic velocity spread of particles: |@/w| > 1y~2. This condition is well fulfilled in
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the linear case. But an account of wave interaction leads to a decreasing frequency shift,
and in particular for a curvature-plasma wave the three-wave interaction results in
@ — 0. The stationary spectrum thus formed is a plasma density modulation moving
with plasma along magnetic field lines. Now we have to take into account the kinetic
spread of charged particles over velocities: scattering on density inhomogeneities they
will radiate electromagnetic waves. Polarization of inhomogeneities is such that the
radiated waves have an electric field component that lies in the plane of the magnetic
field line. This is precisely the ordinary mode j = 2. A plasma wave is in fact scattered
on an inhomogeneity created by a curvature-plasma oscillation: w, = ws ¢ + w;. This
process is most effective for waves propagating almost in the direction of the magnetic
field 6, < 0, (2.18). Making use of the expression (4.5) for nonlinear conductivity under
the condition @, = w, (y7>>"?» w,/2y* and @5 ¢ = 0 we obtain

P n L 4, () I B

2/3
(= BAI) + 24D ) é:(%’> . (4.14)
Y

cy?

2/3

p

wll /3053

For a given wave E_¢ Equation (4.14) describes the plasma wave excitation. Knowing
the spectrum of the curvature-plasma mode (4.9), we find the characteristic excitation
increment of an ordinary wave is given by

c 2/5

- 1/2

FZ = COp ( ) 'ymin/ .
@, P

The increment I', is of the order of @ for unstable waves j= 5,6 with the
characteristic frequency @ = @, /> This means that excitation of an ordinary wave
is as rapid as an increase of unstable modes j = 5, 6.

Determine the energy density of an ordinary wave j = 2 within the range of angles
6 < 0, . This can be easily done by assuming that the increase of the amplitude of this
wave will be stopped as soon as its reaction to the curvature-plasma wave becomes
essential. The calculation quite analogous to Equation (4.14) leads to the following
relation for ‘monochromatic’ amplitudes

2 _ -3\ —1/2 |e| p2 i *
(n* 0,5 — nyng — &,0)E;, = —2mw, (™) E. E* X
m,c \wc?

4

X <S‘gne (A’ +2¢ Ai”)>.
y

Here also ¢ = (wp/cy?)?® and averaging is made over the distribution function of
plasma particles. Now passing over to the spectral amplitudes E_,(Q) = £ _,(6)/0, and

making use of the relations (3.35) and (4.9) we obtain

~\ -2 2 26/15 —2/15
JJl=<y-3>“/5<y-4>-l(‘°> ("”) (5) w2 P (4.15)

w e p )

max
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where
2
J = J do' d6'? ——— E_(Q)E%_ . (Q - Q) (4.16)
(0~ ')
and

J\(0) = <Si§‘je [3AI(E) + ZéAi”(é)]> .

First of all consider the expression for J; in square brackets. It is clear that the
contribution of electrons and positrons will have opposite signs because the current
quadratic in the amplitude E is known to be proportional to the charge cubed e>.
Remembering that within the range £, < §* < &7, both the components have a

power-law spectra with the index v = 2, we obtain for each of the components
3signe A(0) (775 o< 3
p

. [6)]
.= C1 Vinin SigNeE (*

5/3 ¢
) ; ymm <w < - ymax ] (417)
c p p

NO; w> ’))maxﬁ
p

where

¢ =

Nlr—

1

J dx x*P(3 Al + 2x Ai") = —— 3%T(5/6) ~ 0.40 > 0 .
71:

0

Since Ai’(O) < 0, then as we can see the expression (4.17) has opposite signs at
> (c/p)yE3 and w < (c/p)yL>. Therefore, within the range*

ymll'l

Comi<wo<i sl (4.18)
p

the expression in square brackets is equal to

C1 Ymin(@plC) ™, w<w,;
K@= ¥ (>, ={ i (061C). : (4.19)
e*,e” 3AI0)y™ L, o>,
where
c + \12/5
Dpr =~ Vomin (y“_““) (4.20)
p ymin

* Remember that we are considering the case where y_; < vy .
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as the main contribution into (4.17) for w < w,, being introduced by the slow and for

w > w,, by the fast plasma component. Outside the frequency interval (4.18) the

expression (4.19) becomes negative, so that the state established becomes impossible.
Now consider Equation (4.15). We will seek its solution in the form

E, (Q) = E*oF.

The analysis of the expression (4.15) shows that i = — 35 for w> w,, and i = 2 for
® < w,,. The main contribution into the integral J determined by the relation (4.16) (in
which integration over the angle 6" should be carried out up to the angle 0, (w) (2.18))
is made by the frequencies w’ concentrated near w,,, and in this case " < w. That is
why E_,_ . (Q - Q') in J could be taken out in front of the integral sign*.

On the other hand, for @' <€ w the integral J coincides in fact with the spectral
intensity of the squared amplitude of the electric field because

(E?), o = j do’ dQ'E_(Q)E,_ .. (Q—-Q').

Therefore, one can estimate the spectral energy density of an ordinary wave, for which
in the range of angles 0 < 0,

1 {0 AN
U(2>=—{— (we)E Ef + lB|2}z— w<—”> E. |2,
4 16n Low g g 87 ta
as
2\ —1/2
Ue Q) - w_<w_> J. (4.21)
8n \y?

Employing now the relations (4.15) and (4.21), we finally obtain

~\ —2 —3\ 17/10 2 26/15
vgre=(2) T L (M (T s e o),
W ™™ e p

max

(4.22)

where J, (w) is given by Equation (4.19). We can see that the spectral energy density has
a maximum for o~ w,,:UP(Q)c @®** for w< w,, and UP(Q)oc v~ for
® > w,,. Finally, integrating (4.22) over dQ = nd6? and over the frequency w, we
obtain for the transformation coefficient

~\ —2 21/10 52/25 ] 2.1
e (G) G ) G 429
%) pminwpo V- R

In our subsequent calculations we put @/w~ {y~2>.

* For simplicity E,(€2) is assumed to be independent of Q within the range of angles 50, .
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5. Generation of Radio Emission in Pulsar Magnetosphere

5.1. BASIC PARAMETERS

Now let us discuss the mechanism of electromagnetic wave generation in pulsar
magnetosphere. For simplicity we assume a magnetic field B to be a dipole one - i.e.,

B 3r(Mr) - r’M

5

¥

(M is the magnitude of the magnetic dipole), and consider the wave propagation only
near the magnetic exis. In this case the curvature radius of the magnetic field line p(r)
and its slope angle to the magnetic axis a(r) can be written in the form

pm =~ | (5.1)
¥

ar) = = = (5.2)

N|lw Wl
l_

where r | is the distance from the magnetic dipole axis, r is the distance from the star
center.

In what follows we use the so-called ‘dipole’ coordinates f and /, where / is the
coordinate along the magnetic field line and the dimensionless coordinate

<
2nMQ

des, Q =2n/P

is constant along the field line.

In the normalization of f thus chosen the last open field line for an axisymmetric
magnetosphere corresponds to the value f, = 1.6 (Michel, 1973; Mestel and Wang,
1979; Beskin et al., 1983). Near the dipole f = f,(r, /r, )? wherer} = (Qr/c)r?, so
on the dipole axis f = 0. It is also clear that near the magnetic dipole axis one can
put/=r.

As a result, the relations (5.1) and (5.2) can be rewritten in the form

1\ /2
p(r)=pminf“”2(E) , (5.3)
3 (QR\'? . (1\"”
“<')=5(?) / (}) ’ G4

where

~0.75 x 108 ( R )1/2 (1)1/2 cm ;
Prmin = T 10° cm ls ’
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and R is the star radius. The particle density will also vary along the field line. Using
Equation (2.2), we obtain

l -3
02 = 20,Q ~ 10* 1,B,, P~ G(f) <E> s=2, (5.5)

where the factor G(f) ~ 1 specifies the profile of particle density on the polar cap
surface (see Figure 1). In what follows

lo=Ax10"%; B, =B,/10"*G; Ry =R/10°cm .

Thus, in a real magnetosphere we have, in fact, only two parameters — the wave
frequency v = w/2n and the distance from the star /. All the other parameters are
expressed in terms of them by means of the relations (5.3) and (5.4). In particular, the
parameter (3.22) introduced in Section 3, takes the form

/’{4B12Ré/3 — 1/3 _ 7/3
WB_OG(f)f (YR)=77, (5.6)

VGHz Y10

a=15x10°

where 700 = 7./100, vy, = v/1 GHz.

Three sectors corresponding to the three distinct regions considered in the previous
sections are shown in Figure 12 on the plane v — /. The coordinates of the ‘particular’
point are equal to

34 Q12 y17/4 %107(44
_ (I - 1/4 3/4 .
y, = ———————— ~ (), G (f)f** MHz
* 1/4 .. 1/4 p3/4 1/4 p1/4 p3/4 p1/2 >
A4 gt R3 Ayt B RY PY
22 o112 R3/12 212 gl/2 p1/2
I, = 2 TBoT o 3x 104R A T12°°6 G 12(f)f~ 2.
5/2 .1/2 5/2
Yoo € Y100

We can see that for the characteristic values y, = 100 the frequency v, lies much lower
than the observed frequency range and /, corresponds to distances comparable with
the light cylinder radius R, = ¢/Q.

From Equation (5.6) it can be easily obtained that depending on the frequency v the
level a = 1 will lie at a height

3/7 p3/7 p3/7
Ay Biy Ry

2/7 p1/7.,9/7
VG/HzP/ Y100

I, =6x103R G (f)f 2.

As concerns the boundary between regions I and II, according to (3.37) it can be written
in the form
2l/4 gl/a, 7/4

4

12 Y100 ~1/4 1/4 _l_)_lGH
= G'*(f)f (R z. (5.7)

1/4 p1/2
¢ PV

vi_(l) = 3.5

Thus we see that the external regions of pulsar magnetosphere correspond to
region III due to a strong dependence of particle density on the distance /. As has already
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Fig. 12. Three regions of parameters distinguished in pulsar magnetosphere. Maser amplification of
curvature-plasma waves is realized in region I. In region III only two transverse waves can propagate.

been mentioned, only two transverse modes can propagate here, and their attenuation
can be neglected. Region I in which there exist unstable curvature-plasma waves
occupies the internal part of the magnetosphere.

5.2. ELECTROMAGNETIC WAVE PROPAGATION

Now proceed to wave propagation in pulsar magnetosphere. We for simplicity analyze
only the case where the wave vector k lies in the plane of a curved magnetic field. Then
in the framework of geometrical optics the equations of motion will be written in the

form
dr_i=L<@), dk_Lz_i(E» (5.8)
dt 0k, \n dt or, \n,

J
where the index | again corresponds to the components perpendicular to the dipole
axis —e.g., 0, =k, /k.
The expressions for the refractive indices #;(k, r) can, in fact, be borrowed from the
theory of a homogeneous magnetic field, which was presented in Section 2. Indeed, as
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has already been mentioned, an account of magnetic field inhomogeneity leads only to
splitting of an Alfvén wave j = 4 into three curvature-plasma modes whose dispersion
properties, as shown in Figures 4 and 7 do not change very much. That is why, to
determine 7; one can use the relations (2.16), (2.20a), and (2.20b) in which it is, however,
necessary to put 8 = 6, — a(r). The last substitution is due merely to the fact that the
relations (2.16)—(2.21) involve, in fact, the angle between the vectors k and B.

As aresult, in region III, where only two transverse waves with n; = 1 exist, we have

dr, do,

-0, , - 0. 5.9
i - dl (5:9)

As might be expected, two waves propagate along a straight line in the direction of the
wave vector k. As concerns regions I and I, as shown in Figure 13, it is only the ordinary

Fig. 13. Normal wave propagation in a curved magnetic field of a neutron star. The circle stands for the
‘tearing off region’.
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wave j = 1 that propagates along a straight line. It is clear that this wave has an angle
O = 9§V (o) which corresponds, in fact, to the opening of the directivity pattern and
practically coincides with the value 6, (/.,,) taken at the radiation point /4. Since, as
has been shown in Section 4, the energy conversion into an extraordinary wave is
possible only for extremely small angles 6 < a=>?°0,, we obtain that for an extra-

ordinary wave

3 (QR\'?
®(1) = 5 (__) f;zlifiz(lrad/R)l/z . (510)
C

On the other hand, for Alfvén modes with n; = 1/cos 6 (and, therefore, for curvature-
plasma waves j = 4, 5, 6 in region I) Equations (5.7) and (5.8), after passing over to the
variables f, /, will be written in the form

dfidl =0, (5.11)

3 -0
de, /dl = B @l—* : (5.12)

Equation (5.11) demonstrates that curvature-plasma waves propagate along magnetic
field lines. We have already pointed out this fact (see Figure 7). As regards
Equation (5.12), it can be readily integrated. Taking into account the relations (5.3) and
(5.4), we come (cf. Barnard and Arons, 1986) to

—32 3 \2
- () 36)]
0 0

where r, is the radius on which the wave vector k is tangent to the magnetic field vector
B; so that here we have a(r) = 0 (r). It is seen that for I > r, the angle 6, tends in its
magnitude to 2«(/). Consequently, with an increase of the distance to the star the angle
between k and B will increase as sa(/).

Finally, for normal waves j = 2, 3, Equations (5.8) will be rewritten as

_ _ 2
dc;—ll =0t : 29L = 16 2(°‘ o) 12 | (3.13)
(505 -]
w® \y
_ _ 2
o, _3a-0.1,, (@=0.) , (5.14)
d!/ 4

I T (16 Jo? 2
(5 o-n)
W= \Y
where the plus sign corresponds to a wave with a negative energy, j = 3, while the minus

sign to an ordinary wave j = 2. In the range of angles § < 0, both normal waves j = 2, 3
propagate in an identical manner because, for 6 < 8, , Equations (5.13) and (5.14) for
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both these modes are as

dr, a+86,

= > 5.15
d/ 2 -15)
dé)incx—@l (5.16)
dl 4 /

In the range of angles 6 > 0, an ordinary wave j = 2 propagates as a transverse wave
along a straight line, whereas a wave with a negative energy (the same as curvature-
plasma modes) propagate along magnetic field lines. The region of tearing off, in which
for these two modes 6 ~ 0, and, therefore, their trajectories begin diverging, is also
shown in Figure 13.

The solutions of Equations (5.15) and (5.16) for the angles 6 < 0, can also be written
in an explicit form. We have (cf. Barnard and Arons, 1986)

=1 (i)_3 [1.12 <i>1'29 ~0.12 <I)~0'29]2 ,
o o o

l 0.29 l —1.29
0, (1) = 0.824, (—) +0.180, (—> :

To o

where f, = f(r,), %, = a(r,). Here again r, is the distance on which 0, (I) = a(/). If we
use now Equation (5.4) for a(r), we obtain that for /> r,

l 0.29
0=0, —a= —0.30(0(—) ; (5.17)

ro

and, therefore, the angle 0 between the vectors k and B gradually increases as for
curvature-plasma waves. Ultimately, combining the relations (2.18) and (5.17) we
obtain for the angle ®® = 0® (o) (cf. Barnard and Arons, 1986) the expression

QR 0.36 0)2 0.07 lra 0.15
®(2) = rg.;:136 (—) |:_p20 < y— 3 >:| ( d) ) (5 18)
c w R

where w,, is the value of plasma frequency on the star surface. It is seen that the quantity
O depends not only on the level of generation I, f,., but also on the frequency w.
This is connected with the fact that the ‘region of tearing off> , which is determined by
the condition 6(r) = 0, (r) and is equal according to Equations (2.18) and (5.17), to

QR 0.53 wz 0.26
gt (%)% )

c

depending on the frequency of an ordinary wave.
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Thus, the character of normal wave propagation in the internal regions of pulsar
magnetosphere is essentially different. In particular, while an extraordinary wave, as
shown in Figure 13, propagates practically along a straight line, an ordinary wave for
the angles 0 < 6, declines from the dipole axis and stops declining only at heights r ~ r,.
The opening of the directivity pattern determined by a mode j = 2 will be therefore much
larger than the opening of pattern determined by an extraordinary wave. We use this
fact in the sequel to analyze observations. As regards unstable curvature-plasma modes,
they propagate strictly along magnetic field lines.

5.3. AMPLIFICATION OF CURVATURE-PLASMA WAVES

One of the key problems of the paper is estimation of a total optical depth passed by
unstable waves in their propagation in internal regions of pulsar magnetosphere. Using
the asymptotic expressions (3.31) and (3.32) we obtain

1/5 Rl/sil/sBlﬁ
T = 2 @ jlmns,sdzz ~ 89055 6Js. YonzTe 74 P12 pus (5 19)

2/5 ..3/5
c . P2 Y100

where for two unstable normal modes s5 = sin(27/5) ~ 0.95 ;

4
5¢ = sin (?“) = 0.59,

1
Js 6 = g j dx x'4/5q5,6(x) )

(5.20)

in which x = [/R and g5 ¢ = Im&; 455 §(2a/m)~ '/, Tt is clear that g5 ¢(x) ~ 1if & ¢ 1is
given by the asymptotic expression (3.28) and g5 _¢(x) < 1 for all other asymptotics.

The integrals J5 4 depend, generally speaking, on the level r, on which the wave vector
k is parallel to the magnetic field. But, as shown in Figure 14, for small r, — i.e., just
where the quantity 7 attains its highest value — this dependence can be neglected. On
the other hand, for r, > R the integrals J5_ fall rapidly with increasing r,. Consequently,
the greatest amplification will apply to those waves for which the angle 8, approaches
the asymptotics 2o already at heights comparable with the star’s radius.

Figure 15 demonstrates the magnitude of the optical depth 75 determined by
Equations (5.19) and (5.20) depending on the frequency v. For the characteristic pulsar
parameters (y, ~ 100; P~ 1s, B, ~ 10'> G) the optical depth modulo is seen to be
several hundred, which corresponds to an amplification by a factor e ™ * ~ 10190,

It is quite clear that such an amplification is unrealistic because the wave energy can
by no means exceed the outflowing plasma energy. As we have seen, the amplification
will actually stop still earlier due to nonlinear effects. The distance at which much
nonlinear interaction becomes essential can be evaluated as

Ar~ AR/7,
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Fig. 14. Dependence of the geometrical factor J5 on the parameter r,/R.

where A ~ 10-30 is a logarithmic factor. It can be seen that the value Ar does not, in
fact, exceed the star radius.

The following fact is, however, important. The point is that in the framework of
geometrical optics unstable normal waves cannot leave freely the inner region of a

|7
J: = {00
€00 -
Y00 |
200
0,01 01 1 10 Y (GHz)

Fig. 15. Module of the optical depth of unstable curvature-plasma wave 15 subject to the frequency v.
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magnetosphere. To explain this, we recall that unstable modes exist only in the angle
interval [0, — a < O, where 6", is given by Equation (3.33). Taking into account

the equalities (5.4) and (5.6), we obtain

1/3
out __ )'4B12R6

= w ——
IIs, 6 5,6 4/3 p2/3.3
vorz P Pioo

STPUR) T,

where ws = 1.2 x 10>, wg = 3.2 x 103. Consequently, the opening of the cone which
contains wave vectors of unstable oscillations decreases with increasing distance / from
the star surface. Since, as we have seen, the wave vector k, when propagating along the
magnetic field line, declines from the direction of the magnetic field, the unstable normal
waves leave the ‘amplification cone’ at a certain distance from the star surface. For
instance if the angle between the wave vector k and the magnetic field B is close to its
asymptotic value ;o(r), then this happens at a height

21/3 g1/3
re~200R 212 13
1/3
Y100 VGHz

For waves propagating in the ‘amplification cone’ at heights r > r, (which is possible
if r, > r,), the transition to the absorption region takes place at still higher altitudes.

Thus, we arrive at the conclusion that already in region I unstable curvature-plasma
waves pass over to the attenuation region in which the roots ¢; of the dispersion
equation (3.23) lie in the lower half plane. Such waves cannot propagate freely at
altitudes higher than r, and, therefore, in the framework of geometrical optics they
cannot overstep the inner region of a magnetosphere. This fact shows once again that
the energy accumulated in unstable curvature-plasma waves can leave pulsar magneto-
sphere only if there is a sufficiently effective energy repumping from such waves into
other modes which are able to propagate freely at large distances from the neutron star.
As we have seen, such a conversion actually takes place.

Thus we are led to the following picture of the physical processes leading to generation
of intense radio emission of pulsars. The plasma produced in polar regions of a neutron
star and flowing along open magnetic field lines turns out to be unstable under excitation
of curvature-plasma waves in it. The instability increment appears to be so large that
already at a distance of two-three radii from the star surface, where secondary electron-
positron plasma is completely formed, the perturbations stop increasing due to non-
linear processes. Nonlinear wave interaction leads not only to saturation of curvature-
plasma oscillations but also to an effective energy conversion into other normal waves
which are able to leave plasma magnetosphere. As shown below, the above picture
makes it possible to explain the basic properties of observed pulsar radio emission.

5.4. THE INTENSITY OF RADIO EMISSION

We shall determine the spectral density I (®) of radioemission into an element of a solid
angle dQ = 270 dO, i.e., in fact, the directivity pattern of pulsar radio emission. For
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simplicity we consider here as before only the simplest case of a dipole magnetic field
and, besides, assume the directivity pattern to have an axial symmetry.

Let again U{/’(0) be the spectral density of established oscillations integrated over
‘transverse’ angles 6, , where the index j = 1, 2 corresponds to two orthogonal modes
capable of leaving the pulsar magnetosphere. For an extraordinary mode the quantity
U{(0) within the range of angles 6 <a~*2°0, = 0, coincides with the expression
(4.12) for unstable curvature-plasma oscillations. For an ordinary mode there holds the
relation

U0 =0,U3(Q),

where 0, (Equation (2.18)) corresponds to the characteristic scale of angles 0 between
k and B in which, as has already been said, the nonlinear energy conversion into the
mode j = 2 is the most effective.

In a curved magnetic field, as we have seen, the wave vector k of normal waves
j = 1, 2 will decline from the magnetic field line. As is seen from the relations (5.9) and
(5.10), in the region of small angles 6 one can put for both modes

o ¢ (5.21)
dt »p
The velocity of escape of electromagnetic oscillations (5.21) from the interaction region
determines, in fact, the effectiveness of curvature-plasma wave energy transformation
into two orthogonal modes that leave pulsar magnetosphere.

We will now use the fact that the transformation is most effective in the region of small
angles 6. We may assume in this case that from each volume element dV radiation
proceeds only into the angle 6 = 0 to which, as shown above, there corresponds quite
a definite angle ® between the dipole axis and the direction of propagation of the wave
going out of the magnetosphere limits. The angle ©, as is seen from the relations (5.10)
and (5.18), depends on the coordinate of the radiation point.

As a result, writing the expression for the volume element in the form

dV=mn o 17dfdi,
c
we obtain for the spectral energy density radiated from the volume element dV within
the time d¢ into the angle element d®

d12(©)de dr - U (0) 2 12dodrdl. (5.22)
C

When deriving (5.22) we have used the fact that dU{/? = U/’ (6) df. Integrating now
Equation (5.22) over all volume elements from which the emission comes into a given
angle ® and also using the equality (5.21), we have

dI$’(@) =c J df %j—) Uy>(6) 14 . (5.23)
c p do
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Next, we again introduce the quantity »Y =UY/U,,,, where U, =

= n,m,c* {y> = U,G(f) (I/R)? is the energy density of outflowing particles. The
relation (5.23) can be rewritten in the form

QR 1 dl U (6)
dI{)(®) = nc — R?U, Jd (SR g G(f).
(©) . 1 40 U
On the other hand, the quantity nc(QR/c)R? U, is merely a flux of energy W, (see

Section 2.1) transferred by particles within the limits of the light cylinder (Beskin et al.,
1983). Finally we have

dl UY(0)

sde U G(f), (5.24)

dI (@) = W, J df g =
where the derivatives d//d® should be determined with the help of the relations (5.10)
and (5.18). Equation (5.24) just determines the directivity pattern of pulsar radio
emission.

Now we will show how one can obtain the expression for the basic characteristics
of observed radio emission using Equation (5.24). Consider, for example, the energy
spectrum of pulsars. Recall that in the analysis of the experimental spectra the so-called
energy in pulse is used

P

E = j I,dt, (5.25)
0

i.e., the total energy taken for one pulsar period P at a given frequency w (Manchester
and Taylor, 1977). It is clear that the quantity (5.25) must correspond to the value

EY = J de 1$°(@).

Using now the definition (5.24), we obtain

o b f _ UD(0)
EP=W, | Al dfgP(fDp! % G(f), (5.26)
R

0

where [, (w) corresponds to the maximum frequency w,,,,(/) (Equations (4.10) and
(5.7)). Similarly, for the coefficient of plasma energy conservation into radio emission
energy oy = E_.4/Wa., Where

EQ = J dcoj d® 01Y(0).

we have
Imax fﬂ-
o) L UD(0) y
= | dw | dI| dfqVPp ETOR G(HOW(f 1), (5.27)
R 0
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where the quantity @/ (£, [) is determined by Equations (5.10) or (5.18).
Proceed now to calculating the integrals (5.26) and (5.27). For an extraordinary mode,
as we have seen, n = 17!, and

Uy o 1

max

Integration over df for both normal modes j = 1, 2 is simple because for sufficiently
smooth profiles of the densities G( /') the integrals are determined by the upper limit f,
so that | df =~ 1. The main contribution into integration over d/ will lie near the upper

limit /__ (w). As a result, we have

ED~ AW, 72 Qo™ 2,
and owing to (5.10) the characteristic opening of the directivity pattern is equal to

12 /..0) \1/2
®$2x:% 1z (ﬁ) (wma"> . (5.28)

C (6)]

The index ‘0’ implies everywhere that the value is taken on the star surface.
Finally, the transformation coefficient a{" is written in the form

QR\2_ | Wi,
¢ min

The numerical estimates of all quantities are given in Section 6.

As concerns the ordinary mode j = 2, two cases are possible here. This is connected
with the fact that the quantity #‘® entering in the expressions (5.26) and (5.27) contains
an uncertainty due, in particular, to the dependence of the Lorentz-factor of particles
7. on the coordinate /. For this reason the integrals over d/ in (5.26) and (5.27) can,
generally speaking, be determined either by the upper or by the lower integration limit.
If the integrals are determined by the lower limit / ~ R (this case will be called ‘internal’),
then for frequencies w < w,, we obtain

0.6
~ Re be

2) ~ 3
E) ~ W, o Ve Wy @

min

For frequencies w > w,,, as is seen from Equations (4.19) and (4.21), the expression for
E® involves an additional factor (w/w,,) ™ *2. Therefore, near the frequency w,, in the
spectrum of the normal mode j = 2, a break Aa must exist whose value is equal to

Ao =5/3. (5.30)
The characteristic dimension of the directivity pattern is equal to

0.36 2 0.07 0.15
O ~ £036 (%) [% <y*3>] (Z’ad) , (5.31)
c w? R
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and the transformation coefficient

2.5 QR 2.1
af) = 30 E (——) w; >3 (5.32)
. C

If the integrals (5.26) and (5.27) are determined by the upper limit /
the region w < w,, we have

(), then in

rnax

Rc?3
1 (2) 10
ECUout. = Wpart ’yC 3.5 a)PO
min

—lw—2.5 .

It can be easily verified that in this ‘external’ case the spectrum break A« is equal to

A% = (5.33)

CMU\

The distinction in the values (5.30) and (5.33) is simply due to the fact that the additional
factor (w/w,,) > oc w33 p>3, according to Equation (5.3), depends on the coordinate
[ and the upper limit /_,, on the frequency w. According to (5.18) and (4.10), the

directivity pattern is defined as

QR 0.36 (D 0.07 w —0.15
@(2) ~ fO 36 ( ) “Po <y- 3> o ; (534)
C max
and the transformation coefficient is given by
2.5 QR 21 0.15
W = Ve —R2 ; (—) 05,5 QL o® (5.35)
~\ ¢

6. Comparison of the Theory with Observational Data

We compare the predictions of our theory with observational data. As has already been
said, no consistent theory of pulsar radio emission has not yet been formulated
(Manchester and Taylor, 1977; Taylor and Stinebring, 1986). When interpreting
observations one usually involved model assumptions which permitted interpretation of
individual properties of observed radio emission on the basis of various hypotheses. For
example, in the hollow cone model (Ruderman and Sutherland, 1975) the radio emission
was assumed to be generated in magnetosphere near the boundary between closed and
open field lines. This made it possible to explain the existence of ‘one-hump’ and
‘two-hump’ structures actually observed in integrated profiles of the majority of pulsars
(Backer, 1976; Oster and Sieber, 1976). In the model of antenna mechanism of radio
emission (Radhakrishnan and Cocke, 1969) connected with curvature radiation of
hypothetic bunches of charged particles, the polarization characteristics of radio emis-
sion were rather well explained, although the origin of those clusters was not established.

In this paper we develop the theory of radio emission based on no special model
assumptions. The starting point is only the reliably-established concept of relativistic
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electron-positron plasma flux flowing along open field lines in pulsar magnetosphere.
This flux, as shown above (Sections 3 and 5) is unstable — curvature-plasma modes are
intensely generated in it. The study of nonlinear processes (Sections 4 and 5) has shown
that there proceeds a nonlinear saturation and transformation of such modes into
transverse electromagnetic waves capable of leaving the magnetosphere of a neutron
star. These outgoing waves are, in fact, pulsar radio emission. Here we are considering
the properties of this radio emission and compare the latter with observational data.

6.1. TWO ORTHOGONAL MODES

As has already been shown, the energy of unstable curvature-plasma waves is trans-
formed into two linearly polarized transverse waves that leave the magnetosphere of a
pulsar. Their polarization is determined by the magnetic field structure in the region of
generation and propagation of such waves. In particular, the electric vector of an
extraordinary wave must be orthogonal and that of an ordinary wave parallel to the
magnetic field projection onto the plane of the picture.

Since, as is seen in Figure 16, star rotation leads to variation of magnetic field
orientation with respect to the line-of-sight, in each of the two orthogonal modes the

UGN R 7\/‘1\ Z:Yle Of >~

N \Y I [v4 (4
\\ / g,_‘gtmt

—

o

Fig. 16. The character of the position angle variation.

observed polarization angle ¢ (i.e., the angle between the direction of the electric field
of the wave and a given direction lying in the plane of the picture) must vary along the
mean profile of the pulsar. Introducing as usual the longitude ¢ = 27¢/P which charac-
terizes the position of the signal in the mean profile, we obtain

sin x sin ¢

tg(p) — 0f”) = S Zcosy - cosEs .
n ¥ — cos ¢ sin y cos
(6.1)

o - o = 12,

where ¢ and x are angles between the rotation axis and, respectively, the line-of-sight
and the magnetic dipole axis. Equation (6.1) gives the well-known variation of the
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position angle discussed usually within the hollow cone model (Radhakrishnan and
Cocke, 1969; Ruderman and Sutherland, 1975; Manchester and Taylor, 1977; Hankins
and Cordes, 1981; Malov, 1983; Narayan and Vivekanand, 1983).

Thus, the theory predicts the existence of two radiation modes which have an
orthogonal linear polarization and vary their position angle along the mean profile
according to Equation (6.1). As is well known, such orthogonal modes are actually
observed (Manchester and Taylor, 1977; Stinebring et al., 1984a,b; Taylor and
Stinebring, 1986). Figure 17 shows the values of the position angle for pulsar 0950 + 08

180

[{~]
o

N e
TR R,
TLAN ,

[)Ogi f[ﬁn a 715/8

[}

Im’ens.{;

30 §o
LcngL tude (degrees)

Fig. 17. Two orthogonal modes singled out in radio emission of pulsar 0950 + 08 (Stinebring ez al.,
1984a, b). The density of points is proportional to the fraction of all pulses that had a given value of the
position angle.

(Stinebring et al., 1984a, b). We see that the measurements of the position angle are
indeed concentrated near two trajectories that differ from each other by 90°. The
variation of the position angle along the profile just corresponds to the relation (6.1).
Note that for some pulsars, such as PSR 0525 + 21, 0833 — 45, 2021 + 51, 2045 - 16,
Equation (6.1) and the real variation of the position angle correspond to one another
so well (Manchester and Taylor, 1977) that the relation (6.1) is used for a direct
determination of some geometrical characteristics of neutron stars, for example, for
evaluation of the angle y (Hankins and Cordes, 1981; Malov, 1983). In particular,
polarization measurements have shown that for pulsar 0950 + 08 the angle y ~ 2°—4°
(Malov, 1986).

The theory also predicts the possibility for circular polarization (see Section 2)
observed in some cases with two orthogonal modes (Stinebring et al., 1984a, b). Indeed,
according to Barnard (1986), the region where the change of polarization ceased (for
pulsars with P > 0.06 s) lies in the region of cyclotron resonance R_. In other words,
the characteristics of circular polarization of radio emission are determined just by
polarization of the normal waves in the region r ~ R_.. And as shown in Section 2 (see
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Equation (2.26)), polarization of normal waves in the region of cyclotron resonance is
already nonlinear. The degree of circular polarization may reach 10-309;, which agrees
well with observations. The question of limiting circular polarization (the same as the
frequency dependence of the degree of circular polarization) requires a special investi-
gation and is not considered here. Note finally that in some cases observational data
testify in favour of the fact that a noticeable interaction of two orthogonal modes takes
place in pulsar magnetosphere. Such are, for instance, sharp jumps of position angle
in individual pulses which are not, however, accompanied by intensity jumps (Stinebring
et al., 1984a, b). Such an interaction may lead to ‘mixing’ two orthogonal modes, as a
result of which a continuous run of the position angle determined by the relation (6.1)
may be violated. Such irregular run of the position angle is observed, for instance, in
pulsars 0329 — 54, 2002 + 31 (Rankin, 1983a). The origin of this interaction also requires
a special study.

6.2. THE WIDTH OF THE RADIO WINDOW

The relations (5.28), (5.31), and (5.34) obtained from the theory represent, in fact, the
width W of the opening of the directivity pattern of radio emission because W = 20.
For the characteristic parameters of radio pulsars they are equal to

WM =3.6°P12yg2, (6.2)
l 0.15

Wi(n2) - 78 of0.36P—0.43 vC—‘yI(—)I.zl4 /{2‘07 B(l).207 yl—og.ll <*) , (63)
R/3r

W = 10° 40P~ %2 yg 52”431 B vi00 " - (6.4)

We can see that in most cases the width of the window W must be determined by an
ordinary wave j = 2. Only in the cases where an ordinary mode is suppressed for some
reason, the width of the directivity pattern will be determined by an extraordinary
wave j = 1.

Consider now in more detail some quantitative relations which follow from our
theory. First of all, the quantities W coincide rather well with the characteristic width
of the mean profiles of pulsars (Rankin, 1983a). Furthermore, the relations (6.3) and
(6.4) make it possible to explain also the observed dependence of the window width W
on the frequency v and on the pulsar period P. Indeed, according to (6.2)—(6.4) for each
pulsar the quantity must depend on the frequency v in a power-law manner: W oc v=#
where

B2 =0.14, (6.5)
B =0.29. (6.6)

out

These values are in a good agreement with observations. Figure 18 demonstrates the
distribution of pulsars with respect to the quantity p borrowed from Rankin (1983b).
We can see that pulsars are concentrated near the values of f determined by
Equations (6.5) and (6.6). Besides, according to Kuzmin et al. (1986), averaged values
of B are also close to (6.5) and (6.6) (see Table I).
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Fig. 18. Distribution of pulsars in the quantity f (Rankin, 1983b). The arrows indicate the expected values
(6.5) and (6.6).

The dependence of the window width W on the period P will be determined not only
by the exponential factors P~ %43 and P~ %3, but also by the dependence on this period
of the field line parameter f, which specifies the opening of the directivity pattern. As
shown by Beskin et al. (1984), the quantity f, is in one-to-one correspondence with the
parameter Q determined, according to Equation (2.1) directly by observations.

Indeed, as has already been said, in pulsars with Q < 1 the generation of secondary
plasma proceeds practically on the entire surface of a polar cap. Near the internal
boundary of the hollow cone which is determined from the condition (cf. Equation (2.4))

fi= Q¥ (6.7)

there flows an intense jet of surface current (see Fig. 1a). On the other hand, the intensity
of radio emission I ~ nW,,, increases, naturally, with increasing density of particles.
That is why for pulsars with Q < 1 we have f, ~ f, . For pulsars with Q > 1 particles
are generated, as shown in Figure 1(b), only within a ring with f, ~ 1.

In the end, for pulsars with Q > 1 one should expect the dependence (6.2)-(6.4)
W o« P*,wherek,, = —0.43 ork_,, = 0.50 and for pulsars with Q < 1, due to the change

TABLE I
Frequency dependence of W (Kuzmin et al., 1986)

Frequency interval 0.1-0.4 0.4-1.7 1.7-4.6 4.6-10.7
(GHz)
Average of B 0.25 + 0.04 0.13 + 0.05 0.16 + 0.05 0.02 + 0.08

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1988Ap%26SS.146..205B

5SS 148, “Z05B.

P&

[1oBBA

THEORY OF THE RADIO EMISSION OF PULSARS 269

of £,.(Q) (2.1) and (6.7) it turns out that the value kK = — 0.07. The analysis of observa-
tions has shown that in pulsars with Q > 1, the quantity k determined using the method
of least squares becomes

Kp- 1= —0.48 £ 0.07 (6.8)

and in pulsars with Q < 1, on the contrary,

(see also Malov and Suleimanova, 1982). Thus the theoretical dependence of the radio
window width on the period is also in a rather good agreement with the experimental
value.

6.3. THE STRUCTURE OF THE MEAN PROFILE

The structure of the mean profile is one of the most important characteristics of pulsar
radio emission. According to the theory developed above, the mean profile must contain
two components corresponding to two orthogonal modes of radiation. As has already
been mentioned, for each of the modes the shape of the directivity pattern must follow
the complicated density profile G( /') depicted in Figure 1. This must lead to a good
variety of shapes of the mean profiles of radio pulsars.

Discuss the main features of the structure of mean profiles which follow from our
theory (see Figure 19). First of all, as we have seen, in pulsars with Q < 1 the largest
current runs near the internal boundary of the plasma outflow cone. In the integral
profile of radiation in such pulsars there must exist, therefore, an intense single central
component. As shown in Figure 19(a), it can be connected both with radiation in an
ordinary mode of plasma flowing near the internal boundary of the hollow cone and
merely with an extraordinary mode j = 1. Only in those pulsars with Q < 1 in which,
as is seen from Figure 19(a), the line-of-sight intersects the inner radius of the directivity
pattern, the central profile must be double.

It is clear that for a given inner radius r,, of a radiation cone the ratio of the number
of pulsars with single and double mean profiles must be equal to

Ny Ry-ry R

L | (6.10)
N, r; Tin

m

and, according to Equation (2.4), can be directly expressed in terms of the observed
quantity Q. As is seen from Figure 20, we deal with a good agreement between theory
and experiment.

As concerns pulsars with Q > 1, their plasma outflow diagram, as demonstrated in
Figure 19(b), has a shape of a sufficiently thin ring. Therefore, depending on mutual
orientation of the directivity pattern and the line-of-sight, both single and double mean
profiles are possible here. On the other hand, in such pulsars the amplification of current
near the internal boundary of plasma outflow is not large (see Section 2). Therefore, in
pulsars with Q > 1 the central component can be connected only with an extraordinary
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G< 1 Sz“

Fig. 19. Various cross-sections of the directivity pattern of radio emission of pulsars with (a) Q < 1 and

(b) @ > 1. The dashed line corresponds to an extraordinary and the solid line to an ordinary modes. Mean

profiles appearing for different cross-sections of the directivity pattern are shown. Letters correspond to
Rankin’s classification.
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10 1

o P /P,

Fig. 20. The relative number of pulsars with single and double mean profiles N,/N, subject to the
parameter r;,/R,. The curve corresponds to the expected dependence (6.10).

mode whose directivity pattern (6.2) has the opening much smaller than the observed
radio window width (6.3) and (6.4). The various versions of mean profiles occuring in
this case are also shown in Figure 19(b).

The above picture (many elements of which are in agreement with the hollow cone
model Ruderman and Sutherland, 1975; Oster and Sieber, 1976; Backer, 1976; Beskin
et al., 1984) completely correspond to the most detailed phenomenological classification
of mean profiles recently proposed by Rankin (1983a, b, 1986). One can explain, in
particular, the existence of two components, Core and Conal, that are now reliably
distinguished in pulsar radio emission (Rankin, 1983a; Gil, 1985).

Recall that according to the classification of mean profiles proposed by Rankin, all
pulsars can be divided into five classes. Their basic properties are given below.

M — pulsars with complex profiles (multicomponent profiles). One can usually single
out one of the components whose properties are essentially distinct from the charac-
teristics of the others (Rankin, 1983a).

T - triple profiles in which the properties of the central pulse are distinct from the
properties of lateral components. In particular, sharp jumps of the position angle as well
as circular polarization is mostly observed only in the central component (Rankin,
1983a, Weisberg et al., 1986).

D —pulsars with a double profile. In some cases, in bridge region there appear features
typical of the central component of the profile T (Weisberg et al., 1986, Gil, 1987).

S, — single profiles whose properties are close to those of the central component of
the profile T. In particular, at high frequencies two satellites appear on both sides of the
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main pulse, so that the profile becomes, in fact, triple (Rankin, 1983a; Hankins and
Rickett, 1986).

S, — single profiles whose properties are close to pulsars of class D. For instance, the
drift of subpulses observed also in pulsars of class D was noted only in profiles of class
S4, and not of class S, (Rankin, 1986).

The central component in pulsars of class T and the main pulse in pulsars of class
S, are interpreted as core components of the directivity pattern, while the lateral pulses
of profiles of class 7" as well as radiation of pulsars S, and D are interpreted as its conal
component.

This classification based, as has already been mentioned, only on the analysis of
observations fully agrees with our theory of radio emission. Indeed, as mentioned above,
pulsars with Q < 1 must have a sharp central peak of radiation and, therefore, it is
natural to attribute them to pulsars of class S,. As is seen from Table II, all S, pulsars
actually have a parameter Q < 1.

TABLE II

Comparison of the Rankin’s (1983a, 1986) classification with the values of parameter Q
(Beskin ez al., 1984)

Rankin’s M T D S, S,
classification

All 4 16 18 17 14
o<1 0 5 2 17 1
0>1 4 11 16 0 13

On the other hand, the directivity pattern of pulsars with @ > 1 does not have a
noticeable core component. Therefore, pulsars with Q > 1 must have a mean profile
determined by the conal component, i.e., belong to classes S, or D. As is seen from
Table 11, precisely this picture is observed in reality.

Finally, pulsars of class T are intermediate in the sense that the intensity of their core
and conal components turns out to be of the same order of magnitude. As might be
expected, they have Q ~ 1. Besides, in some cases one can single out also a core
component connected with an extraordinary mode. Such a component is observed, in
particular, in pulsars 1541+ 09, 1737 + 13, 1821 + 05, 1944 + 17, 1952 + 29 (Hankins
and Rickett, 1986) (all of them have a parameter Q > 1 and belong to classes 7" and M).

Furthermore, according to Gil (1987), in pulsar 0834 + 06 (class D) one of the
orthogonal modes is observed just in the central bridge and the other in the region of
the main two-hump profile.

6.4. THE SPECTRUM OF RADIO EMISSION

As shown in Section 5, our theory predicts a power-law spectrum of pulsar radio
emission, so we have £ oc @® In the region near the frequency v,, (4.20),

pi,\12/5
v, = 3P 293 (ﬂ) GHz; (6.11)

Y100
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and in the spectrum of an ordinary wave a break must be observed. The magnitude of
this break, as we have seen, is determined by the physical region that makes the main
contribution to pulsar radio emission. If radio emission is generated mainly at small
distances from the star (internal case), then Aa = 2 (5.30). It is generated at distances
r ~ I_..(w) (external case), then A% = 2 (5.33).

As to the absolute values @, according to the results of Section 5, we have:

EDoco2; (6.12)
0.9 .
~ 0%, o<o,;
EQ o br (6.13)
0 %, o> aw,;
- 2.5 .
~ 0", w<w,;
E® br (6.14)
’ 0 3, 0> w,.

We will show that the theory corresponds to the observations. First of all, the
spectrum of pulsar radio emission has indeed a power-law form (Manchester and
Taylor, 1977; Izvekova et al., 1981; Slee et al., 1986), in some cases the spectrum
exhibits a brak (Manchester and Taylor, 1977; Kuzmin et al., 1986). As shown in
Figure 21, the ratio v2*%/vi®, where v is given by Equation (6.11), is close to unity. The

N

il

0.1 { 10

Fig. 21. Distribution of pulsars in the quantity v2°/v".

difference A« as is seen from Figure 22, is also concentrated near the values determined
by Equations (5.30) and (5.33).

The absence of a break in the spectrum of some pulsars may be first of all due to an
extraordinary mode which must not have a break in the spectrum. On the other hand,
as is seen from Equation (6.11), in pulsars with small periods the break frequency may
turn out to be sufficiently large and, hence, inaccessible for measurements. It is, there-
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Fig. 22. Distribution of pulsars in the magnitude of the break in the spectrum Aa. Arrows indicate the
expected values (5.30) and (5.33).

fore, not surprising that a break is absent for the most part just in pulsars with Q < 1,
which have small periods P by definition (2.1).

Finally, the absolute values of the spectral index & are on the whole in a reasonable
agreement with observations. For example, spectral index of the extraordinary wave
o = —2 (6.12) practically coincides with the mean value @ = — 2.0 + 0.1 obtained by
Malov and Malofeev (1981) for 43 pulsars in the high-frequency part of the spectrum.
Next, the analysis carried out by Kuzmin ef al. (1986) for 21 pulsars in whose spectra
a break was observed showed that @ = —1.7 + 0.4 at frequencies w < w,, and

o= —3.1 + 1.1 at frequencies w > w,,. Besides, as shown in Figure 23, in 12 pulsars
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Fig. 23. Distribution of ‘old’ (Q > 1) pulsars in the magnitude of the spectral index & Dashed distribution
corresponds to frequencies v < v,,.

with Q > 1 the quantity x = —1.7 + 0.3 for w < w,, and @ = —2.8 + 0.4 above the
break frequency.

These values are sufficiently close to o = —2.6 (w0 < w,,) and & = — 3.8 (0> w,,)
which, according to Equation (6.14) must be observed in the spectrum determined by
an ordinary wave in the case when radio emission is formed at large distances from the
star (‘external’ case). Only for the ‘internal’ version (6.13) the theory leads to the
spectrum which has a maximum in the region of the frequency w,, which s not observed
in reality. '

Unfortunately (as is seen from Figures 22 and 23), the available observational
material is not always enough to compare theory with observations. In this connection
we would like to mention some correlations which follow from the theory and a
discovery of which would be of undoubted interest. First of all, the two versions that
exist for the ordinary mode lead to different results both for the dependence of the
window width W on the frequency v (the quantity §) and for the character of radio
emission spectrum (the quantities @ and A%). For this reason one should expect correla-
tion between the quantities § and o&. Note that this type of correlation has recently been
mentioned by Malofeev et al. (1988). Besides, different components of the mean profile
(if they are actually connected with different orthogonal modes) must also have different
spectral indices a. Finally, it would be of interest to trace the dependence of all the
parameters on the quantity Q.
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6.5. FREQUENCY RANGE OF OBSERVED RADIO EMISSION

As has already been shown, an amplification of unstable curvature-plasma waves is
possible only for frequencies w < o, where w_,,, is given by Equation (5.7). Thus,
the quantity

max?

Voax = 3.5P~ 12978 GHz (6.15)

1s just the upper boundary of the frequencies generated in pulsar magnetosphere. The
lowest frequency v,,;, can be determined by the conditions of propagation. For example,
the refractive index of an ordinary wave n, becomes equal to zero for v < v,;, (2.20a);

and, therefore, for frequencies v < v ;. such a wave (for angles 0 < 0, ) can propagate
only towards the star. In such a case,

Voin = 120P~ 127 32 312 12 MHz . (6.16)

Compare these values with the values of a high-frequency and low-frequency limits
(where sharp downfall of the spectra take place) observed in the spectra of many pulsars
(Malov and Malofeev, 1981)

vo5s = 3P ©62:019 Gz, (6.17)
vobs o 100~ (038009 MHyz, (6.18)

where one can see a good agreement between theory and observations. Comparing the
theoretical dependences (6.15) and (6.16) with the observable ones (6.17) and (6.18),
we see that the theory also gives a correct dependence of downfall frequencies on the
pulsar period P.

Note, however, that the nature of a low-frequency diminution can be connected with
other processes as well. For example, as is seen from (4.17), a low-frequency decrease
can arise from a cessation of energy conversion into an ordinary wave. In this case

y_. =80P 1243 MHz. (6.19)

This is also close enough to the observed value (6.16).

6.6. CYCLOTRON ABSORPTION

Another reason for a low-frequency decrease may be a cyclotron absorption of electro-
magnetic waves in the cyclotron resonance region r = R_ (2.11). Indeed, making use of
the relations (2.11) and (2.27), we obtain the following estimate for the total optical
depth for two orthogonal modes j = 1,2 that propagate at large distances from a
neutron star

,=2 @ JImnl,zdl:0.3P Youl ibaAaBs - (6.20)
C

The estimate (6.20) corresponds to the homogeneous magnetic field approximation
which, as shown in Section 3, holds for sufficiently wide distribution functions of
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particles. One can see that, according to Equation (6.20), the cyclotron absorption can
actually turn out to be substantial.

Figure 24 exhibits a typical variation of a total optical depth 7 subject to the wave
frequency v. A more exact calculation was carried out in the framework of geometric-

0.01 ol t ﬂJ GHz

Fig. 24. Total optical depth of cyclotron absorption subject to the frequency v.

optical wave propagation in the dipole magnetic field of a star. We see that the condition
of smallness of absorption 7 < 1 is fulfilled if v > v¢,,, where the frequency

~30P~3 3 B3, MHz (6.21)

Vinin
is also close to the observed values of low-frequency diminution.

We should emphasize that as is seen from Figure 24, the frequency v5;, depends
strongly on the value of the parameter A (2.2), i.e., on the density of plasma that flows
in pulsar magnetosphere (see Equation (2.2)). That is why a detailed comparison of the
theory with observational data on cyclotron absorption will make it possible to deter-
mine a very important parameter of the theory — the multiplicity of particle production
A. One can now conclude from preliminary analyses that the quantity A does not exceed
the values 10*~10°, which is in agreement with theoretical evaluation (Dougherty and
Harding, 1982; or Gurevich and Istomin, 1985).

6.7. INTEGRAL INTENSITY OF PULSAR RADIO EMISSION

The theory enables us also to determine the total intensity of radio emission of pulsars
(see Section 5). This intensity is convenient to represent as a fraction of energy of a beam
of particles accelerated in a double layer which (the fraction) is converted into radio
emission, oy = E,4/W,,... The quantity W, ~ 4 x 10°' P~* B}, erg s~ ' — the energy
transferred by particles — has already been found in Section 2.1.
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Using now the relations (5.29), (5.32), and (5.35) for the transformation coefficient

o, as well as the values (6.15) and (6.16) for the quantities v,_,,, and v,,;,, we obtain
a(j}) ~ 10—4/1‘21.2P— 1.OBI—20.7 ,
AP ~ 107> 138 P~°° B2, (6.22)

a(yg) ~ 103 12'0P7 1'7B131'3 .
In the derivation of Equation (6.22) we employed the value A ~ y2 (see Equation (2.6)).

Thus, for both modes (and for the characteristic values P ~ 1 s, B ~ 10'? G) the total
intensity of radio emission E_ 4 = o, W, must be of the same order of magnitude, that

is, E,q~ 10%°~10%® erg s = ! (corresponding to o, ~ 107 3-10"). As is well known,
this is precisely the observed mean intensity of radio emission of pulsars (Manchester
and Taylor, 1977; Taylor and Stinebring, 1986).

For a quantitative comparison of the theory and observations we will take the results
obtained by Beskin et al. (1984), where the quantity «, was determined from observa-
tional data. It has actually proved to be the same for ‘young’ (Q < 1, the solid line in
Figure 25) and ‘old’ pulsars (Q > 1, the dashed line), «,- ~ 10~ *. This is just the quantity
given by our theory of radio emission of pulsars.

Note finally that the theory predicts a weak dependence of transformation coefficient
o, on the pulsar period P. This is due to the fact that the quantity A involved in the
relation (6.22) depends, generally speaking, on the period P. Using, for example, the

N
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Fig. 25. Distribution in the magnitude of the transformation coefficient a, for pulsars with Q < 1 (solid
line) and Q > 1 (dashed line) (Beskin et al., 1984).
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estimate A oc P*/7 proposed by Gurevich and Istomin (1985) (see Section 2.1), we obtain
that a{? oc P7, where for all the three versions |T| < 0.3. Such a weak dependence of o,
on P is, in fact, in agreement with the data shown in Figure 25. Indeed, as is seen from
the definition (2.1), the periods of pulsars with Q < 1 are on the whole considerably
smaller than those of pulsars with Q > 1, but nevertheless the transformation coefficient
o, remains practically constant for them.

7. Conclusions

The paper was devoted to presentation of a consistent theory of pulsar radio emission
in the construction of which no special model assumptions were made. The only starting
point was the now reliably established concept of the flux of a relativistic electron-
positron plasma flowing along open field lines in the magnetosphere of a pulsar. As has
been shown, the predictions of the theory are in agreement with observational data. We
have, in fact, succeeded in explaining all the basic characteristics of pulsar radio
emission: their radiation intensity, the range of observed frequencies, the energy
spectrum, the shape of the mean profile, and polarization.

We should emphasize that we spoke of averaged characteristics of pulsar radio
emission. It was reasonable to compare the predictions of the theory just with these
characteristics. We see, however, that averaged characteristics of pulsars vary within
a wide range depending on some of the parameters. Our theory has succeeded to explain
this variation.

As concerns some other properties, such as radio emission intensity fluctuations
(Cordes and Downs, 1985), intensity correlation at different frequencies (Kardashev
etal., 1986), a fine time structure of individual pulses, and others (Cordes, 1983;
Smirnova et al., 1986), their analysis requires a further development of the theory. In
the first place this is formulation of the theory of space-time instability in the region of
particle generation and the theory of corresponding fluctuations in a plasma flux. A
further analysis could also be aimed at a theory of wave propagation with an account
of fluctuations of the parameters of the medium and at clarifying the question of a
limiting radio emission polarization and interaction of two orthogonal modes (see
Section 6.1).

On the other hand, it would be of great importance to have more observational
information on ‘averaged’ processes proceeding in pulsar magnetosphere. From this
point of view it is important, for instance, to clarify and investigate in detail the cyclotron
absorption (Section 6.6), the character of formation of circular polarization
(Section 6.1), to have more observational data on the break of the radio emission
spectrum, etc. This would make it possible to compare more reliably the predictions of
the above theory with observations.
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